

SQM 2024

The 21st International Conference on Strangeness in Quark Matter 3-7 June 2024, Strasbourg, France

The ALICE 3 particle identification system

Giacomo Volpe* for the ALICE collaboration

*University and INFN, Bari, Italy

ALICE roadmap

- Ideas for dedicated heavy-ion programme for Run 5 and 6 at the LHC developed within ALICE in the course of 2018/19
- First ideas at Heavy-Ion town meeting (2018)
- Expression of Interest submitted as input to the European Strategy for Particle Physics Update (2019) <u>arXiv:1902.01211</u>
- Letter of Intent for ALICE 3: Review concluded with very positive feedback by the LHCC in March 2022 <u>arXiv:2211.02491</u>
- Scoping Document and resource planning now in preparation

ALICE

LHC heavy-ion physics beyond Runs 3-4

Early stages: temperature, chiral symmetry restoration

> Dilepton and photon production, elliptic flow

Heavy flavour diffusion and thermalization in the QGP

Beauty and charm flow, charm hadron correlation

Hadronization in heavy-ion collisions

- Multi-charm baryon production: quark recombination
- Quarkonia, exotic mesons: dissociation and regeneration

Understanding fluctuations of conserved charges

Hadron correlation and fluctuation measurements

Nature of exotic hadrons

Momentum correlations, production yields and dacays

Beyond QGP physics

- Ultra-soft photon production: test of Low's theorem
- Search for axion-like particles in ultra-peripheral Pb-Pb
- Search for super-nuclei (c-deuteron, c-triton)

ALICE 3 detector concept

Novel and innovative detector concept

- Compact and lightweight all-silicon tracker
- Retractable vertex detector
- Superconducting magnet system
- Extensive particle identification
- Large acceptance: $|\eta| < 4$
- Continuous readout + online processing

ALICE 3 detector requirements

Component	Observables	Barrel ($ \eta < 1.75$)	Forward (1.75 $<$ $ \eta $ $<$ 4)	Detectors
Vertexing	(Multi-)charm baryons, dielectrons	Best possible DCA resolution, $\sigma_{\rm DCA} \approx 10 \mu{\rm m}$ at $p_{\rm T} = 200 {\rm MeV}/c, \eta = 0$	Best possible DCA resolution, $\sigma_{\text{DCA}} \approx 30 \mu\text{m}$ at $p_{\text{T}} = 200 \text{MeV}/c, \eta = 3$	retractable Si-pixel tracker: $\sigma_{\rm pos} \approx 2.5 \mu{\rm m},$ $R_{\rm in} \approx 5 {\rm mm},$ $X/X_0 \approx 0.1 \%$ for first layer
Tracking	(Multi-)charm baryons, dielectrons, photons	σ _{pT} /p _T ≈ Silicon Tracking Systen Larionov)	≈ 1 – –2% n (see talk from Pavel	Silicon pixel tracker: $\sigma_{\text{pos}} \approx 10 \mu\text{m},$ $R_{\text{out}} \approx 80 \text{cm},$ $L \approx \pm 4 \text{m}$ $X/X_0 \approx 1 \%$ per layer
Hadron ID	(Multi-)charm baryons	$\pi/K/p$ separation	n up to a few GeV/c PID System	Time of flight: $\sigma_{tof} \approx 20 \text{ ps}$ RICH: $n \approx 1.006 - 1.03$, $\sigma_{\theta} \approx 1.5 \text{ mrad}$
Electron ID	Dielectrons, quarkonia, $\chi_{c1}(3872)$	pion rejection by 1000x up to 2–3 GeV/c		Time of flight: $\sigma_{tof} \approx 20 \text{ ps}$ RICH: $n \approx 1.006 - 1.03$, $\sigma_{\theta} \approx 1.5 \text{ mrad}$
Muon ID	Quarkonia, $\chi_{c1}(3872)$	reconstruction of J/ ψ at rest, i.e. muons from $p_{\rm T} \sim 1.5$ GeV/c at $\eta = 0$		steel absorber: $L \approx 70 \mathrm{cm}$ muon detectors
ECal	Photons, jets	large acceptance		Pb-Sci sampling calorimeter
ECal	Xc	high-resolution segment		PbWO ₄ calorimeter
Soft photon detection	Ultra-soft photons		measurement of photons in $p_{\rm T}$ range 1–50 MeV/c	Forward conversion tracker based on silicon pixel tracker

ALICE 3 PID performance: overview

Dielectrons and QGP temperature

ALICE 3 unique for high-precision dielectron based QGP temperature measurements

Averaged temperature T of the QGP using thermal dielectron m_{ee} spectrum at m_{ee} > 1.1 GeV/ c^2

Very good electron identification down to low $p_{\rm T}$

Requirements

- Very good electron identification down to low p_{T}
- Small material budget (γ conversion background)
- Good pointing resolution (heavy flavour decays)

Dielectrons and QGP temperature

ALICE 3 unique for high-precision dielectron based QGP temperature measurements

Probe time dependence of temperature using double-differential spectra of $m_{\rm ee}$ and $p_{\rm T,ee}$

Requirements

- Very good electron identification down to low p_{T}
- Small material budget (γ conversion background)
- Good pointing resolution (heavy flavour decays)

Quarkonium beyond S-wave states

ALICE 3 unique for the reconstruction of quarkonium states down to $p_T = 0$ and excellent performance for low energy photons

Quarkonium measurements in Heavy-Ion collisions are currently limited to S-wave states decaying into dileptons: J/ ψ , ψ (2S), Y(nS)

Pseudoscalar and P-wave (L = 1) states χ_c and χ_b state measurements:

- unique tool to constrain the dynamics of bound-state interactions with the QGP, where different predictions are available from the existing approaches
- Melting temperature depends on angular momentum

 χ_{C} states:

- Binding energy in between J/ ψ and ψ (2S)
- Sizable feed-down contribution to J/ψ
- Most promising decay mode: $\chi_c \rightarrow J/\psi + \gamma$ (γ measured with calorimetry and/or pair conversion)

ALICE 3 TOF performance and R&D (I)

Requirements

- e/π separation up to \approx 500 MeV/c
- π/K separation up to $\approx 2 \text{ GeV}/c$
- K/p separation up to $\approx 4 \text{ GeV}/c$
- $\propto L/\sigma_{\text{TOF}} \rightarrow \sigma_{\text{TOF}} \approx 20 \text{ps}$
- Larger radius \rightarrow Lower p_{T} bounds

	Inner TOF	Outer TOF	Forward TOF disks
Radius (m)	0.19	0.85	0.15 to 1.0
z range (m)	-0.62 to 0.62	-3.50 to 3.50	±3.70
Area (m ²)	1.5	37	6
Acceptance	$ \eta $ < 1.9	$ \eta < 2$	$2 < \eta < 4$
Granularity (mm ²)	1×1	5×5	1×1 to 5×5
Hit rate (kHz/cm ²)	200	15	280
Material thickness ($\% X_0$)	1 to 3	1 to 3	1 to 3
Power density (mW/cm ²)	50	50	50
Time resolution (ps)	20	20	20

ALICE 3 TOF performance and R&D (II)

Technology options

- Monolitic Active Pixel Sensors (MAPS)
 - ARCADIA* MAPS with gain layer
- Low Gain Avalanche Diodes (LGADs)
 - Single/double LGADs
- Silicon Photomultipliers (SiPMs)
 - Interesting in combination with RICH

ARCADIA MAPS Bonded test devices Test devices layout:
2x2 array of (250 μm)² Image: Comparison of the test devices layout:
(250 μm)² Image: Comparison of test devices layout:
(250 μm)²

ALICE 3 TOF performance and R&D (II)

Technology options

- Monolitic Active Pixel Sensors (MAPS)
 - ARCADIA* MAPS with gain layer
- Low Gain Avalanche Diodes (LGADs)
 - Single/double LGADs
- Silicon Photomultipliers (SiPMs)
 - Interesting in combination with RICH

Beam tests in July and Oct '23, various sensor options:

- Time resolution target: 20 ps
- SiPM coated with different resins (type, thickness)
- Single and double LGADs 20 μ m, 25 μ m, 35 μ m thick
- 50 μ m thick CMOS-LGAD (ARCADIA MAPS with gain layer) and with integrated FEE (MADPIX)

ALICE 3 TOF performance and R&D (II)

Technology options

- Monolitic Active Pixel Sensors (MAPS)
 - ARCADIA* MAPS with gain layer
- Low Gain Avalanche Diodes (LGADs) •
 - Single/double LGADs
- Silicon Photomultipliers (SiPMs) ٠
 - Interesting in combination with RICH

Beam tests in July and Oct '23, various sensor options:

- Time resolution target: 20 ps
- SiPM coated with different resins (type, thickness) ٠
- Single and double LGADs 20 μ m, 25 μ m, 35 μ m thick ٠
- 50 μ m thick CMOS-LGAD (ARCADIA MAPS with gain ٠ layer) and with integrated FEE (MADPIX)

Beam tests plan for 2024

- Test beam at PS scheduled in April, July and October
 - **April:** test of new FEE with Liroc and picoTDC ٠
 - July and October: focus on new CMOS sensor with optimised doping profile (nominal gain)

*Advanced Readout CMOS Architectures with Depleted Integrated sensor Arrays (INFN Project)

ALICE 3 RICH performance and R&D (I)

Requirements

- Extend charged PID beyond TOF limits
 - e/π up to $\approx 2 \text{GeV}/c$
 - π/K up to $\approx 10 \text{GeV}/c$
 - K/p up to $\approx 16 \text{GeV}/c$
- Cherenkov threshold: $p \ge m/(n-1)^{1/2}$
 - n = 1.03 (barrel), n = 1.006 (forward)
 - Aerogel radiator
 - SiPM for photon detection (2x2 mm² pixel size)
- Angular resolution: $\sigma_{\rm ring} \approx 1.5$ mrad

	barrel RICH	forward RICH disks
Radius (m)	0.9 to 1.2	0.15 to 1.15
z range (m)	-3.50 to 3.50	3.75 < z < 4.15
Surface (m ²)	28	9
Acceptance	$ \eta < 2$	$2 < \eta < 4$
Granularity (mm ²)	2×2	2×2

Projective bRICH to improve coverage at large $|\eta|$ while saving on overall photosensitive area

ALICE

ALICE 3 RICH performance and R&D (II)

R&D challenges

- High radiation load expected in the barrel (NIEL ~ 8.4 x 10¹¹ 1 MeV neq/cm²) → SiPM DCR increase to not tollerable values (> 1 MHz/mm²)
 - Improve SiPM radiation hardness
 - Development of cooling/annealing systems
- Merged oTOF+bRICH system using a common SiPM layer coupled to a thin radiator window
- Extend electron PID up to \approx 4 GeV/*c* by introducing Cherenkov radiator gas (C₅F₁₀O/N₂ (20/80%), n \approx 1.0006) into the proximity focusing gap

ALICE 3 RICH performance and R&D (II)

R&D challenges

- High radiation load expected in the barrel (NIEL ~ 8.4 x 10¹¹ 1 MeV neq/cm²) → SiPM DCR increase to not tollerable values (> 1 MHz/mm²)
 - Improve SiPM radiation hardness
 - Development of cooling/annealing systems
- Merged oTOF+bRICH system using a common SiPM layer coupled to a thin radiator window
- Extend electron PID up to \approx 4 GeV/*c* by introducing Cherenkov radiator gas (C₅F₁₀O/N₂ (20/80%), n \approx 1.0006) into the proximity focusing gap

PS Beam test October 2023

ALICE 3 RICH performance and R&D (II)

R&D challenges

- High radiation load expected in the barrel (NIEL ~ 8.4 x 10¹¹ 1 MeV neq/cm²) → SiPM DCR increase to not tollerable values (> 1 MHz/mm²)
 - Improve SiPM radiation hardness
 - Development of cooling/annealing systems
- Merged oTOF+bRICH system using a common SiPM layer coupled to a thin radiator window
- Extend electron PID up to \approx 4 GeV/*c* by introducing Cherenkov radiator gas (C₅F₁₀O/N₂ (20/80%), n \approx 1.0006) into the proximity focusing gap

Radiator

Gas

ALICE 3 MID performance and R&D (I)

Requirements

- Muon ID down to $p_{\rm T} \approx 1.5 \; {\rm GeV}/c$
- Pseudorapidity coverage $|\eta| < 1.3$

Hadron absorber

- Standard magnetic steel absorber
- Thickness of \approx 70 cm at η = 0

Muon chambers

- 160 chambers
- $\Delta\eta \ge \Delta\phi$ granularity $\rightarrow 5 \times 5 \text{ cm}^2$ cells
- 2 layers of plastic scintillator bars
- Silicon Photomultiplier readout
- Coupling to WLS fibers is under study
- Alternative options for the muon chambers
 - MWPCs: 160 chambers (excellent position resolution of a few mm)
 - *RPCs:* 320 chambers (time, granularity 5x5cm²)

	Absorber	MID layer 1	MID layer 2
Inner radius (m)	2.20	3.01	3.11
Outer radius (m)	2.90	3.02	3.12
Total length (m)	10	10	10.5
No. of sectors in z	9	10	10
No. of sectors in φ	1	16	16
Scintillator bar length (cm)	-	99.8	123.5
Scintillator bar width (cm)	-	5.0	5.0
Scintillator bar thickness (cm)	-	1.0	1.0

ALICE 3 MID performance and R&D (II)

G. Volpe - SQM 2024

Test beam in July 2023 at CERN PS

• All the considered technologies have been tested

Full MID-chamber prototype planned to be ready by the end of 2024 for new test beam!

- Test of the new design of the scintillator bar with the different series Hamamatsu SiPM
- Test the muon tagging algorithm

<u>JINST 19 (2024) 04, T04006</u>

19

ALICE 3 ECal performance and R&D

 η range

Requirements

ALICE

N_{tot}

19836

30720

6000

- High-energy electron and photon ID
 - Up to 100 GeV for $|\eta| < 1.5$
 - Up to 250 GeV for 1.5 < η < 4
- Energy resolution

$\frac{\sigma_E}{E} = \frac{a}{E} \oplus \frac{b}{\sqrt{E}} \oplus c$

Central barrel $|\eta| < 0.45$ PbWO₄ $2.2 \times 2.2 \text{ cm}^2$ Outer barrel $0.45 < |\eta| < 1.6$ Pb-Sci sampling $3 \times 3 \text{ cm}^2$ End cap $1.6 < \eta < 4$ Pb-Sci sampling $4 \times 4 \text{ cm}^2$

Implementation

- Sampling Pb + scintillator (à la ALICE EMCal/Dcal)
- High-resolution segment based on PbWO₄ crystals, $|\eta| < 0.45$ (à la ALICE PHOS)
 - Silicon Photomultiplier readout

Sampling sector

PbWO₄ sector

ECal segment

Cell technology

Cell size

 N_{φ}

348

256

 N_{η}

57

120

- ALICE 3 will study the microscopic dynamics of the quark-gluon plasma beyond current limits by fully
 exploiting the potential of the LHC as a heavy-ion collider
- ALICE 3 also addresses fundamental open questions in QCD physics and beyond
- To fulfill the rich physics program, ALICE 3 is being designed with excellent PID capability exploiting several PID techniques
- The PID performance and the several ongoing novel detector R&Ds have been presented
 - They will have a broad impact on future HEP and nuclear experiments
- Final selection of technologies and Technical Design Reports are expected by 2027

Thank you for your attention!

Heavy-quarks correlation

Heavy-ion measurement only possible with ALICE 3

Probe QGP scattering

- Sensitive to energy loss and thermalization degree
- Strongest signal at low p_{T}
- Requires high purity, efficiency and η coverage

ALICE 3 layout

