

Recent conventional and exotic charmonia results from LHCb

On behalf on LHCb collaboration Youen Kang June 4th, 2024

Quarkonium states

Quarkonium is sensitive to the environment where it is produced:

- > Quarkonium is inhibit to produce when temperature is higher than its binding energy [PRC 99 (2019) 044914]
- > Quarkonium dissociate when interacting with co-moving particles [Ferrero, PLB749, 98 (2015)]

Quarkonium of higher states with larger radius tends to dissociate first.

Excited-to-ground ratio probes for final-state effects (Initial-state effects cancel out).

The LHCb detector

- > Optimum detector for quarkonium study
- Unique forward instrumentation for heavy ion physics
- $\triangleright e, \mu, \pi, K, p, \gamma$ jet identification in 1<p<100 GeV/c

$\psi(2S)$ -to-J/ ψ double ratio at $\sqrt{s_{NN}} = 8.16$ TeV

$$R_{\psi(2S)/J/\psi}^{p\text{Pb}} = \frac{R_{p\text{Pb}}(\psi(2S))}{R_{p\text{Pb}}(J/\psi)} = \frac{\left[\frac{\sigma(\psi(2S))}{\sigma(J/\psi)}\right]_{p\text{Pb}}}{\left[\frac{\sigma(\psi(2S))}{\sigma(J/\psi)}\right]_{pp}}$$

- Non-prompt double ratio consistent with unity, affected by b production only
- Prompt double ratio lower than one, ψ(2S) is affected more by final-state effects, given J/ψ is mainly affected by initial-state effects [PLB774, 159 (2017)]
- Only prompt double ratio is suppressed, consistent with co-mover model [PLB749m 98(2015)]

$\psi(2S)$ -to-J/ ψ double ratio at $\sqrt{s_{NN}} = 8.16$ TeV

pp

$$R_{\psi(2S)/J/\psi}^{p\text{Pb}} = \frac{R_{p\text{Pb}}(\psi(2S))}{R_{p\text{Pb}}(J/\psi)} = \frac{\left[\frac{\sigma(\psi(2S))}{\sigma(J/\psi)}\right]_{p\text{Pb}}}{\left[\frac{\sigma(\psi(2S))}{\sigma(J/\psi)}\right]_{pp}}$$

Initial-state effects canceled

- \succ The prompt double ratio can be explained by co-mover model and CGC+ICEM for appropriate parameters (also applied to lower energy data from RHIC)
- \succ Result consistent with 5 TeV result, a much high precision is achieved

$\psi(2S)$ -to- J/ψ production ratio at $\sqrt{s} = 13$ TeV

- Initial-state effects canceled
- Prompt ratio decrease with multiplicity, highly dependent on forward multiplicity, consistent with co-mover model[PLB749m 98(2015)]
- Non-prompt ratio independent of any multiplicity variables, consistent with comover model

$\psi(2S)$ -to- J/ψ production ratio at $\sqrt{s} = 13$ TeV

 \triangleright Prompt ratio show higher dependence on multiplicity at low p_T region

>Prompt ratio show similar dependence on multiplicity in different y regions

 $\chi_{c1}(3872)$ relative to $\psi(2S)$

> The exotic $\chi_{c1}(3872)$ experiences different dynamics than conventional charmonium state $\psi(2S)$

$\chi_{c1}(3872)$ relative to $\psi(2S)$

Initial-state effects canceled

- > Ratio increase with system sizes, but decrease with multiplicity in pp collisions, indicate coalescence is allowed to become the dominant mechanism towards large system
- > The exotic $\chi_{c1}(3872)$ experiences different dynamics than conventional charmonium state $\psi(2S)$

 $(\psi \pi^+ \pi^-)$

5

LHCb

CMS

 $p_{\rm T} > 15 \, {\rm GeV}/c$

```
\chi_c relative to J/\psi
```


Phys. Rev. Lett. 132 (2024) 102302

 $\succ \chi_{c1} + \chi_{c2}$ measured in $\chi_c \rightarrow J/\psi \gamma \rightarrow \mu^+ \mu^- \gamma$

 $\geq \gamma$ measured by ECAL with $p_T > 0.4$ GeV/c

χ_c relative to J/ψ

- Initial-state effects canceled
- Forward rapidity consistent with pp results
- Backward rapidity 2.4 σ higher than the
 forward for low p_T regions, could result
 from larger suppression of ψ(2S) in
 backward
- Result consistent with lower energy measurements from HERA-B and PHENIX.

 χ_c -to-J/ ψ double ratio

- Initial-state effects canceled
- No dissociation due to final-state effects for χ_c observed
- The medium temperature formed in pPb collisions cannot inhibit the formation of charmonium states with binding energy larger than 180 MeV
- Y(3S) dissociate, with similar size and binding energy, can due to its heavier and slower, more easily interact with co-mover

Summary

- > Result of $\psi(2S)$, J/ψ , and χ_c in pp and pPb collisions are presented
- > The $\psi(2S)$ is influenced by final-state effects in *pp* and *p*Pb collisions
- > The exotic $\chi_{c1}(3872)$ is found to experience different dynamics than conventional charmonium
- > The χ_c is not inhibit to produce in *p*Pb collisions with its binding energy only 20MeV above freezeout temperature

BackUp 1: Jpsi, Initial state effect

PLB774, 159 (2017)

 J/ψ nuclear modification factor largely comes from Initial-State Effects

BackUp 2: pT spectrum of psi2s/Jpsi

BackUp 3: Back- and For-ward mul.

Dependence on backward multiplicity might come from the correlation between forward and backward multiplicity.

BackUp 4: X(3872) molecule, tetra-quark?

Suppression of $\chi_{c1}(3872)$ relative to $\psi(2S)$ at high multiplicity pp events.

Consistent with dissociation of a compact tetraquark in comoving particles.

Molecular explanation from Bratten

29

BackUp 5: prompt proportion X(3872), psi(2S)

Prompt proportion decrease with multiplicity, but still be the main component in different multiplicity regions.

BackUp 6: Chi_c1 to J/psi

ratio	reference	y^*	$\sqrt{s_{ m NN}}$	p_{T}
$rac{\psi(2S)}{J/\psi}$	[12]	[-5.0, -2.5]	$8.16\mathrm{TeV}$	$< 14 \mathrm{GeV}/c$
$rac{\chi_c}{J/\psi}$	this Letter	[-5.0, -2.5]	$8.16\mathrm{TeV}$	$2 < p_{\mathrm{T},J/\psi} < 20\mathrm{GeV}/c$
$rac{J/\psi}{D^0}$	[8]	[-4.0, -2.5]	$5\mathrm{TeV}$	$< 10 {\rm GeV}/c$
$rac{\Upsilon(3S),\Upsilon(2S)}{\Upsilon(1S)}$	[33]	[-4.5, -2.5]	$8.16\mathrm{TeV}$	$<25{\rm GeV}\!/c$
$rac{\Upsilon(1S)}{B ightarrow J/\psi}$	[33]	[-4.5, -2.5]	$8.16\mathrm{TeV}$	$<25{\rm GeV}\!/c$

BackUp 7: radii

	r (fm)
J/ψ	0.50
Xc	0.72
$\psi(2S)$	0.90
Υ(1 <i>S</i>)	0.28
χ _b	0.44
Y(2S)	0.56
$\chi_b(2P)$	0.68
$\Upsilon(3S)$	0.78

Non-Relativistic Potential Theory: Satz, J.Phys.G32:R25 (2006)