

Open heavy flavor production at LHCb

Jianqiao Wang on behalf of the LHCb collaboration

June 4, 2024

Image: A matrix

2 LHCb detector

3 Open heavy flavour results with LHCb

- Λ_b^0/B^0 production ratio in pp collisions at $\sqrt{s} = 13 \text{ TeV}$
- \bullet Open charm production in $p{\rm Pb}$ collisions
- Open charm production in fixed-target collisions

Heavy flavour in heavy-ion collisions

- Heavy quarks are excellent probes in heavy-ion collisions
 - Produced in hard processes at early stage of collisions
 - ► Experience the evolution of the nuclear medium due to their long lifetime

Heavy flavour in heavy-ion collisions

- Heavy quarks are excellent probes in heavy-ion collisions
 - Produced in hard processes at early stage of collisions
 - Experience the evolution of the nuclear medium due to their long lifetime
- Nuclear matter effects in heavy flavour production
 - ▶ Nuclear shadowing
 - ► Multi-parton scattering
 - ▶ Hadronisation in medium (fragmentation / coalescence)

LHCb detector in Run2

- Single-arm forward spectrometer, covering the pseudo-rapidity range of $2<\eta<5$
- Designed for studying particles containing b or c quarks
- A general purposed detector collecting $pp/p{\rm Pb}/{\rm PbPb}$ data, providing unique fix-target mode at the LHC

• Provide excellent track finding, vertex reconstruction and particle identification (PID)

Λ_b^0/B^0 production ratio in pp collisions at $\sqrt{s} = 13 \,\text{TeV}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三日= のへで

Λ_b^0/B^0 ratio versus multiplicity

- Enhanced baryon production considered as a signature of quark coalescence
- Quark wave-function overlap enhanced by multiple parton scatterings and high particle density

- $R_{\Lambda_b^0/B^0}$ reach e^+e^- result as multiplicity goes lower
- Significant increasing trend of Λ_b^0/B^0 with multiplicity, suggesting the contribution from coalescence in addition to fragmentation in *b* quark hadronisation

Λ_b^0/B^0 ratio versus $p_{\rm T}$

Phys.Rev.Lett. 132 (2024) 081901

LHCb pp: Phys.Rev.D 100, 031102(R) (2019) LHCb pPb: Phys.Rev.D 99, 052011 (2019) SHM: Phys.Rev.Lett. 131, 012301 (2023) EPOS4HQ: Phys.Rev.D 109 (2024) 5, 054011 PYTHIA8: Comput.Phys.Commun. 178, 852 (2008)

- $R_{\Lambda_b^0/B^0}$ enhanced at low $p_{\rm T}$ observed, where coalesence is expected to dominate
- In agreement with previous LHCb *pp* and *p*Pb measurements
- Statistical hadronisation model (SHM) with relativistic quark model (RQM) gives better description than with PDG data by considering Λ_b^0 feed-down from excited baryons
- EPOS4HQ reproduces the enhancement at low $p_{\rm T}$ by incorporating coalescence

Λ_b^0/B^0 ratio versus $p_{\rm T}$ in different multiplicity intervals

R_{A⁰_b/B⁰} shows a stronger dependence on normalised N^{VELO}_{tracks} (forward tracks dominant) than N^{back}_{tracks} (backward tracks only), which indicates that coalescence may be induced by interactions with particles around b quarks
 R_{A⁰_b/B⁰} enhancement at low p_T observed

- Pronounced ordering of $R_{\Lambda_{r}^{0}/B^{0}}$ with multiplicity at intermediate $p_{\rm T}$
- $R_{\Lambda_b^0/B^0}$ at high $p_{\rm T} \to e^+ e^-$

Open charm production in pPb collisions

◆□▶
◆□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶

LHC
b $p{\rm Pb}$ data

• Asymmetric *p*Pb data taken in 2013 and 2016 with $\sqrt{s_{\rm NN}} = 5.02$ and 8.16 TeV, including two collision configurations

Pbp: backward

- ▶ Rapidity boosted in lab frame by 0.465
- Rapidity coverage:

pPb: $1.5 < y^* < 4.0$ Pb $p: -5.0 < y^* < -2.5$

 Covering both shadowing and anti-shadowing regions

Open charm production cross-section in pPb

- D^0, D^+, D_s^+ and Ξ_c^+ production measured in pPb collisions
- Prompt D^0 and Ξ_c^+ production cross-sections at $\sqrt{s_{\rm NN}} = 8.16$ TeV

Open charm production cross-section in pPb

- D^0, D^+, D_s^+ and Ξ_c^+ production measured in pPb collisions
- Prompt D^+ and D_s^+ production cross-sections at $\sqrt{s_{\rm NN}} = 5.02$ TeV and 8.16 TeV

Nuclear modification factor

 $\bullet\,$ Nuclear modification factor obtained by comparing with pp reference

$$R_{p\rm Pb}(p_{\rm T}, y^*) \equiv \frac{1}{A} \frac{\mathrm{d}^2 \sigma_{p\rm Pb}(p_{\rm T}, y^*)/\mathrm{d} p_{\rm T} \mathrm{d} y^*}{\mathrm{d}^2 \sigma_{pp}(p_{\rm T}, y^*)/\mathrm{d} p_{\rm T} \mathrm{d} y^*}$$

- $\bullet~pp$ reference derived from LHCb 5 TeV and 13 TeV D meson production
- $R_{pPb}(D^+)$ and $R_{pPb}(D_s^+)$ at 5.02 TeV

- $\bullet\,$ Significantly suppressed $R_{p\rm Pb}\,$ at forward rapidity, suggesting the existence of nuclear shadowing
- $R_{pPb}(D^+)$ more suppressed at backward rapidity than other D mesons and nPDF calculations

$R_{p\mathrm{Pb}}(D^0)$ in (p_{T}, y^*)

• $R_{pPb}(D^0)$ at 8.16 TeV in different rapidity intervals

• $R_{pPb}(D^0)$ in forward regions in general agreement with CGC and nPDF models

- Stronger suppression for $R_{pPb}(D^0)$ at lowest p_T in forward rapidity than nPDF calculations, possibly due to the exsistence of fully coherent energy loss (FCEL) effects besides nuclear shadowing
- More suppressed $R_{pPb}(D^0)$ at high p_T in backward region than nPDF models, indicating additional initial or final state effects

$R_{p\rm Pb}(D^0)$ in (x,Q^2)

• The experimental proxies x_{exp} and Q_{exp}^2 used for comparing results in different energy and kinematic regions

• Consistency between LHCb results at 5.02 TeV and 8.16 TeV in (x, Q^2) space

• Stronger suppression than nPDF calculations in $x \sim 0.01$ at larger Q^2

ELE SQA

Forward backward production ratio

• Forward-backward production ratio defined as

$$R_{\rm FB}(p_{\rm T}, y^*) \equiv \frac{{\rm d}^2 \sigma_{\rm PPb}(p_{\rm T}, +|y^*|)/{\rm d} p_{\rm T} {\rm d} y^*}{{\rm d}^2 \sigma_{\rm Pbp}(p_{\rm T}, -|y^*|)/{\rm d} p_{\rm T} {\rm d} y^*}$$

• $R_{\rm FB}(D^+)$ and $R_{\rm FB}(D_s^+)$ at $\sqrt{s_{\rm NN}} = 5.02 \,\text{TeV}$ and $8.16 \,\text{TeV}$

▶ Significant suppression at low $p_{\rm T}$, in agreement with nPDF predictions

▶ $R_{\rm FB}(D^+)$ goes higher than nPDF predictions with increasing $p_{\rm T}$, while for other charm hadrons, $R_{\rm FB}$ is consistent with the flat trend from nPDF models

• Consistency $R_{\rm FB}(D^+)$ bewteen 5.02 TeV and 8.16 TeV

D^0 and $\Xi_c^+ R_{\rm FB}$ of at 8.16 TeV

• $R_{\rm FB}(D^0)$ and $R_{\rm FB}(\Xi_c^+)$ versus $p_{\rm T}$ at $\sqrt{s_{\rm NN}} = 8.16 \,{\rm TeV}$

- $R_{\rm FB}(D^0)$ shows an increasing trend with $p_{\rm T}$ and goes towards unity at high $p_{\rm T}$, consistent with $R_{\rm FB}(D^+)$ with higher precision
- $R_{\rm FB}(\Xi_c^+)$ shows no dependence on $p_{\rm T}$, in agreement with nPDF calculations but conflicting with D mesons

Open charm production in fixed-target collisions

 D^0 - \overline{D}^0_{-} production asymmetry in 68.5 GeV pNe

• $D^0 - \overline{D}^0$ production asymmetry defined as

۲

$$\mathcal{A}_{\text{prod}} = \frac{Y_{\text{corr}}(D^0) - Y_{\text{corr}}(\overline{D}^0)}{Y_{\text{corr}}(D^0) + Y_{\text{corr}}(\overline{D}^0)}$$

- Intrinsic charm of the nucleon and charm quark recombination involving high-x partons can contribute to the asymmetry
 - Intrinsic charm: $c\bar{c}$ pairs as sea quarks of nucleons rather than from gluon splitting

• MS model with 1% intrisic charm and 10% recombination in good agreement with data

 $J/\psi/D^0$ ratio in 68.5 GeV pNe and PbNe • $J/\psi/D^0$ ratio measured as a function of collision size

- Initial state effects on $c\overline{c}$ production canceled, which gives a power-law dependence on collision size as $R_{J/\psi/D^0} \propto (AB)^{\alpha-1}$ or $(N_{\text{coll}})^{\alpha'-1}$
- The suppression with increasing collision size leads to $\alpha < 1$ and indicates additional nuclear effects of J/ψ than D^0 mesons
- Consistency of decreasing trend across *p*Ne, peripheral PbNe and central PbNe collisions, with no evindence of anomalous suppression or QGP formation

Ne

Summary and prospect

- The LHCb experiment provides excellent reconstruction on heavy flavour particles in *pp*, *p*Pb and fixed-target experiments, which brings new insights on partonic structure of nucleon and hadronisation mechanisms
 - Enhancement of Λ_b^0/B^0 ratio with increasing multiplicity observed at intermediate $p_{\rm T}$, suggesting the exsistence of quark coalescence in b quark hadronisation in pp collisions
 - ▶ Nuclear shadowing and forward-backward production asymmetry observed for all species of charm hadrons in *p*Pb collisions
 - ► D^0 production and $J/\psi/D^0$ ratio measured in fixed-target pNe and PbNe collisions, where no evidence for anomalous suppression or exsistence of hot nuclear medium is seen
- More on strangeness production ratios $(D_s^+/D^+, \Xi_c^+/\Lambda_c^+)$ see Clara's talk
- More central data samples with higher statistics available, thanks to Run3 data-taking and LHCb upgrade

Thanks

Backups

LHCb detector at Run3

- Collision rate at 40 MHz
- Pile-up factor $\mu \approx 5$
- New tracking system:
 - Silicon upstream detector (UT)
 - Scintillating tracking fibre (SciFi)
- Full software trigger:
 - ▶ Remove L0 triggers
 - Read out the full detector at 40 MHz

Λ_b^0 and B^0 invariant mass peaks

• Reconstructed with $\Lambda_b^0 \to J/\psi \, pK^-$ and $B^0 \to J/\psi \, \pi^- K^+$ channels

Prompt yield extraction

- Production mechanisms different for charm and beauty quarks. Necessary to separate prompt and from-*b* charm hadrons
- Fit to impact parameter (IP) for prompt yield extraction $(\chi^2_{\rm IP} \sim {\rm IP}/\sigma_{\rm IP})$

secondary decays

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回日 ののの

Prompt Ξ_c^+ production in *p*Pb at 8.16 TeV

- First measurement of Ξ_c^+ baryons in heavy-ion collisions
- $\Xi_c^+[usc](\Lambda_c^+[udc]) \to pK^-\pi^+$ channels employed

(日本)(四)(日本)(日本)(日本)