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QCD phase diagram
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Trajectories of heavy-ion collisions

Chun Shen, Quark Matter 2018

• Realistic heavy-ion collisions do not follow a
clean trajectory on the phase diagram

• The phase space volume passing near the
critical point may not be large

• It makes sense to look for signatures of the
first order phase transition as a larger system
volume could pass through that
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Spinodal separation

Figure from Pathria and Beale, Statistical
Mechanics

• The region between A and B is unstable
(spinodal region). It is energetically
favorable for phases to separate

• The region from 3 to A and B to 1 is
metastable. This is where nucleation
dominates

• If nucleation rate is small, spinodal
separation is the dominant mechanism of
phase transition
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Cahn-Hilliard model

• Consider the Helmholtz free energy functional at temperature T

F{n(x, t)} =

∫
d3x

[
1
2K(∇⃗n)2 + f(T, n)

]
=

∫
d3xf̃(T, n)

• For small changes in density

F{n+ δn} − F{n} =

∫
d3x

[
K∇⃗δn · ∇⃗n+

∂f
∂n

δn
]

=

∫
d3x

[
K∇⃗ · (δn∇⃗n)− Kδn∇2n+

∂f
∂n

δn
]
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Cahn-Hilliard model

• The chemical potential is

µ̃ =
δF
δn

=
∂f
∂n

− K∇2n = µ− K∇2n

• The isotropic pressure is

P̃ = nµ− [f+ 1
2K(∇⃗n)2]

= n
∂f
∂n

− f− Kn∇2n− 1
2K(∇⃗n)2

= P− Kn∇2n− 1
2K(∇⃗n)2

• Assuming negligible dependence of K on temperature the entropy density is as
usual

s = − ∂f
∂T
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Cahn-Hilliard model

• Local energy density

ϵ̃ = f− T
∂f
∂T

+ 1
2K(∇⃗n)2 = ϵ+ 1

2K(∇⃗n)2

• The local enthalpy is

w̃ = ϵ̃+ P̃ = n
∂f
∂n

− T
∂f
∂T

− Kn∇2n

= µ̃n+ Ts = w− Kn∇2n
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Cahn-Hilliard model

• Keeping the baryon number fixed, let’s minimize the Helmholtz free energy

I =
∫

d3x
[
f̃(T, n)− λn

]
• The resulting Euler-Lagrange equation is

∂i
∂(̃f− λn)
∂(∂in)

− ∂(̃f− λn)
∂n

= 0

• The Lagrange multiplier is

λ = µ− K∇2n = µ̃ = constant

• If n(x) solves the above equation, then the equilibrium surface free energy is

σ = K
∫ ∞

−∞
dx

(
dn
dx

)2
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Metastable and unstable states

• For T < Tc and nG ≤ n ≤ nL we parameterize the pressure in terms of the density
as

Pin(n) = PX(T) +
4∑

i=1

ci(n− nG)i

• The chemical potential is

µin(n) = µX(T) + d0 ln(n/nG) +
3∑

i=1

di(n− nG)i

• We get constraints from Pin(nL) = PX(T) and the continuity of first derivates of P
at nL and nG

• Further constraints are obtained by thermodynamics relations between P, n and
µ and by µin(nL) = µX(T)
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Metastable and unstable states
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Correlation length and surface energy

• Near critical density nc, we can reasonably assume nL − nc = nc − nG = ∆n/2.
For δn = n− nc with−∆n/2 ≤ δn ≤ ∆n/2. Then

µ− µX ≈ d3(δn+∆n/2)(δn+∆n/2)δn

• The planar surface equation is

K
∂2δn
∂x2

= µ− µX

with solution
δn =

∆n
2

tanh(x/2ζ)
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Correlation length and surface energy

• The correlation length ζ is

ζ2 =
2K

α∆n2

• The surface free energy is

σ = K
∫ ∞

−∞
dx

(
dn
dx

)2

=
K∆n2

6ζ
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Correlation length and surface energy

For K = 5× 10−5 MeV−4
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Equation of state

• Background EOS is obtained by matching pQCD
EOS in QGP phase to HRG EOS using a smooth
function. It is matched to Lattice calculations
at µB = 0
[M. Albright, J. Kapusta and C. Young, Phys. Rev. C 90, (2014)]

• The critical point is embedded on it at
Tc = 130 MeV and µc = 450 MeV
J. Kapusta, T. Welle and C. Plumberg, Phys. Rev. C 106, (2022)
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Hydrodynamics

• The relativistic energy momentum tensor is

Tµν = P̃(uµuν − gµν) + ϵ̃uµuν + K(Dµn)(Dνn)

where the gradient is orthogonal to velocity

Dµn ≡ ∂µn− uµuα∂αn

• The local thermodynamic quantities are

µ̃ = µ+ KD2n

P̃ = P+ KnD2n+ 1
2K(D

µn)(Dµn)

ϵ̃ = ϵ− 1
2K(D

µn)(Dµn)

w̃ = P̃+ ϵ̃ = Ts+ µ̃n = w+ KnD2n
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1+1 D flow

We use a simple model of 1 + 1 D inviscid fluid with baryon dimension in Bjorken
coordinates. In Landau frame, to 1st order

Jµ = nuµ + σBTDµ
(
µ̃

T

)
The equations to solve are

∂ϵ(n, T)
∂τ

+
w(n, T)

τ
+

K
τ2

∂n
∂ξ

∂2n
∂τ∂ξ

− K
τ3

n
∂2n
∂ξ2

= 0

∂

∂τ
(τn)− σBT

τ

∂2

∂ξ2

(
µ̃

T

)
− 1

τ

∂

∂ξ
(σBT)

∂

∂ξ

(
µ̃

T

)
= 0

µ̃ = µ(n, T)− K
τ2

∂2n
∂ξ2
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Setting up the system

• Due to fourth order derivatives, it is difficult to do this numerically with any level
of generality with finite difference methods

• Dedicated finite element routines exist for many systems at equilibrium
• Here, we set up boost invariant energy density and a sinusoidal baryon density
such that the lowest point touches the phase transition curve from above
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Evolution across the phase boundary

• We chose a relatively small K so that the change in n is negligible and the
gradients in n are determined by the initial sinusoidal distribution

• We get the phase separation, but eventually all QCD matter is in hadronic phase
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Energy density
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• The two different
curves correspond
to K = 0 and
K = 5× 10−5 MeV−4.
The energy density
increases or
decreases in the
coexistence phase
for different K

• This energy change
will be balanced by
energy flow in the
hadronic phase
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Temperature
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• Temperature
evolution for
different K

• The QGP
temperature is lower
that the hadron gas
temperature as µB

has opposite sign
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Baryon chemical potential
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• Specifics of
temperature and
chemical potential
changes are
sensitive to the
exact choice of the
EOS
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Summary

• It has been postulated that the QCD phase diagram has a first order phase
transition curve at high baryon chemical potential

• If such a curve exists, it is very likely that a large volume of QCD matter at some
collision energy will undergo phase transition via spinodal decomposition

• We present the equations of relativistic hydrodynamics with the phase
transition and solve it for a simple system

• Realistically simulating phase transitions for a rapidly expanding fluid in HIC is
challenging and will likely require generalizations of finite element techniques
used to study chemical and condensed matter systems
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