Energy dependence of $\phi(1020)$ meson production in nucleus-nucleus collisions at the CERN SPS

Łukasz Rozpłochowski for the NA61/SHINE Collaboration

Institute of Nuclear Physics, Polish Academy of Sciences, Kraków, Poland
Strangeness in Quark Matter
5 June 2024, Strasbourg, France

Introduction

1. ϕ meson

- resonant particle (width $=4.266 \mathrm{MeV} / \mathrm{c}^{2}, \tau \approx 50 \mathrm{fm} / \mathrm{c}$)
- main decay channel $\phi \rightarrow K^{+} K^{-}$(BR $\left.\approx 50 \%\right)$
- the lightest particle ($\mathrm{m}=1020 \mathrm{MeV} / \mathrm{c}^{2}$) with hidden strangeness ($s \overline{\mathrm{~s}}$)

2. Goals of ϕ meson production analysis

- obtain double differential distributions of y and p_{T}
- widths of $d n / d y$ distributions and the total yields

3. Data from NA61/SHINE Ar+Sc collisions at three beam momenta

- $150 \mathrm{AGeV} / \mathrm{c}\left(\sqrt{s_{N N}}=16.8 \mathrm{GeV}\right)$
- $75 \mathrm{~A} \mathrm{GeV} / \mathrm{c}\left(\sqrt{s_{N N}}=11.9 \mathrm{GeV}\right)$
- $40 \mathrm{~A} \mathrm{GeV} / \mathrm{c}\left(\sqrt{S_{N N}}=8.8 \mathrm{GeV}\right)$

4. Motivation

- comparison with $\mathrm{Pb}+\mathrm{Pb}$ and $\mathrm{p}+\mathrm{p}$ data
- constrain models (ϕ meson is interesting due to hidden strangeness)

NA61/SHINE detector

- fixed-target, multipurpose experiment (topics: ions, neutrinos, cosmic rays)
- direct measurement only for charged hadrons
- TPCs \rightarrow particle tracks in 3D
- energy loss (dE/dx) \rightarrow particle identification (PID)

- detector at the time when Ar + Sc data was taken (2015)
- major hardware update was performed since then
(see NA61/SHINE, Springer Proc.Phys. 250 (2020) 473-477)

Analysis methodology

Event selection:

- 10\% of the most central collisions
- well measured main vertex
- in the target

TPC track selection

- from main vertex
- well reconstructed
- enough points in TPCs (accurate $\mathrm{dE} / \mathrm{dx}$ and momentum)
- PID cuts
- $\pm 5 \%$ band around Bethe-Bloch K curve
- $\pm 13 \%$ band around Bethe-Bloch K curve (better signal to bkg ratio in tag sample)

Signal extraction

- invariant mass spectra in y, p_{T} bins
- tag and probe method (ATLAS, LHCb)

Tag and probe method (ATLAS, LHCb)

- This method allows to extract ϕ yield without
knowledge of efficiency of kaon selection $(\varepsilon)$$\left\{\begin{array}{l}N_{t}=N_{\phi} \varepsilon(2-\varepsilon) \\ N_{p}=N_{\phi} \varepsilon^{2}\end{array}\right.$
- Spectra are fitted simultaneously to get N_{ϕ}
$N_{t / p} \rightarrow$ expected signal yields $N_{\phi} \rightarrow \phi$ contributing to the spectra background event mixing $+\mathrm{K}^{*}(892)$ template signal convolution of relativistic Breit-Wigner and q-Gaussian

$\mathrm{dn}^{2} / \mathrm{dydp}_{\mathrm{T}}$ distributions, central $\mathrm{Ar}+\mathrm{Sc}$ at $\sqrt{S_{N N}}=16.8 \mathrm{GeV}$

fit with function
$f\left(p_{T}\right) \propto p_{T} \cdot \exp \left(-\frac{m_{T}}{T}\right)$
to obtain integral of the tail of the p_{T} distribution (needed for $\mathrm{dn} / \mathrm{dy}$) tails from 1.2% to 4.8%
$\mathrm{dn}^{2} / \mathrm{dydp} \mathrm{p}_{\mathrm{T}}$ distributions, central $\mathrm{Ar}+\mathrm{Sc}$ at $\sqrt{S_{N N}}=11.9 \mathrm{GeV}$

fit with function

$$
f\left(p_{T}\right) \propto p_{T} \cdot \exp \left(-\frac{m_{T}}{T}\right)
$$

to obtain integral of the tail of the p_{T} distribution (needed for $\mathrm{dn} / \mathrm{dy}$) tails from 0.2% to 3.7%
$\mathrm{dn}{ }^{2} / \mathrm{dydp}_{\mathrm{T}}$ distributions, central $\mathrm{Ar}+\mathrm{Sc}$ at $\sqrt{S_{N N}}=8.8 \mathrm{GeV}$

fit with function
$f\left(p_{T}\right) \propto p_{T} \cdot \exp \left(-\frac{m_{T}}{T}\right)$
to obtain integral of the tail of the p_{T} distribution (needed for $\mathrm{dn} / \mathrm{dy}$) tails from 1.6% to 2.5%

Transverse mass distributions

$\mathrm{Ar}+\mathrm{Sc} 16.8 \mathrm{GeV}$

$\sqrt{s_{N N}}(\mathrm{GeV})$	$\mathrm{T}(\phi)(\mathrm{MeV})$	$\mathrm{T}\left(K^{+}\right)(\mathrm{MeV})$	$\mathrm{T}\left(K^{-}\right)(\mathrm{MeV})$
16.8	$246 \pm 12 \pm 8$	$219.9 \pm 0.7 \pm 11.8$	$201.1 \pm 0.8 \pm 6.2$
11.9	$226 \pm 12 \pm 22$	$207.4 \pm 0.8 \pm 6.5$	$198.8 \pm 0.8 \pm 2.7$
8.8	$200 \pm 13 \pm 16$	$200.3 \pm 1.4 \pm 8.8$	$194.3 \pm 1.4 \pm 2.8$

dn/dy distributions

$\mathrm{Ar}+\mathrm{Sc} 16.8 \mathrm{GeV}$

$\mathrm{Ar}+\mathrm{Sc} 11.9 \mathrm{GeV}$

$\mathrm{Ar}+\mathrm{Sc} 8.8 \mathrm{GeV}$

tails from
0.8\% to 2.5\%

$\sqrt{S_{N N}}(\mathrm{GeV})$	$1000\langle\phi\rangle$	RMS (double Gaussian fit)
16.8	$1148 \pm 17 \pm 21$	$0.994 \pm 0.020 \pm 0.018$
11.9	$707 \pm 11 \pm 14$	$0.866 \pm 0.013 \pm 0.010$
8.8	$438 \pm 12 \pm 22$	$0.703 \pm 0.016 \pm 0.021$

Width of rapidity distributions

- Width of the rapidity distributions $\left(\sigma_{y}\right)$ as a function of the beam rapidity (c.m.s.) for various particles from $\mathrm{Pb}+\mathrm{Pb}$ and $\mathrm{p}+\mathrm{p}$ collisions
- Lines are fitted to guide the eye

Width of rapidity distributions

- Width of the rapidity distributions $\left(\sigma_{y}\right)$ as a function of the beam rapidity (c.m.s.) for various particles from $\mathrm{Pb}+\mathrm{Pb}$ and $\mathrm{p}+\mathrm{p}$ collisions
- Lines are fitted to guide the eye
- Width of the rapidity distributions of ϕ meson from:
- $\mathrm{Pb}+\mathrm{Pb}$ (NA49)
- $p+p$ (NA61), $p+p$ (NA49)

Width of rapidity distributions

- Width of the rapidity distributions $\left(\sigma_{y}\right)$ as a function of the beam rapidity (c.m.s.) for various particles from $\mathrm{Pb}+\mathrm{Pb}$ and $\mathrm{p}+\mathrm{p}$ collisions
- Lines are fitted to guide the eye
- Width of the rapidity distributions of ϕ meson from:
- $\mathrm{Pb}+\mathrm{Pb}$ (NA49)
- $p+p$ (NA61), $p+p$ (NA49)
- $\mathrm{Ar}+\mathrm{Sc}$ (NA61/SHINE preliminary)

$\phi(1020)$ enhancement

- ϕ / π ratio for $\mathrm{Ar}+\mathrm{Sc}$ is slightly lower than for $\mathrm{Pb}+\mathrm{Pb}$, but much higher than for $p+p$ collisions
- ϕ enhancement over $p+p$ collisions is slightly higher than for kaons in both $\mathrm{Ar}+\mathrm{Sc}$ and $\mathrm{Pb}+\mathrm{Pb}$, and independent of the collision energy in the considered range

Summary

1. We analyzed ϕ meson production using central $\mathrm{Ar}+\mathrm{Sc}$ data at $\sqrt{S_{N N}}=16.8,11.9$ and 8.8 GeV from the NA61/SHINE experiment
2. We obtained double differential $\left(y, p_{T}\right)$ spectra of ϕ mesons from invariant mass ($\phi \rightarrow \mathrm{K}^{+} \mathrm{K}^{-}$) analysis (tag and probe procedure)
3. The widths of rapidity distribution from central $\mathrm{Ar}+\mathrm{Sc}$ are similar to those from $p+p$
4. Enhanced production of ϕ meson in central $\mathrm{Ar}+\mathrm{Sc}$ comparable to $\mathrm{p}+\mathrm{p}$, but slightly lower than in $\mathrm{Pb}+\mathrm{Pb}$, independent of the collision energy (from $\sqrt{\varsigma_{N N}}=8.8$ to 16.8 GeV)

Thank you

The autor (Ł.R.) acknowledges financial support provided by the Polish National Agency for Academic Exchange NAWA under the Programme STER - Internationalisation of doctoral schools, Project no.

PPI/STE/2020/1/00020

Extra slides

gauss $\frac{\chi^{2}}{n d f}=9.81$
double gauss $\frac{\chi^{2}}{n d f}=5.29$

gauss $\frac{\chi^{2}}{n d f}=12.96$
double gauss $\frac{\chi^{2}}{n d f}=4.71$

gauss $\frac{\chi^{2}}{n d f}=6.29$
double gauss $\frac{\chi^{2}}{n d f}=0.72$

- solid line \rightarrow gaussian
- dotted line \rightarrow double gaussian
- describes data points better
- will be used for evaluation of y width

Additions compared to the $\mathrm{p}+\mathrm{p}-$ PID cut shift

shift the inner cut band w.r.t. the BB:

- Ar+Sc 150 by -2\%
- Ar+Sc 75 by -0.5\%
- Ar+Sc 40 by -3\%

Additions compared to the $\mathrm{p}+\mathrm{p}$ - outer PID cut
 negative tracks

- apply outer BB band $\pm 13 \%$ to reduce the background
- this affects only the tag sample

Tag and Probe Ar+Sc 150A GeV/c

no additions

$\begin{array}{\|l\|} \hline \text { Entries }=2537205 \\ \hline N_{\text {bot }, \mathrm{p}}=2468589 \pm 1784 \\ \hline \end{array}$	
0.806 ± 0.013	

Entries $=15250597$
$\mathrm{~N}_{\text {okg,t }}=15166907 \pm 4264$
$\mathrm{f}_{\mathrm{K}^{\prime}, \mathrm{t}}=0.00340 \pm 0.00048$
$\chi^{2} /$ ndf $=1.1$

with additions

S/B ratio better

Tag and probe method

- Tag and probe method allows to extract ϕ yield without knowledge of efficiency of kaon selection
- Tag sample \rightarrow at least one track in the pair passes PID condition
- Probe sample \rightarrow both tracks in the pair pass PID condition
- Expected signal yields ($N_{t / p}$) depend on efficiency of K selection (ϵ) and number of ϕ contributing to the spectra $\left(N_{\phi}\right)$

$$
\left\{\begin{array}{l}
N_{t}=N_{\phi} \epsilon(2-\epsilon) \tag{1}\\
N_{p}=N_{\phi} \epsilon^{2}
\end{array}\right.
$$

Spectra are fitted simultaneously to get N_{ϕ}

Tag and probe method

Single spectrum is fitted with a sum of
background event mixing $+\mathrm{K}^{*}$ template
kaon candidate taken from the current event is combined with candidates from previous 100 events to create ϕ candidates in the mixed events spectrum
signal convolution of relativistic Breit-Wigner and q-Gaussian (detector resolution)
fitting function:

$$
\begin{align*}
& f_{t}\left(m_{i n v}\right)=N_{t}\left(N_{\phi}, \epsilon\right) \cdot V\left(m_{i n v} ; m_{\phi}, \sigma\right)+N_{b k g, t} \cdot B_{t}\left(m_{i n v} ; f_{K^{*}, t}\right) \tag{2}\\
& f_{p}\left(m_{i n v}\right)=N_{p}\left(N_{\phi}, \epsilon\right) \cdot V\left(m_{i n v} ; m_{\phi}, \sigma\right)+N_{b k g, p} \cdot B_{p}\left(m_{i n v} ; f_{K^{*}, p}\right)
\end{align*}
$$

where

$$
V=f_{\text {relBW }} * f_{\text {q-Gaus }}
$$

