

The 21st International Conference on Strangeness in Quark Matter 3-7 June 2024, Strasbourg, France

Strangeness production in fixed-target collisions at LHCb

Chiara Lucarelli on behalf of the LHCb collaboration

SQM 2024, 5 June 2024, Strasbourg

The LHCb experiment

The LHCb is a general-purpose experiment in the forward direction:

- Single-arm forward spectrometer: optimized for $b\overline{b}$ production, $2 < \eta < 5, \Theta \in [10, 250]$ mrad.
- **Tracking:** excellent vertexing, IP resolution: $15+29/p_T$ [GeV] µm, momentum resolution: $\Delta p/p = 0.5\% - 1.0\%$.

Particle Identification (PID):

excellent separation among K, π and p with momentum in [10, 110] GeV/c range.

- **Trigger:** flexible and versatile, bandwidth up to 15 kHz to disk.
- Its forward geometry is very well suited for <u>fixed-target physics.</u>

LHCb fixed-target apparatus

JINST 9 (2014) P12005

<u>SMOG</u>: The System for Measuring Overlap with Gas

- Inject nobel gases (He, Ne, Ar) in LHC beam pipe around (±20 m) the LHCb IP, pressure of 2x10⁻⁷ mbar (x100 nominal LHC vacuum)
- Since 2015, exploited for LHCb fixed-target physics
 programme: highest-energy fixed-target experiment ever.

Unique physics opportunities at the LHC

- Unexplored intermediate energy to SpS and LHC: $\sqrt{s_{NN}} \in [30, 115]$ GeV
- Large target Bjorken-x at intermediate Q²
- Collisions with targets of mass number A intermediate between p and Pb
 - Cold nuclear-matter effects for QGP studies
 - Nuclear PDFs at high-x and strange hadronization process
 - Hadron production and spectra measurements for CRs physics
 - **Polarization studies** in baryon production

Antiproton production from antihyperon decays

Detached antiproton production

- Interpretation of \bar{p} flux in CRs measurement (indirect DM searches) limited by models of \bar{p} production in CRs collisions with the interstellar medium (H, He)
- Dedicated measurement to the component from anti-hyperon decays in *p*He, extending first LHCb result only dealing with the prompt processes → Around 20-30% of p̄ production comes from anti-hyperon decays:

$$ar{\Lambda}^0_{ ext{prompt}} o ar{p} \pi^+ ~~ar{\Sigma}^- o ar{p} \pi^0 ~~ar{\Xi}^+ o ar{\Lambda} \pi^+ ~~ar{\Xi}^0 o ar{\Lambda} \pi^0 ~~ar{\Omega}^+ o ar{\Lambda} K^+$$

• Available data indicate strangeness enhancement but large spread among different theoretical models

ightarrow LHCb SMOG measurement can constrain the models

Analysis strategy

Analysis for secondary-to-primary \bar{p} ratio $R = \sigma_{sec} / \sigma_{prim}$ following two complementary approaches:

large impact parameter (IP)

P٧

LHC p

small impact

parameter (IP)

MOG He

- <u>Exclusive approach</u>: $R_{\overline{A}} = \frac{\sigma(p \operatorname{He} \to (\overline{A}_{prompt} \to \overline{p}\pi^+)X)}{\sigma(p \operatorname{He} \to \overline{p}_{prompt}X)}$
 - Measure $\overline{\Lambda} \to \overline{p}\pi^+$, dominant detached component.
 - Identifying decay exploiting LHCb excellent mass
 resolution (no PID info): event selection via kinematic
 description in the Armenteros plot and impact parameters.
 - Most systematic uncertainties (luminosity, reco, ...) cancel in the ratio.

• Inclusive approach:
$$R_{\overline{H}} \equiv \frac{\sigma(p \operatorname{He} \to \overline{H}X \to \overline{p}X)}{\sigma(p \operatorname{He} \to \overline{p}_{\operatorname{prompt}}X)}, \overline{H} = \overline{\Lambda}, \overline{\Sigma}, \overline{\Xi}, \overline{\Omega}$$

- Focused on all detached components.
- Selecting \overline{p} with tight PID cuts
- Distinguishing between prompt, detached and secondary \bar{p} via a fit to the pHe data impact parameter with the composition of templates.

Results

Larger contribution measured wrt all most widely used theoretical models

Comparison between the approaches

- Ratio of the results is expected to be **predicted more reliably** than the single terms (depends only on the hadronization).
- Results mutually cross-checked since found to be consistent with EPOS-LHC prediction.

Λ⁰ transverse polarization

In 1976, first observation of Λ^0 transverse polarization: inclusive production by 300 GeV unpolarized *p* beam on Be target.

Leading order perturbative QCD predicts small polarization for light quark, decreasing with momentum \rightarrow No polarization effects expected in particle production with high energy unpolarised beam

<u>New result</u>: non perturbative spin effects contribute significantly even in high energy collisions

Phys. Rev. D 91, 032004 (2015) 0.1 -0.1 d, -0.2 42 GeV O HERA-B -0.3 A E799 s = 39 GeV NA48 vs = 29 GeV -0.4 * M2 √s = 27 GeV 10^{-3} 10^{-2} 10-1 10^{-4} X_F

Several experimental measurements highlighted common features:

Same magnitude of polarization observed **for other hyperons** $(\Xi^0, \Xi^{\pm}, \Sigma^{\pm})$

-.10

Polarization increases with x_F and p_T up to few GeV

Λ⁰ transverse polarization: experimental data

Roughly independent of beam energy and colliding system

₫ ē

10

P+ in GeV/c

Λ⁰ transverse polarization: theoretical explanation

Phenomenological approach in explaining the hyperon polarized production: TMD fragmentation functions (FF)

Polarizing fragmentation function D_{1T}^{\perp} : fragmentation of unpolarized quark into transverse polarized hadron accounting for spin and momentum correlations at soft level.

 \rightarrow Difficult to calculate from first principle, extracted from data

Several experiments, still not clear explanation reached

Study polarization in *p*Ne $\sqrt{s_{NN}}$ =68 GeV

Same x_F coverage as HERA-B but higher energy \rightarrow Study energy (in)dependence of polarization

Analysis strategy

arXiv:2405.11324, submitted to JHEP

 Λ^0 transverse polarization searches exploits the self-analyzing decays

 $\Lambda^0 o p \pi^- \ \overline{\Lambda}^0 o \overline{p} \pi^+$

Strong parity violation: *p* preferentially emitted along the Λ^0 spin direction in its rest frame.

 \rightarrow Protons angular distribution depends on the Λ^0 polarization P^{Λ^0} :

Results

Kinematic range: 300< p_T <3000 MeV/c & 2< η <5

 $P(\Lambda^0) = 0.029 \pm 0.019 \pm 0.012$ $P(\overline{\Lambda}^0) = 0.003 \pm 0.023 \pm 0.014$

Uncertainty dominated by limited statistic.

Study performed in bins of p_T , η , y and x_F :

- Λ^0 : increasing trend in polarity as a function of \mathbf{x}_{F} and \mathbf{p}_{T} , as observed by previous experiments.
- $\overline{\Lambda}^0$: flat distribution compatible with 0
 - → Compatible with previous experiments, in contrast with theoretical expectations.

Comparison with other experiments

arXiv:2405.11324, submitted to JHEP

Comparison of results as a function of x_F with previous experiments:

- Different kinematical regions and collision systems
- Very good agreement in polarization values.

Fixed-target upgrade for Run 3

SMOG upgrade: SMOG2

<u>SMOG2</u>: gas confined in a 20 cm long storage cell upstream the interaction point:

- x100 average pressure with same gas flow
- Direct and precise gas pressure and temperature measurement
- Simultaneous pp + fixed-target data taking
- Wider choice of injectable gases: H₂, D₂, N₂, O₂, Kr, Xe (+He, Ne, Ar)

SMOG upgrade: SMOG2

LHCb-FIGURE-2024-005

Data samples collected during April and May 2024 with all available gases!

Unique physics opportunities never explored at LHC:

- Strange-to-charm production ratio from H₂ to Kr to constrain baseline for QGP effects
- *p*H₂, *p*He and *p*D₂ collisions to extend **modelling of secondary productions in CR-Interstellar Medium collisions**
- Transverse polarization measurement as a function of the beam energy and mass target

Conclusions

First strange production results from Run2 fixed-target data in LHCb

- Measurement of detached-to-prompt \overline{p} production in *p*He collisions
 - Together with prompt \bar{p} production measurement, anti-hyperon contribution to \bar{p} production crucial input to models of antimatter production in space
- First LHCb Λ^0 polarization measurement in *p*Ne collisions
 - Unexplored kinematic region, contributing to understand the long-standing challenge of the transverse Λ^0 polarization explanation.

Many more interesting results in store with SMOG2 data samples!

Thanks for the attention!

Prompt antiproton production

First measurement of $\sigma(pHe \rightarrow \overline{p}_{prompt}X)$ at $\sqrt{s_{NN}} = 110 \ GeV$:

- \bar{p} reconstructed in the kinematic region $p \in [12,110] \ GeV/c$, $p_t \in [0.4,4] \ GeV/c$ to optimize reconstruction and particle identification efficiencies.
- Only \overline{p} promptly produced considered; detached component reduced cutting on the impact parameter wrt the primary vertex.
- \bar{p} number from a simultaneous fit to the PID variables in (p, p_t) bins.
- Luminosity from *pe* elastic scattering with gas atomic electrons.
 - \rightarrow Dominant contribution to systematic:
 - Luminosity measurement: injected gas pressure not precisely measured.
 - Particle identification performance: poor calibration statistics.

- Result on XS is compared to different MC event generator.
- Experimental uncertainties (<10%) are lower than the spread among theoretical models.

Impact of the measurement

Important contribution to the improvement of the secondary \overline{p} flux prediction:

- Validation of the extrapolation of the cross section from *pp* to *pHe*.
- Validate models for the cross section energy evolution (violation of Feynman scaling above 50 GeV).

Luminosity measurement in SMOG data samples

SMOG is not equipped with precise gauges for the gas pressure:

- \rightarrow Luminosity is determined through *pe* elastic **scattering** with gas atomic electrons.
- *pe* events are identified as an isolated low-energy ٠ electron track.
- Charge symmetric background is evaluated through ٠ positron yield and subtracted from electron yield.
- Poor electron reconstruction efficiency (16%) \rightarrow 6% ۲ uncertainty on luminosity

Dominant contribution to systematic uncertainty on σ !

GFS and injection

Gas injected into cell or VELO tank through the Gas Feed System:

- Four gas reservoirs (3 noble gases + 1 non getterable line), used to fill the calibrated volumes V1 and V2, controlled by dosing valve DV601
- Table with calibrated volumes used during injection, pumping group to clean line and dosing valve DV602 to control injected flux.
- Gas feed line to feed either the VELO tank (PV503) or the cell (PV611)
- Turbo pump TP301 connected to VELO tank through GV302 (open during SMOG2 operations) to provide pumping when ion pumps off.
- Multiple gauges to measure pressure along the line and in the VELO tank:
 - 1. PZ602: pressure at calibration volumes, around 10 mbar when full.
 - 2. PZ601 and PI601: pressure at the beginning and end of GF line, O(0.01) mbar for SMOG2, O(0.001) mbar a-la-SMOG (PI601 under sensibility).
 - 3. PE301: pressure at the turbo pump TP301 (SMOG injection point), O(1e-8) mbar for SMOG2, O(1e-6) mbar a-la-SMOG.
 - 4. PE411 and PE412: pressure in the VELO tank in Ne equivalent, O(1e-8) mbar.

Results

