

The silicon tracking system of the future ALICE 3 experiment at the LHC

P. Larionov^{1,2}, on behalf of the ALICE collaboration ¹CERN pavel.larionov@cern.ch

SQM 2024 - 04 June 2024 - Strasbourg, France

Outline

- ALICE 3: from observables to requirements
- ALICE 3 tracking system Vertex detector ➡ Outer tracker
- R&D activities and challenges
- Expected performance
- Summary

2

LHC heavy-ion physics beyond Runs 3-4

Main questions that will remain open (ALICE perspective)

- Precision measurements of dileptons Evolution of the quark-gluon plasma (QGP) temperature Mechanisms of chiral symmetry restoration in the QGP
- Systematic measurements of (multi-) heavy-flavoured hadrons
 - Transport properties in the quark-gluon plasma ➡ Mechanisms of hadronisation from the QGP
- Hadron correlations
 - Hadron-hadron interaction potentials Net-baryon and net-charm fluctuations

ALICE 3 detector concept

Novel and innovative detector concept

Tracking system

- Compact and lightweight all-silicon MAPS tracker of \approx 70 m²
- Retractable vertex detector
- Large acceptance $|\eta| < 4$

Forward conversion tracker (FCT)

- Extensive particle identification Details in previous talk by G. Volpe
- Letter of intent ➡ <u>CERN-LHCC-2022-009</u>

Main requirements from the physics program

Dileptons

Component	η <
Vertexing	Best possib σ _{DCA} ≈ 10 μn
Tracking	

Multi-charm baryons

1.75 (barrel) $1.75 < |\eta| < 4$ (forward)

ole DCA resolution, **n** at $p_T = 200 \text{ MeV/c}$

Best possible DCA resolution, $\sigma_{\text{DCA}} \approx 30 \ \mu\text{m}$ at $p_{\text{T}} = 200 \ \text{MeV/c}$

Main requirements from the physics program

Component	$ \eta <$
Vertexing	Best possib σ _{DCA} ≈ 10 μn
Tracking	

P. Larionov - SQM 2024 - Strasbourg, France

1.75 (barrel)

 $1.75 < |\eta| < 4$ (forward)

ole DCA resolution, **n** at $p_T = 200 \text{ MeV/c}$

Best possible DCA resolution, $\sigma_{\text{DCA}} \approx 30 \ \mu\text{m}$ at $p_{\text{T}} = 200 \ \text{MeV/c}$

Vertex detector requirements

- First layer (r_0) as close as possible to the interaction point
- Unprecedent spatial resolution $\sigma_{\rm pos} \sim 2.5 \ \mu m$
- Extremely low material budget 0.1% X₀ per layer
- Radiation tolerance **300 Mrad** TID¹ + 10¹⁶ 1 MeV $n_{eq}/cm^2 NIEL^2$

➡ Many challenges

¹ Total ionising dose ² Non ionising energy loss

7

Pointing resolution $\propto r_0 \cdot \sqrt{x/X_0}$ (multiple scattering limit)

Vertex detector requirements

- First layer (r_0) as close as possible to the interaction point
- Unprecedent spatial resolution $\sigma_{\text{pos}} \sim 2.5 \,\mu\text{m}$
- Extremely low material budget 0.1% X₀ per layer
- Radiation tolerance **300 Mrad** TID¹ + 10¹⁶ 1 MeV $n_{eq}/cm^2 NIEL^2$

➡ Many challenges

¹ Total ionising dose ² Non ionising energy loss

ALICE 3 retractable vertex detector

Vertex detector

- **Curved** wafer-size MAPS **inside** the beam pipe
- Retractable configuration
- 4 petals in secondary vacuum form cylinder and disk layers
- First tracking layer at **5 mm** from beam axis → limit by LHC beam aperture

Vertex detector

- **Curved** wafer-size MAPS **inside** the beam pipe
- Retractable configuration
- 4 petals in secondary vacuum form cylinder and disk layers
- First tracking layer at **5 mm** from beam axis → limit by LHC beam aperture

Vertex detector

- **Curved** wafer-size MAPS **inside** the beam pipe
- Retractable configuration
- 4 petals in secondary vacuum form cylinder and disk layers
- First tracking layer at **5 mm** from beam axis \rightarrow limit by LHC beam aperture

11

Sensors

- Strongly relying on ALICE ITS3* R&D (sensor design, stitching, wafer-scale bent sensor)
- Tests successful ullet
 - Bent sensors
 - Wafer-sized stitched sensors

ITS3 engineering model v2

ER1 baby-MOSS Sind

*ALICE Inner Tracking System (Upgrade for Run 4)

Wafer-sized sensors

Sensors

- Strongly relying on ALICE ITS3* R&D (sensor design, stitching, wafer-scale bent sensor)
- Tests successful ullet
 - Bent sensors 🔽 0
 - Wafer-sized stitched sensors

ITS3 engineering model v2

Cutting edge technologies pioneered by ALICE

Wafer-sized sensors

Sensors

- Strongly relying on ALICE ITS3* R&D (sensor design, stitching, wafer-scale bent sensor)
- Tests successful ullet
 - Bent sensors 🔽 0
 - Wafer-sized stitched sensors

ITS3 engineering model v2

The ITS3 detector and physics reach of the LS3 ALICE Upgrade by Chunzheng Wang, Tue 14:20

Wafer-sized sensors

IRIS system

- Services integration being detailed
- Study of protection between primary and secondary vacuum \bullet
- Impact of vacuum on components, wire bonding, glued parts

Middle Layers

- studying various options for ultra-light layers, leveraging on ITS3 technology
- benefits on tracking of soft electrons and of charged hyperons (Ξ^-, Ω^-)

Option with ultra-light curved sensor layers

3D printed Al petals 0.5 mm* thick wall

*Our target thickness ≈ 0.15 mm

Outer Tracker

70 m² silicon pixels, CMOS MAPS technology, larger pixel size

- Large coverage: $|\eta| < 4$
- Time resolution: ~ 100 ns
- Sensor pixel pitch ~ 50 μ m for $\sigma_{POS} \approx 10$ μm
- Very low material: ~1% X₀ per layer

Challenges:

Industrialization of the module assembly Optimization of powering scheme to minimize material

R&D for Outer Tracker

OT barrel design

- Full-scale stave model
- Air and water cooling studies
- Mechanical support studies

OT endcaps with disks

- "Paving" with modules
- Mechanical layout (double-sided disks?), carbon-fibre support

P. Larionov - SQM 2024 - Strasbourg, France

Automated module assembly

- General-purpose die-bonder machine
- Flexible printed circuit, sensor gluing and interconnections

ALICE 3 tracker performance

Tracking performance validation

• ACTS reconstruction software [1]

 p_{T} resolution < 2% for $p_{T} \ge 200$ MeV/c (π , B = 2 T)

[1] A. Salzburger et. al., A Common Tracking Software Project, Comput Softw Big Sci 6, 8 (2022), arXiv, GitHub

 $p_{\rm T}$ resolution < 2% up to $\eta \approx 3$ (π , B = 2 T)

Forward conversion tracker

Resolve the soft photon puzzle

- Soft photon reconstruction, $p_{\rm T} \sim 1-10$ MeV/c
- Pseudorapidity coverage $5 < \eta < 4$
- Technology: MAPS, $X/X_0 \approx 1\%$ per layer
- Dedicated dipole magnet

Performance: multi charm measurements

- Multi-charm baryons at low *p*_T: unique probe of hadron formation
- First ALICE 3 tracking layer at 5 mm
- Direct tracking of Ξ/Ω baryons (strangeness tracking)

$$\Xi_{\rm cc}^{++}\to \Xi_{\rm c}^++\pi^+$$

$$\Xi_{\rm c}^+ \to \Xi^- + 2\pi^+$$

Reconstruction of Ξ_{cc}^{++} decay

Performance: multi charm measurements

- Multi-charm baryons at low p_{T} : unique probe of hadron formation
- First ALICE 3 tracking layer at 5 mm
- Direct tracking of Ξ/Ω baryons (strangeness tracking)

ALI-SIMUL-510900

P. Larionov - SQM 2024 - Strasbourg, France

Reconstruction of Ξ_{cc}^{++} decay

Significance for Ξ_{cc}^{++} in Pb-Pb Ξ_{cc}^{++} , BDT-optimised Ξ_{cc}^{++} standard ALICE 3 Study Pb-Pb 0-10% PYTHIA l acceptance over InI<4.0 Particle + antiparticle $L_{int} = 35 \text{ nb}^{-1}$ 10 12 $p_{_{\rm T}}$ (GeV/c)

Heavy-flavour correlations

Angular decorrelation of HF hadrons

Directly probe QGP scattering

- Sensitive to energy loss and thermalization degree
- Strongest signal at low p_{T}
- Requires high purity, efficiency and η coverage

Heavy-flavour correlations

Angular decorrelation of HF hadrons

Directly probe QGP scattering

Only possible with ALICE 3

Hadronic interactions and exotic nuclei

ALI-SIMUL-502579

- Study c-deuteron: reach significance of 50 for 1 month Pb-Pb fully integrated (centrality, p_{T} , η)

• Two particle $D-D^*$ momentum correlations can be used to explore formation of $D-D^*$ bound states

Hadronic interactions and exotic nuclei

ALI-SIMUL-502579

- Study c-deuteron: reach significance of 50 for 1 month Pb-Pb fully integrated (centrality, p_{T} , η)

Possible with ALICE 3 thanks to pointing resolution + large acceptance

• Two particle $D-D^*$ momentum correlations can be used to explore formation of $D-D^*$ bound states

Summary

- ALICE 3 needed to unravel the microscopic dynamics of the QGP • ALICE 3 tracking system enables new key measurements in
- heavy-flavour and low mass dilepton sectors
- Innovative, very challenging detector concept focusing on silicon technology
- ALICE 3 pioneers R&D directions that have a broad impact on future HEP experiments
- R&D activities started on several strategic areas

Thank you for your attention

ALICE upgrade talks to check out

ALICE 3 particle identification detectors by Giacomo Volpe, Tue 15:20

P. Larionov - SQM 2024 - Strasbourg, France

The ITS3 detector and physics reach of the LS3 ALICE Upgrade by Chunzheng Wang, Tue 14:20

27

P. Larionov - SQM 2024 - Strasbourg, France

Backup

