

The 21st International Conference on Strangeness in Quark Matter 3-7 June 2024, Strasbourg, France

 (\mathcal{O})

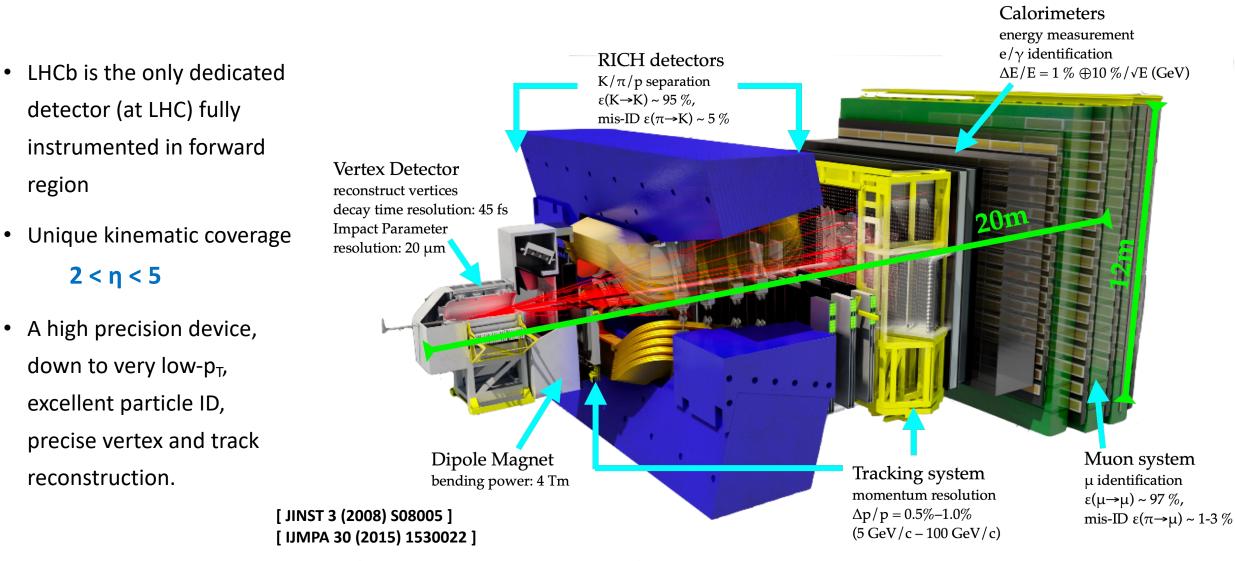
1

UPC Quarkonium Production at LHCb

Hengne Li

(South China Normal University)

on behalf of the LHCb collaboration

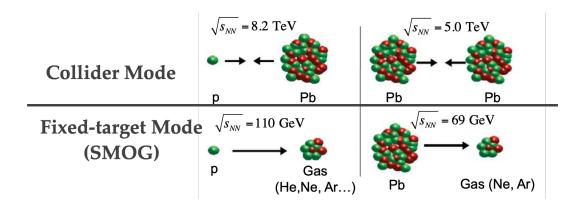

Hengne Li

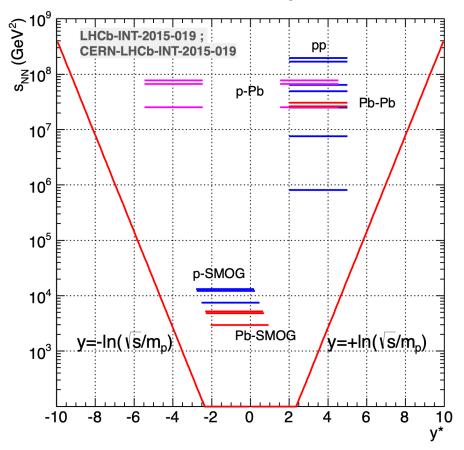
UPC @ LHCb, SQM 2024, 3-7 June 2024, Strasbourg, France

The LHCb detector

Hengne Li

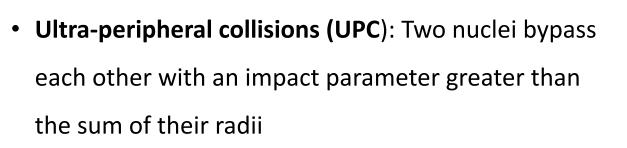
UPC @ LHCb, SQM 2024, 3-7 June 2024, Strasbourg, France


2

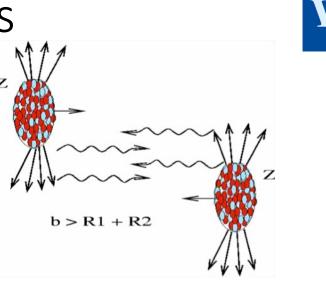

LHCb Run2 heavy ion data

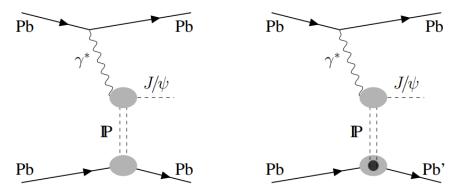
Both the collider mode and fixed-target mode running at the same time

Kinematic acceptance



Collider mode datasets:


		2013		2016		2015	2017	2018
	$\sqrt{s_{NN}}$	5.02	TeV	$8.16~{ m TeV}$		5.02 TeV	$5.02 { m ~TeV}$	$5.02 { m ~TeV}$
		pPb	Pbp	pPb	Pbp	PbPb	XeXe	PbPb
	\mathcal{L}	$1.1 {\rm ~nb^{-1}}$	0.5 nb^{-1}	$pPb \\ 13.6 nb^{-1}$	20.8 nb^{-1}	$10 \ \mu b^{-1}$	$0.4~\mu\mathrm{b}^{-1}$	$\sim 210~\mu {\rm b}^{-1}$



CEP in Ultra-peripheral collisions

- Photon-induced interactions are enhanced by the strong electromagnetic field of the nucleus
 - Coherent J/ψ and ψ(2S) production gives constraints on the gluon Probability Density Functions,
 - (J/ψ) / ψ(2S) ratio measurement is helpful to constrain the choice of the vector meson wave function in dipole scattering models [e.g. PLB 772 (2017) 832, PRC (2011) 011902]

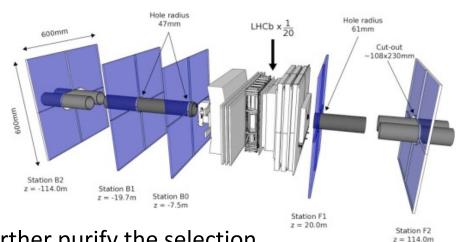
Coherent J/ ψ production: photon interact with the whole nucleus coherently

Incoherent J/ ψ production: photon interact with particular nucleons in the nucleus

- CEP J/ψ production in pp collisions has already been measured at LHCb at 7 TeV pp
- Focusing on the CEP charmonium production in 2018 PbPb collisions

CEP J/ψ and $\psi(2S)$ @ 7 TeV	<u>J. Phys. G40 (2013) 045001</u>
Updated CEP J/ψ and $\psi(2S)$ at 7 TeV	<u>J. Phys. G41 (2014) 055002</u>
CEP	<u>JHEP 09 (2015) 084</u>
CEP J/ψ and $\psi(2S)$ @ 13 TeV	JHEP 10 (2018) 167
CEP J/ψ @ 8.16 TeV 2015 PbPb UPC	JHEP 07 (2022) 117
CEP J/ψ and $\psi(2S)$ @ 8.16 TeV 2018 PbPb UPC	JHEP 06 (2023) 146

Event selection



- Dataset: PbPb collisions in 2018 at 5.02 TeV, $228 \pm 10 \ \mu b^{-1}$
- Cross-sections of coherent J/ψ and $\psi(2S)$ photon-production are measured as:

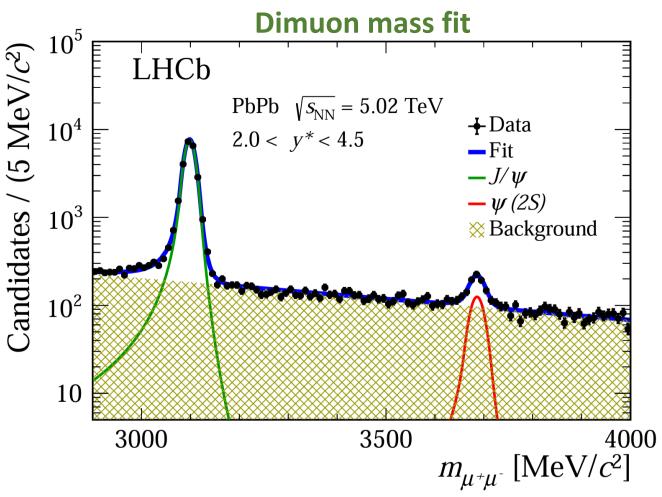
$$\frac{\mathrm{d}\sigma_{\psi}^{\mathrm{coh}}}{\mathrm{d}x} = \frac{N_{\psi}^{\mathrm{coh}}}{\mathcal{L} \times \varepsilon_{\mathrm{tot}} \times \mathcal{B}(\psi \to \mu^{+}\mu^{-}) \times \Delta x}$$

- Event selection:
 - require a near empty detector with only two long tracks reconstructed, with acceptance cuts:

2.0 <
$$\eta^{\mu}$$
 < 4.5 , p_{T}^{μ} > 700MeV,
 $p_{T}^{\mu\mu}$ < 1GeV, $\left| \Delta \phi_{\mu\mu} \right| > 0.9 \pi$

• HERSCHEL detector [JINST 13 (2018) 04 P04017] is used to further purify the selection

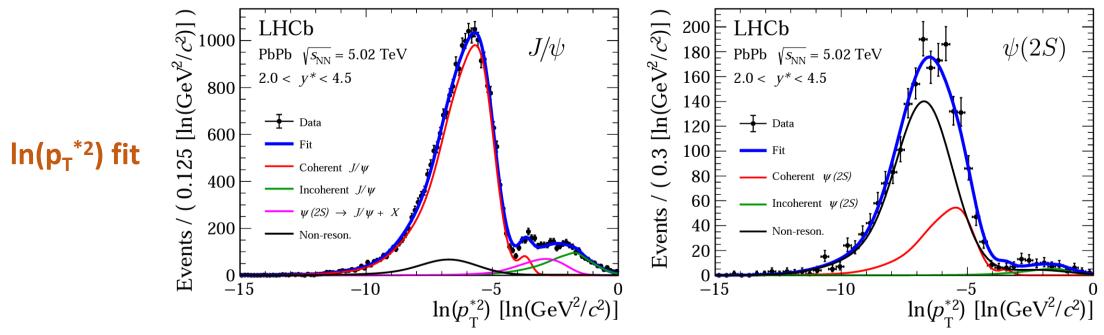
HERSCHEL



Signal extraction (1)

JHEP 06 (2023) 146

- Charmonia yields are extracted from dimuon mass fit
 - Double sided crystal ball function for the J/ψ and $\psi(2S)$ signals
 - Exponential for the non-resonance background (mainly $\gamma\gamma \rightarrow \mu\mu$ process)


Signal extraction (2)

JHEP 06 (2023) 146

Coherent production signal is extracted from a ln(p_T^{*2}) fit

- Coherent, incoherent, and feed-down shapes modelled using STARLight + EvtGen + PHOTOs + GEANT4 Simulation
- Non-resonance shapes determined from data side-band

JHEP 06 (2023) 146

 Integrated cross-section and ratio (most precise measurements in the forward region at the moment):

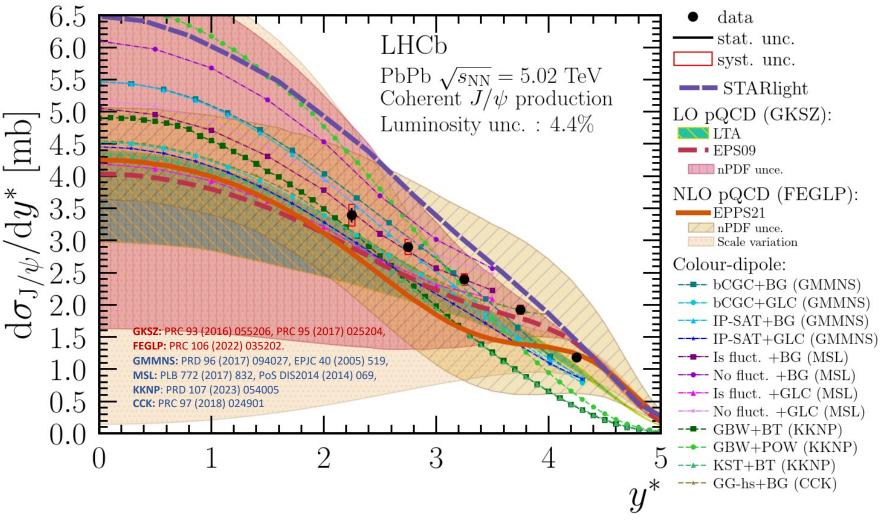
 $\sigma_{I/\psi}^{\text{coh}} = 5.965 \pm 0.059(stat) \pm 0.232(syst) \pm 0.262(\text{lumi}) \text{ mb},$

 $\sigma_{\psi(2S)}^{coh} = 0.923 \pm 0.086(stat) \pm 0.028(syst) \pm 0.040(lumi)$ mb,

 $\sigma^{coh}_{J/\psi} / \sigma^{coh}_{\psi(2S)} = 0.155 \pm 0.014(stat) \pm 0.003 (syst).$

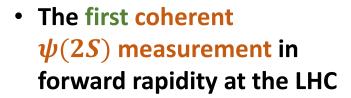
• Systematic uncertainties:

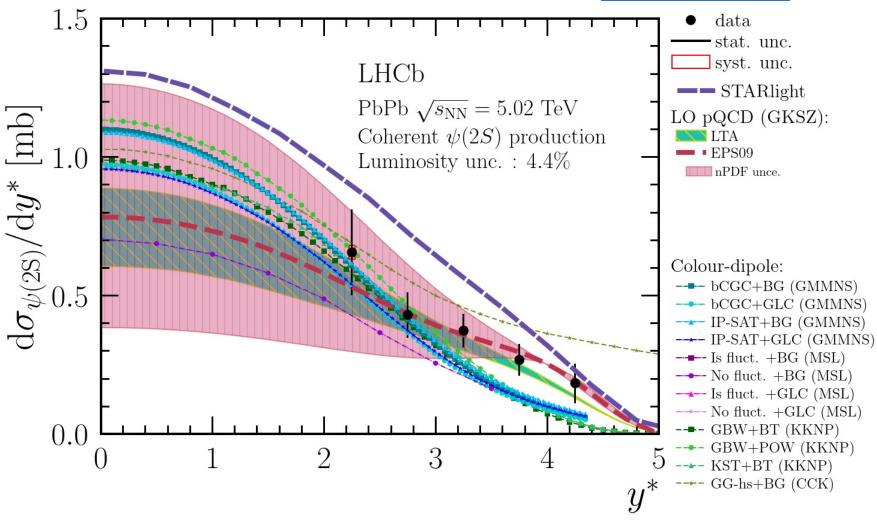
Source	Relative uncertainty $[\%]$			
	$\sigma^{ m coh}_{J\!/\psi}$	$\sigma^{ m coh}_{\psi(2S)}$		
Tracking efficiency	0.5 - 2.0	0.5 – 2.0		
PID efficiency	0.9 - 1.6	0.9 - 1.6		
Trigger efficiency	2.7 - 3.7	2.1 – 2.5		
HERSCHEL efficiency	1.4	1.4		
Background estimation	1.2	1.2		
Signal shape	0.04	0.04		
Momentum resolution	0.9 - 34	1.3 - 27		
Branching fraction	0.6	2.1		
Luminosity	4.4	4.4		



JHEP 06 (2023) 146

10

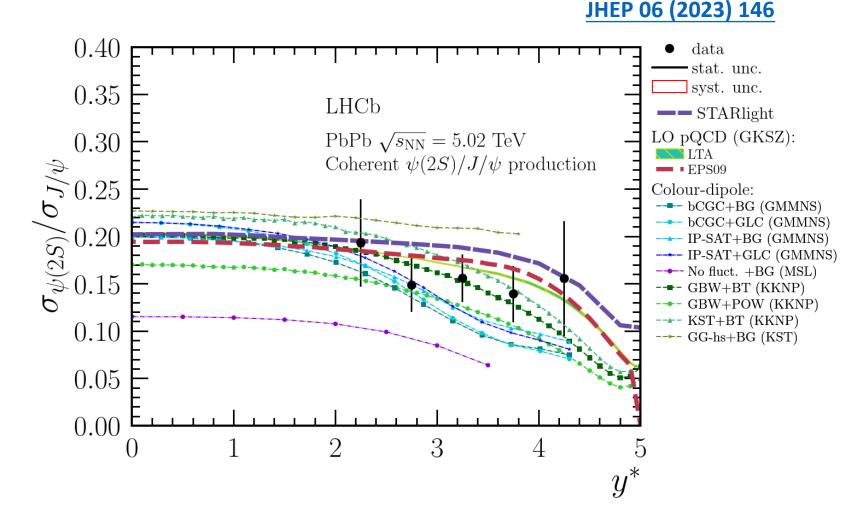

- The most precise coherent J/ψ production measurement in PbPb UPC in forward rapidity to date
- The high precision LHCb data are of great value in theoretical model fine-tuning
- Compare to most recent theoretical calculations:
 - p-QCD calculations: include new NLO p-QCD calculation PDF uncert. and factorization / renormalization scale uncert.
 - Color-dipole models: draw different model tuning options as theoretical variations



JHEP 06 (2023) 146

Compared to pQCD and color-dipole models

GKSZ: PRC 93 (2016) 055206, PRC 95 (2017) 025204, **GMMNS:** PRD 96 (2017) 094027, EPJC 40 (2005) 519, **MSL:** PLB 772 (2017) 832, PoS DIS2014 (2014) 069, **KKNP:** PRD 107 (2023) 054005 **CCK:** PRC 97 (2018) 024901

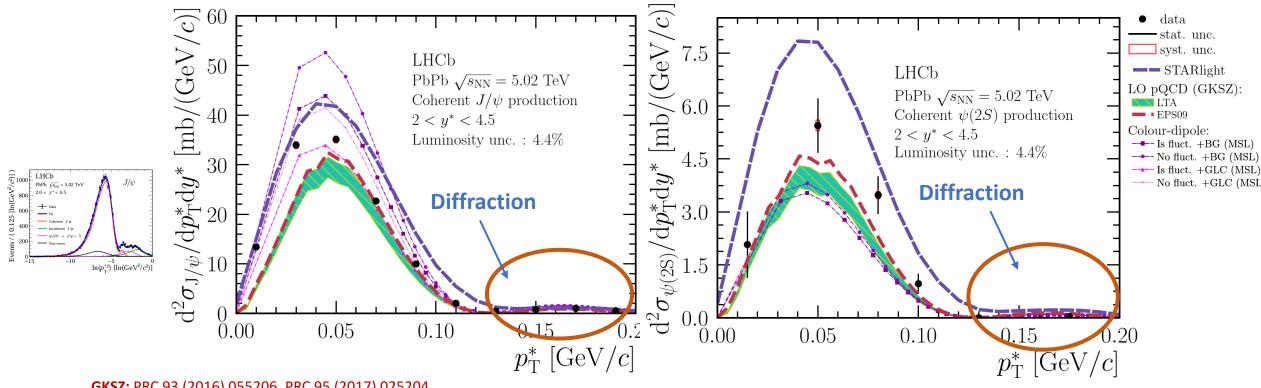


 The first cross-section ratio between J/ψ and ψ(2S) vs. rapidity measurement in forward rapidity region at the LHC

Compared to pQCD and color-

dipole models

GKSZ: PRC 93 (2016) 055206, PRC 95 (2017) 025204, FEGLP: PRC 106 (2022) 035202. GMMNS: PRD 96 (2017) 094027, EPJC 40 (2005) 519, MSL: PLB 772 (2017) 832, PoS DIS2014 (2014) 069, KKNP: PRD 107 (2023) 054005 CCK: PRC 97 (2018) 024901

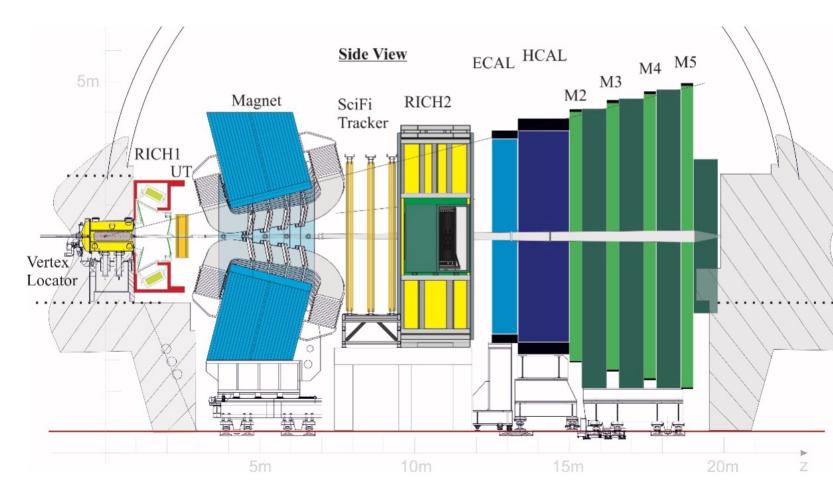


JHEP 06 (2023) 146

• The first measurement of the coherent J/ψ and $\psi(2S)$ production cross-section vs. p_T in PbPb UPC Compared to pQCD and color-dipole models

GKSZ: PRC 93 (2016) 055206, PRC 95 (2017) 025204, **MSL:** PLB 772 (2017) 832, PoS DIS2014 (2014) 069,

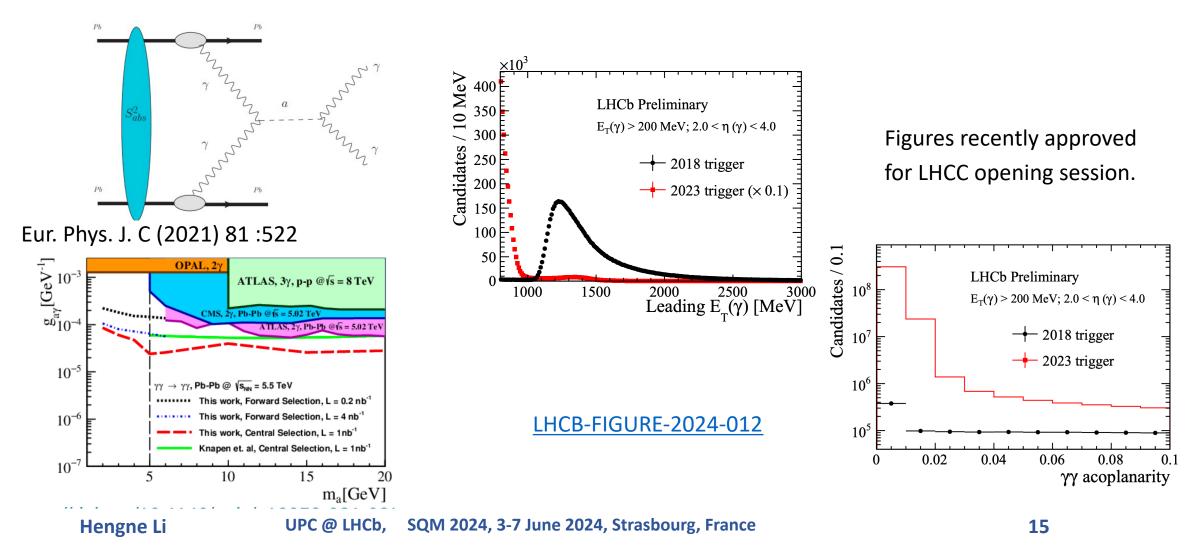
Hengne Li



LHCb detector at Run3

JINST 19 (2024) 05, P05065

- Brand new tracking detectors expand PbPb centrality reach from ~ 60% to 30%.
- Front-end electronics upgraded to read out the full detector at 40 MHz.
- Every collision is processed in software: CSBS 4 (2020) 1, 7



New photon trigger for UPC physics

• Dedicated new low ET photon trigger, opens a window for low mass Axion-like particle searches at UPC.

Conclusion and outlook

- A measurement of exclusive coherent J/ ψ and ψ (2S) production and their cross-section ratio in UPC PbPb collisions using 2018 LHCb dataset
 - The most precise coherent J/ ψ production measurement and the first coherent $\psi(2S)$ measurement in forward rapidity for UPC at LHC
 - The first measurement of coherent J/ ψ and ψ (2S) production cross-section vs. $p_{\rm T}$ in PbPb UPC, diffractive effects clearly visible in the $p_{\rm T}$ spectra.
- The results are compatible with current theoretical predictions, providing strong constraints for the fine-tuning of the models
- A rich program in photon-induced production studies, in all pp, pPb, PbPb collisions, is ongoing at LHCb:
 - e.g. charmonium, bottomonium, K^+K^- , $\pi\pi$, ρ , $\phi\phi$, also ALP, etc...

