

Clusters as a probe of the equation-of-state of strongly interacting matter

Elena Bratkovskaya

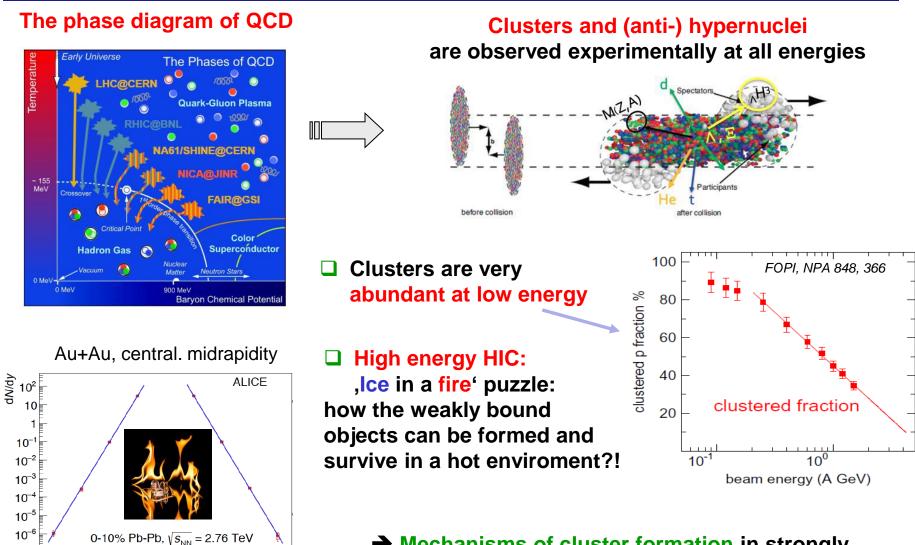
(GSI & Frankfurt Uni.)

&

Susanne Glaessel, Viktar Kireyeu, Gabriele Coci, Joerg Aichelin, Vadym Voronyuk, Christoph Blume, Vadim Kolesnikov, Michael Winn

1

Cluster production in heavy-ion collisions



 10^{-7}

 10^{-8}

-3 -2

ALICE, NPA 971, 1 (2018)

0

2

З

4 A

-1

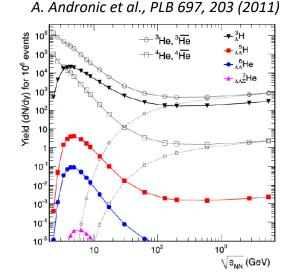
➔ Mechanisms of cluster formation in strongly interacting matter are not well understood

Modeling of cluster and hypernuclei formation

Existing models for cluster formation:

- □ statistical model:
 - assumption of thermal equilibrium

In order to understand the microscopic origin of cluster formation one needs a realistic model for the dynamical time evolution of the HIC



Dynamical Models:

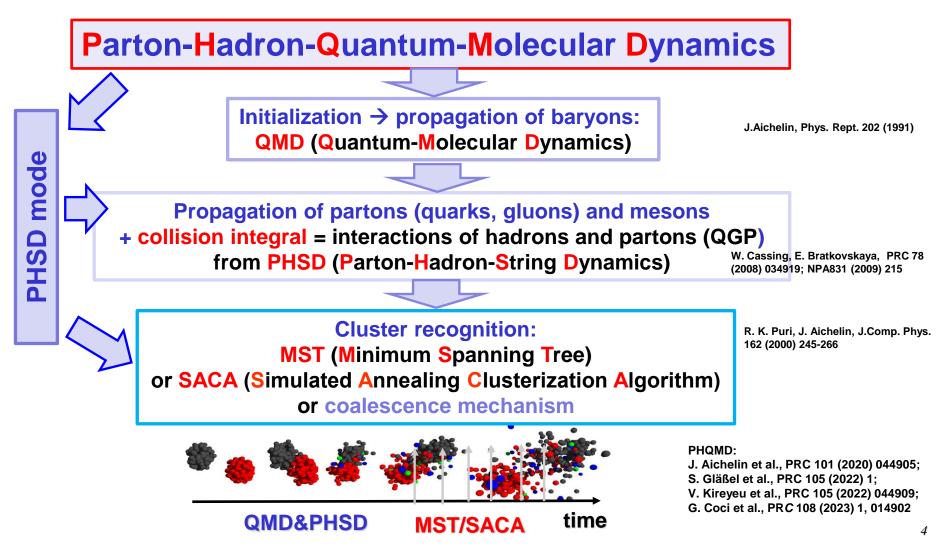
I. cluster formation by coalescence mechanism at a freeze-out time by coalescence radii in coordinate and momentum space

II. dynamical modeling of cluster formation based on interactions within microscopic transport models:

- potential' mechanism via potential NN (NY) interactions (applied during the whole reaction time of HIC)
- 'kinetic' mechanism by hadronic scattering (hadronic reactions as NNN \rightarrow dN ; NN $\pi \rightarrow$ d π)

PHQMD

PHQMD: a unified n-body microscopic transport approach for the description of heavy-ion collisions and dynamical cluster formation from low to ultra-relativistic energies <u>Realization:</u> combined model PHQMD = (PHSD & QMD) + (MST/SACA)



QMD propagation (EoM)

Generalized Ritz variational principle:

$$\delta \int_{t_1}^{t_2} dt < \psi(t) |i\frac{d}{dt} - H|\psi(t)\rangle = 0.$$

Many-body wave function:

 $\psi(t) = \prod \psi(\mathbf{r}_i, \mathbf{r}_{i0}, \mathbf{p}_{i0}, t)$

Ansatz: Gaussian trial wave function (with width L) centered at r_{i0} , p_{i0}

¹
$$\psi(\mathbf{r}_{i},\mathbf{r}_{i0},\mathbf{p}_{i0},t) = C e^{-\frac{1}{4L} \left(\mathbf{r}_{i}-\mathbf{r}_{i0}(t)-\frac{\mathbf{p}_{i0}(t)}{m}t\right)^{2}} \cdot e^{i\mathbf{p}_{i0}(t)(\mathbf{r}_{i}-\mathbf{r}_{i0}(t))} \cdot e^{-i\frac{\mathbf{p}_{i0}^{2}(t)}{2m}t}$$

Equations-of-motion (EoM) for Gaussian centers in coordinate and momentum space:

$$\dot{r_{i0}} = \frac{\partial \langle H \rangle}{\partial p_{i0}} \qquad \dot{p_{i0}} = -\frac{\partial \langle H \rangle}{\partial r_{i0}}$$

Many-body

lamiltonian:
$$H = \sum_{i} H_i = \sum_{i} (T_i + V_i) = \sum_{i} (T_i + \sum_{j \neq i} V_{i,j})$$

[Aichelin, Phys. Rept. 202 (1991)]

□ Nucleon-nucleon local two-body potential:

$$V_{ij} = V(\mathbf{r}_i, \mathbf{r}_j, \mathbf{r}_{i0}, \mathbf{r}_{j0}, \mathbf{p}_{i0}, \mathbf{p}_{j0}, t) = V_{\text{Skyrme loc}} + V_{\text{mom}} + V_{\text{Coul}}$$

momentum dependent potential

→ Single-particle potential <V> :

1) Skyrme potential ('static') :

$$\langle V_{Skyrme}(\mathbf{r_{i0}},t)\rangle = \alpha \left(\frac{\rho_{int}(\mathbf{r_{i0}},t)}{\rho_0}\right) + \beta \left(\frac{\rho_{int}(\mathbf{r_{i0}},t)}{\rho_0}\right)^{\gamma}$$

with relativistic extended interaction density:

$$\begin{split} \rho_{int}(\mathbf{r_{i0}},t) &\to C \sum_{j} (\frac{4}{\pi L})^{3/2} \mathrm{e}^{-\frac{4}{L} (\mathbf{r_{i0}^{T}}(t) - \mathbf{r_{j0}^{T}}(t))^{2}} \\ &\times \mathrm{e}^{\frac{4\gamma_{cm}^{2}}{L} \mathbf{r_{i0}^{L}}(t) - \mathbf{r_{j0}^{L}}(t))^{2}}, \end{split}$$

-

5

 $L=4.33 \text{ fm}^2$

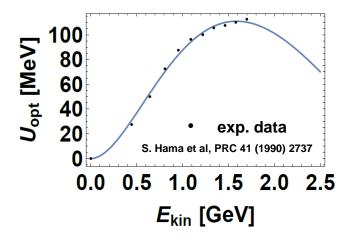
Momentum dependent potential → EoS in PHQMD

2) Momentum dependent potential :

$$V(\mathbf{r}_1, \mathbf{r}_2, \mathbf{p}_{01}, \mathbf{p}_{02}) = (a\Delta p + b\Delta p^2) \ exp[-c\sqrt{\Delta p}] \ \delta(\mathbf{r}_1 - \mathbf{r}_2)$$

 $\Delta p = \sqrt{(\mathbf{p}_{01} - \mathbf{p}_{02})^2}$

Parameters **a**, **b**, **c** are fitted to the "optical" potential (Schrödinger equivalent potential U_{SEP}) extracted from elastic scattering data in pA: $U_{SEQ}(p) = \frac{\int^{p_F} V(\mathbf{p} - \mathbf{p}_1) dp_1^3}{\frac{4}{3}\pi p_T^3}$



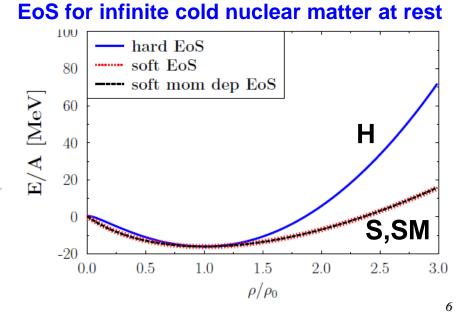
In infinite matter a potential corresponds to the EoS:

$$E/A(\rho) = \frac{3}{5}E_F + V_{Skyrme\ stat}(\rho) + V_{mom}(\rho)$$

$$V_{Skyrme} = \alpha \frac{\rho}{\rho_0} + \beta \frac{\rho}{\rho_0}^{\gamma}$$

compression modulus K of nuclear matter:

Ì	$K = \cdot$	$-V\frac{dP}{dV} =$	$=9\rho^2\frac{\partial^2}{\partial}$	$\frac{(E/A(\rho)}{(\partial\rho)^2}$	$)) _{\rho=\rho_0}$	
[E.o.S.	$\alpha [MeV]$	$\beta[MeV]$	γ	K [MeV]	
ſ	S	-383.5	329.5	1.15	200	
	H	-125.3	71.0	2.0	380	
	SM	-478.87	413.76	1.10	200	
ĺ		a $[MeV^{-1}]$	$b[MeV^{-2}]$	$ c[MeV^{-1}]$		
[236.326	-20.73	0.901		



Mechanisms for cluster production in PHQMD: I. potential interactions (recongnized by MST) & II. kinetic reactions

III. Coalescence (to compare with I+II)

I. Cluster recognition: Minimum Spanning Tree (MST)

R. K. Puri, J. Aichelin, J.Comp. Phys. 162 (2000) 245-266

The Minimum Spanning Tree (MST) is a cluster recognition method applicable for the (asymptotic) final states where coordinate space correlations may only survive for bound states.

The MST algorithm searches for accumulations of particles in coordinate space:

1. Two particles are 'bound' if their distance in the cluster rest frame fulfills

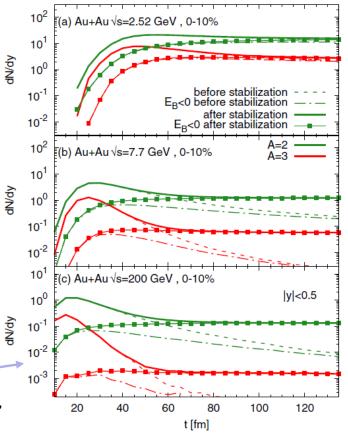
$$ec{r_i}$$
 - $ec{r_j} \mid$ \leq 4 fm (range of NN potential)

2. Particle is bound to a cluster if it binds with at least one particle of the cluster

* Remark: inclusion of an additional momentum cut (coalescence) leads to small changes: particles with large relative momentum are almost never at the same position (V. Kireyeu, Phys.Rev.C 103 (2021) 5)

Advanced MST (aMST)

- MST + extra condition: E_B<0 negative binding energy for identified clusters
- Stabilization procedure to correct artifacts of the semi-classical QMD: recombine the final "lost" nucleons back into cluster if they left the cluster without rescattering



II. Deuteron production by hadronic reactions

"Kinetic mechanism"

- 1) hadronic inelastic reactions NN $\leftrightarrow d\pi$, π NN $\leftrightarrow d\pi$, NNN $\leftrightarrow dN$
- 2) hadronic elastic π +d, N+d reactions
- Collision rate for hadron "i" is the number of reactions in the covariant volume d⁴x = dt*dV
- With test particle ansatz the transition rate for 3→2 reactions:

SMASH: D. Oliinychenko et al., PRC 99 (2019) 044907; J. Staudenmaier et al., PRC 104 (2021) 034908 AMPT: R.Q. Wang et al. PRC 108 (2023) 3

W. Cassing, NPA 700 (2002) 618

 $\pi^{\pm,0} + p + n \leftrightarrow \pi^{\pm,0} + d$

 $\pi^- + p + p \leftrightarrow \pi^0 + d$

 $\pi^+ + n + n \leftrightarrow \pi^0 + d$

 $\pi^0 + p + p \leftrightarrow \pi^+ + d$

 $\pi^0 + n + n \leftrightarrow \pi^- + d$

- $\frac{\Delta N_{coll}[3+4+5 \rightarrow 1(d)+2]}{\Delta N_3 \Delta N_4 \Delta N_5} = P_{3,2}(\sqrt{s})$ $P_{3,2}(\sqrt{s}) = F_{spin}F_{iso}P_{2,3}(\sqrt{s}) \underbrace{E_1^f E_2^f}_{2E_3E_4E_5} \frac{R_2(\sqrt{s}, m_1, m_2)}{R_3(\sqrt{s}, m_3, m_4, m_5)} \frac{1}{\Delta V_{cell}}$ Energy and momentum of final particles $P_{2,3}(\sqrt{s}) = \sigma_{tot}^{2,3}(\sqrt{s})v_{rel}\frac{\Delta t}{\Delta V_{cell}}$ \Rightarrow solved by stochastic method
- Numerically tested in "static" box: PHQMD provides a good agreement with analytic solutions from rate equations and with SMASH for the same selection of reactions
- New in PHQMD: π+N+N↔ d+π inclusion of all possible isospin channels allowed by total isospin T conservation → enhancement of the d production

G. Coci et al., Phys.Rev.C 108 (2023) 014902

Modelling finite-size effects in kinetic mechanism

How to account for the quantum nature of deuteron, i.e. for

G. Coci et al., PRC 108 (2023) 014902

- 1) the finite-size of *d* in coordinate space (*d* is not a point-like particle) for in-medium d production
- 2) the momentum correlations of *p* and *n* inside *d*

Realization:

n

PHOMD

1) assume that a deuteron can not be formed in a high density region, i.e. if there are other particles (hadrons or partons) inside the 'excluded volume':

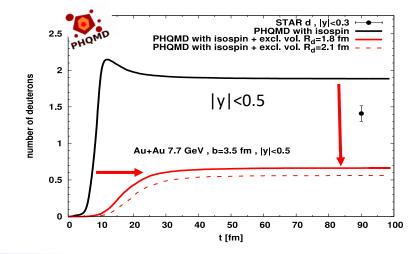
Excluded-Volume Condition:

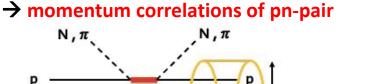
$$|\vec{r}(i)^* - \vec{r}(d)^*| < R_d$$

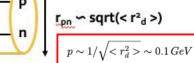
Strong reduction of d production

IA

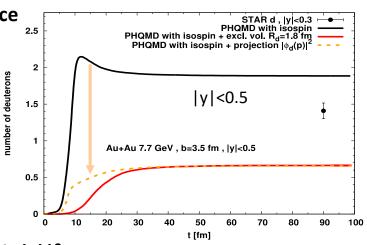
p_T slope is not affected by excluded volume condition





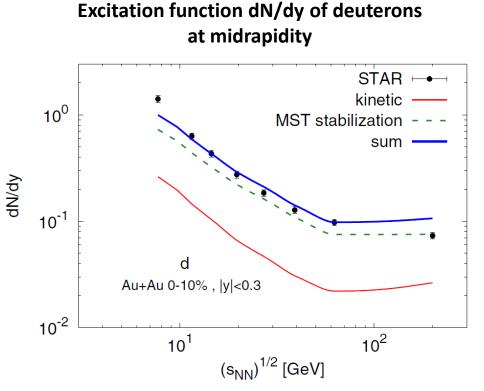


Adapted from [Haidelbauer, Uzikov PLB 562(2003)] [Hoftiezer et al. PRC23 (1981)] Same spirit as AMPT [K.-J. Sun, R. Wang, C.-M. Ko et al., 2106.12742]

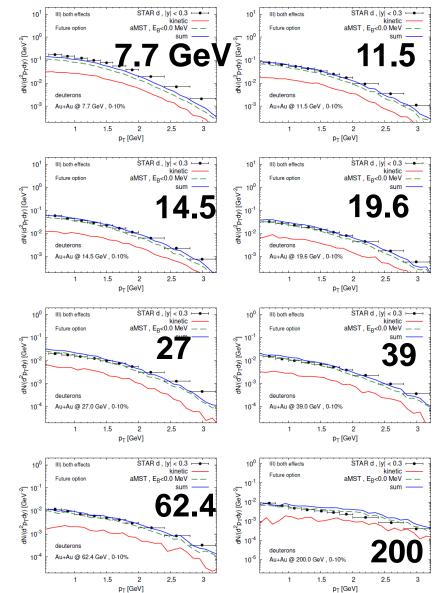


Strong reduction of d production by projection on DWF $|\phi_d(p)|^2$

Kinetic vs. potential deuteron production



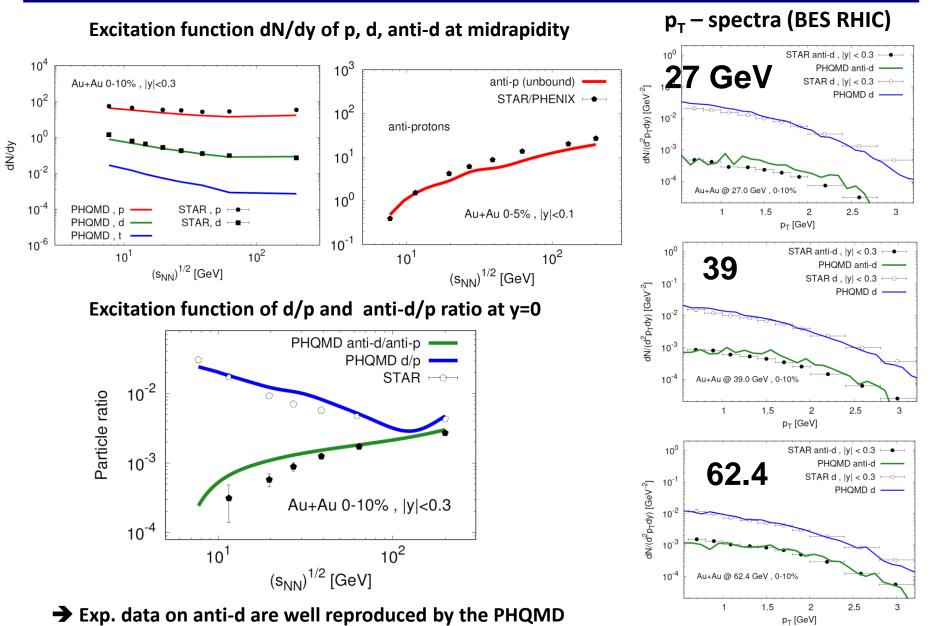
- PHQMD provides a good description of STAR data
- Functional forms of y- spectra are similar for kinetic and potential deuterons
- The potential mechanism is dominant for d production at all energies!



p_T – spectra (BES RHIC)

PHOMD

Anti-deuteron versus deuteron production



Hypernuclei production at STAR : s^{1/2}=3 GeV

 p_{T} – spectra (measured) y – spectra (extrapolated) $dN^{2}/(2\pi\rho_{T}d\rho_{T}dy) [(GeV/c)^{2}]$ $dN^{2}/(2\pi\rho_{T}d\rho_{T}d\gamma) [(GeV/c)^{2}]$ \vec{e} \vec{e} \vec{e} \vec{e} \vec{e} 0.0 dN/dy 10-1 ${}^{3}{}_{\Lambda}\mathbf{H}$ ³∕H ³_∧H PHQMD aMST PHQMD aMST ³Н PHQMD aMST Au-Au 0-10% Au-Au 0-10% STAR STAR 0.04 Au-Au 0-10% STAR 3 GeV 3 GeV 3 GeV 0.03 ۲ Ŵ 0.02 ٠ ł Ŧ 0.01 10-5 10 -0.25 < y < -0.0-0.5 < y < -0.25</p> 0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 10-6 10-0և р_т [GeV/*c*] р_т [GeV/c] V ${}^{4}{}_{\Lambda}H$ 0.02 4́Η 10-1 PHQMD aMST dN²/(2πρ_Tdp_Tdp_Tdy) [(GeV/c)⁻²] さ さ む dN²/(2πρ_Tdp_Tdp_Tdy) [(GeV/c)²) さ さ ゔ ゔ 10-1È 4∧H ÅΗ ⁴∕H PHQMD aMST — PHQMD aMST PHQMD aMST 0.016 Au-Au 0-10% STAR Au-Au 0-10% Au-Au 0-10% Au-Au 0-10% STAR STAR STAR 3 GeV 10-2 0.014 3 GeV 3 GeV 3 GeV 0.012 0.01F ŧ 0.008 10-4 • ě 0.006F Ŧ 10-5 10-6 10-0.004 -0.25 < y < -0.0 $-0.5 < \gamma < -0.25$ -0.75 < y < -0.5 0.002 10-10-10-1.5 2 2.5 9 3.5 0.5 1.5 2.5 0.5 1.5 2.5 رستان 7 -0.6 -0.5 -0.4 -0.3 -0.2 p_[GeV/c] p_{τ} [GeV/c] $p_{_{T}}[\text{GeV}/c]$ -0.1

 \rightarrow Low $p_T - exp.$ data are needed for reliable estimation of y-spectra

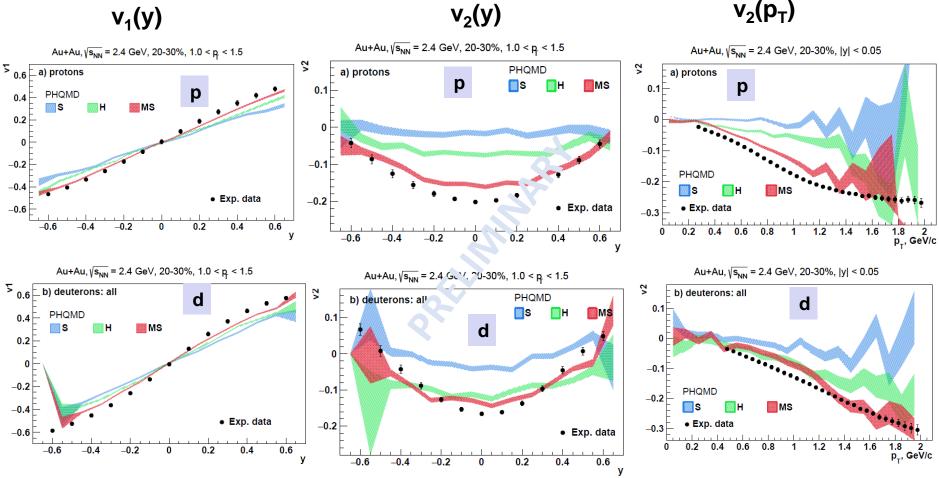
PHQMD: S. Gläßel et al., Phys. Rev. C 105 (2022) 1

See the talk by Yuanjing Ji, Thu, 11:00AM

Spectra and v₁, v₂ of light clusters with different EoS in PHQMD: hard, soft, momentum dependent potential

EoS dependence of $v_1(y)$, $v_2(y)$, $v_2(p_T)$ at SIS energies: p,d PHOMD

v₁(**y**)

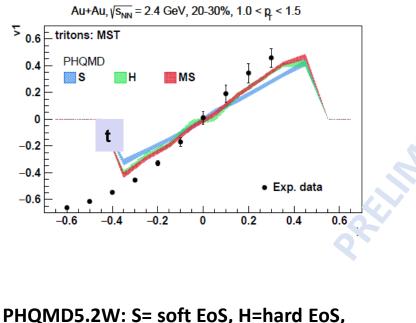


PHQMD5.2W: S= soft EoS, H=hard EoS, MS = soft momentum dependent EoS HADES data: of v_1 , v_2 at high p_T : 1.0 < p_T < 1.5 GeV/c [HADES: Eur. Phys. J. A59 (2023) 80]

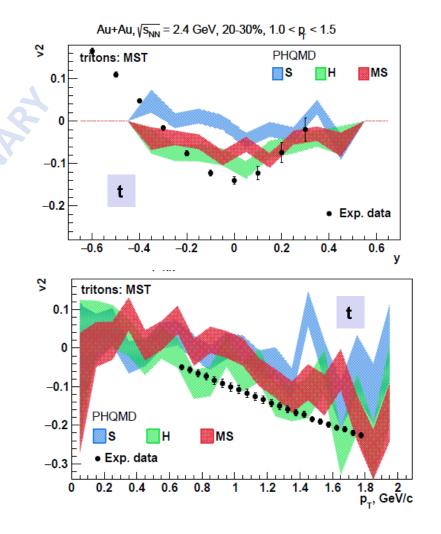
Strong EoS dependence of $v_1(y)$, $v_2(y)$ and $v_2(p_T)$ of protons and deuterons HADES data favor a soft momentum dependent potential (MS)

Viktar Kireyeu, in progress 15

EoS dependence of $v_1(y)$, $v_2(y)$, $v_2(p_T)$ at SIS energies: triton



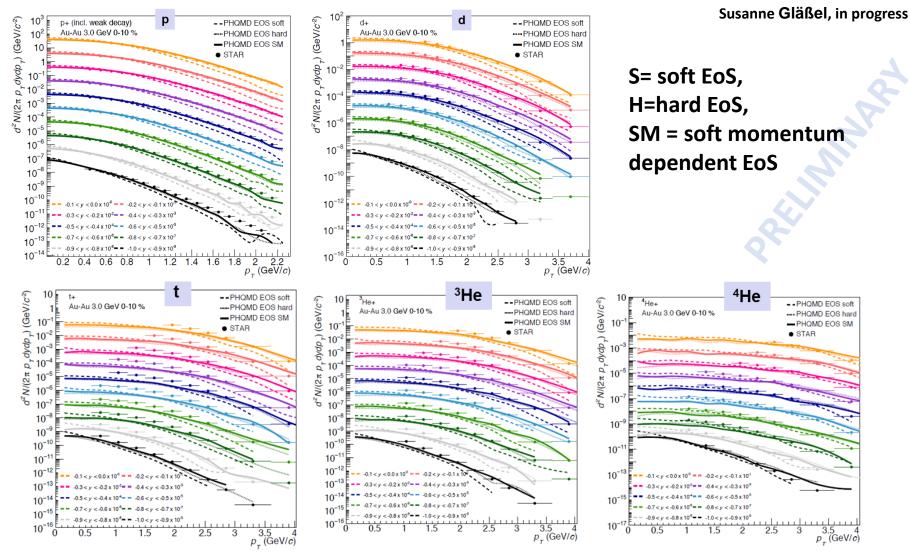
MS = soft momentum dependent EoSHADES data: of v₁, v₂ at high p_T: 1.0 < p_T < 1.5 GeV/c [HADES: Eur. Phys. J. A59 (2023) 80]



Strong EoS dependence of v₁(y), v₂(y) and v₂(p_T) of tritons
 HADES data favor a soft momentum dependent potential (MS)

EoS dependence of p_T-spectra at STAR : s^{1/2}=3 GeV

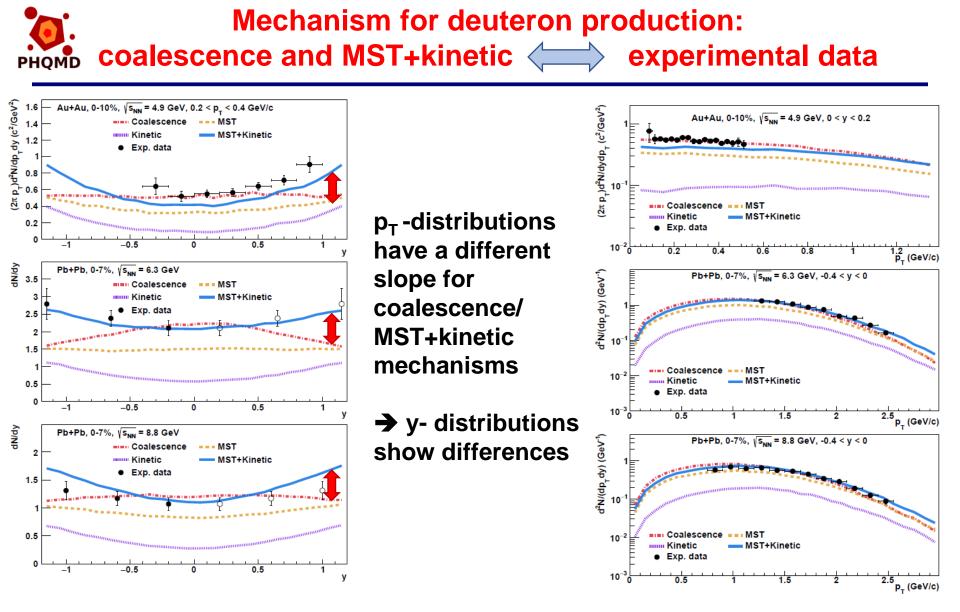
PHOMD



□ Visible dependence of p_T spectra of p, d, t, ³He, ⁴He on EoS
 □ STAR p_T data favor a hard or soft-momentum dependent potential (H/SM)

Can the production mechanisms be identified experimentally?

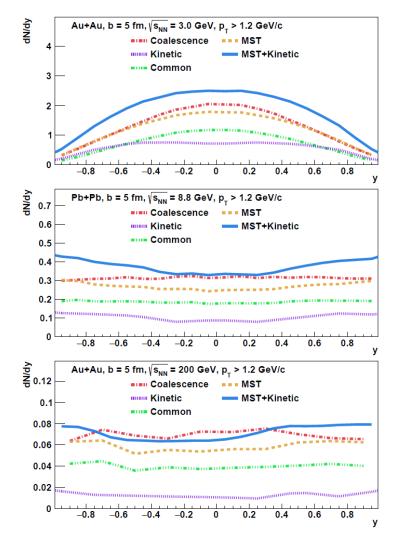
Where the clusters are formed?



→ The analysis of the presently available data points tentatively to the MST + kinetic scenario but further experimental data are necessary to establish the claster production mechanism.

Is the difference big enough for experimental decision?

p_T > 1.2 GeV/c (STAR experimental acceptance)



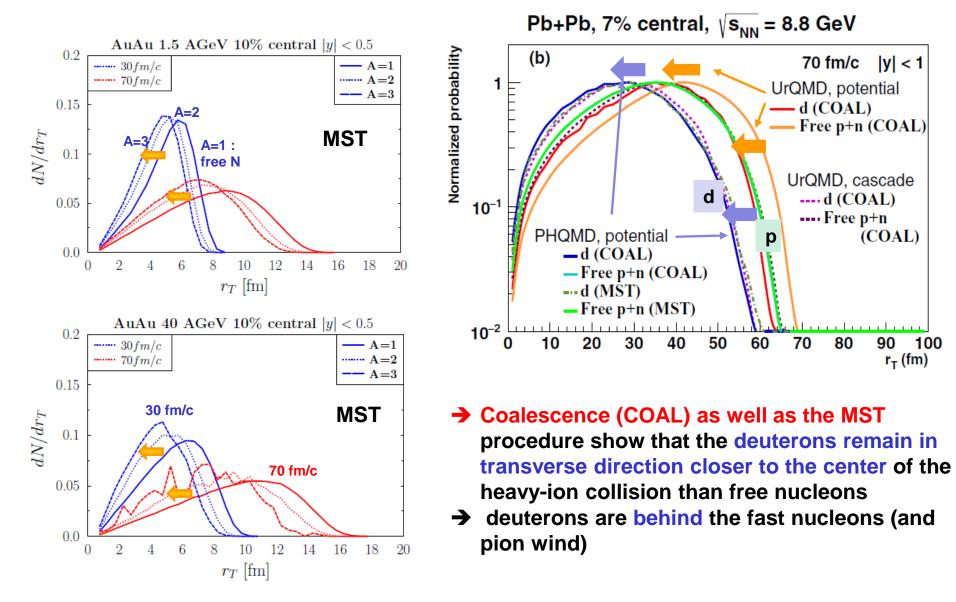
Difference between coalescence and MST is mostly at low p_T

In the measured p_T range signal is gone for $\sqrt{s} = 3$ GeV

But: there seems to be a 'sweet spot' around $\sqrt{s} = [6 - 8]$ GeV to identify the reaction mechanism

More precise experimental data on rapidity distributions are needed

PHQMD and UrQMD: Where clusters are formed?



V. Kireyeu, J. Steinheimer, M. Bleicher, J. Aichelin, E.B., Phys. Rev. C 105 (2022) 044909

Summary

The PHQMD is a microscopic n-body transport approach for the description of heavy-ion dynamics and cluster and hypernuclei formation identified by Minimum Spanning Tree model

combined model PHQMD = (PHSD & QMD) & (MST | SACA)

Clusters are formed dynamically

- 1) by potential interactions among nucleons and hyperons Novel development: momentum dependent potential with soft EoS
- 2) by kinetic mechanism for d : hadronic inelastic reactions NN $\leftrightarrow d\pi$, π NN $\leftrightarrow d\pi$, NNN $\leftrightarrow dN$ with inclusion of all possible isospin channels which enhance d production
- + accounting of quantum properties of d, modelled by the finite-size excluded volume effect in coordinate space and projection of relative momentum of p+n pair on d wave-function in momentum space which leads to a strong reduction of d production
- The PHQMD reproduces cluster and hypernuclei data on dN/dy and dN/dp_T as well as ratios d/p and $\overline{d}/\overline{p}$ for heavy-ion collisions from SIS to top RHIC energies.
- Measurement of dN/dy beyond mid-rapidity will allow to distinguish the mechanisms for cluster production: coalescence versus dynamical cluster production recognized by MST + kinetic mechanism for deuterons
- Strong dependencee of y- and p_T-spectra and v₁,v₂ on EoS soft, hard, soft-mom. dependent at SIS energies
- □ The influence of U(p) decreases with increasing collision energy since the modelled U_{SEP}(p) has a maximum at energy 1.5 GeV and decreases for large p ← no exp. data for extrapolation of U_{SEP}(p) to large p!
- □ HADES data data on v₁,v₂ favour a soft momentum dependent potential (SM)
- STAR data at 3 GeV favour a hard EoS or SM
- Stable clusters are formed shortly after elastic and inelastic collisions have ceased and behind the front of the expanding energetic hadrons (similar results within PHQMD and UrQMD)
 - → since the 'fire' is not at the same place as the 'ice', cluster can survive