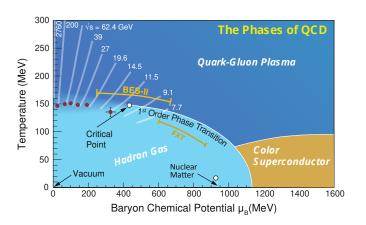
QCD EOS, critical point, and hydrodynamic fluctuations

M. Stephanov

QCD critical point

Where on the QCD phase boundary is the CP?



Motivation for BES at RHIC and BEST topical collaboration.

Latest theory developments on locating CP

From Maneesha Pradeep's talk at CPOD 2024:



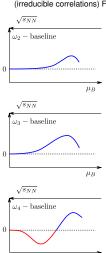
(Ratti's talk)

(universal EOS) critical χ_n :

Bzdak et al review 1906.00936

(universal EOS) critical χ_n :

(irreducible correlations) FC $_n[N_p]\sim \chi_n$ (Pradeep, MS 2211.09142), $\omega_n\equiv {\rm FC}_n/{\rm FC}_1$



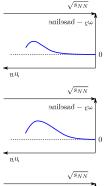
Bzdak et al review 1906.00936

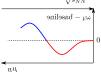
 μ_B

(universal EOS) critical χ_n :

Bzdak et al review 1906.00936

(irreducible correlations) FC $_n[N_p] \sim \chi_n$ (Pradeep, MS 2211.09142), $\omega_n \equiv {\rm FC}_n/{\rm FC}_1$



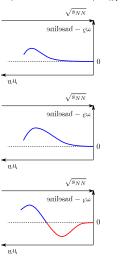


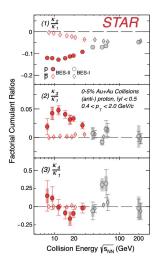
Expected signatures: bump in ω_2 and ω_3 , dip then bump in ω_4

(universal EOS) critical χ_n :

Bzdak et al review 1906.00936

(irreducible correlations) FC $_n[N_p]\sim \chi_n$ (Pradeep, MS 2211.09142), $\omega_n\equiv {\rm FC}_n/{\rm FC}_1$



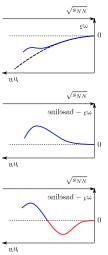


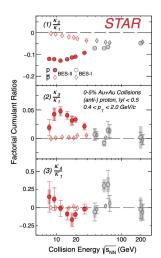
Expected signatures: bump in ω_2 and ω_3 , dip then bump in ω_4 for CP at $\mu_B > 420$ MeV

(universal EOS) critical χ_n :

Bzdak et al review 1906.00936

(irreducible correlations) FC $_n[N_p]\sim \chi_n$ (Pradeep, MS 2211.09142), $\omega_n\equiv {\rm FC}_n/{\rm FC}_1$





Expected signatures: bump in ω_2 and ω_3 , dip then bump in ω_4 for CP at $\mu_B > 420$ MeV

BEST Framework

The goal of BES theory: connect observables to QCD phase diagram.

BEST framework: An et al (40+ authors, 100+ pp, 369 refs) <u>2108.13867</u> BES theory review: Du, Sorensen, MS <u>2402.10183</u>

- Lattice EOS + CP → parametric EOS
- lacktriangle EOS ightarrow Hydrodynamics with (non-gaussian) fluctuations.
- Freezeout, including fluctuations.

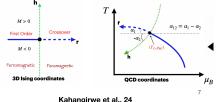
reviewed in <u>2403.03255</u>

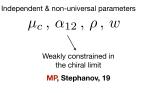
Comparison with experiment. Bayesian analysis (ML). Determine/constrain EOS, critical point parameters.

Parametric EOS (now with T'-expansion)

From Maneesha Pradeep's review talk at CPOD 2024:

$$P_{\text{QCD}}(\mu, T) = P_{\text{BG}}(\mu, T) + AG(r(\mu, T), h(\mu, T))$$





Range of Validity improved

 $0 < \mu_B < 700 \,\mathrm{MeV}$, $25 \,\mathrm{MeV} < T < 800 \,\mathrm{MeV}$

The new construction is causal and stable for a larger range of ρ and w

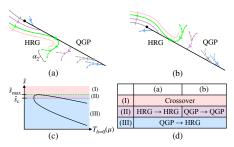
M. Kahangirwe, Wed, 12:10 pm

Kahangirwe et al 2402.08636, PRD (also Jahan's and Karthein's talks)

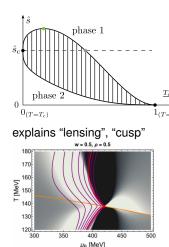
Critical point and non-trivial hydro trajectories

Pradeep, Sogabe, MS, Yee 2402.09519, PRC

- $\hat{s} \equiv s/n$ is non-monotonic along coexistence (1st order) line
- non-trivial deformation of trajectories



depending on $(\partial P/\partial T)_n$ at CP



Critical lensing~Dore et al,22, Nonaka&Asakawa, 05

Deterministic approach to non-Gaussian fluctuations

non-Gaussian fluctuations are non-trivial and sensitive signatures of the critical point

• Infinite hierarchy of coupled equations An et al <u>2009.10742</u>, PRL for connected hydro correlators $H_n \equiv \langle \underbrace{\delta \breve{\psi} \dots \delta \breve{\psi}} \rangle^{\mathrm{connected}}$:

$$\partial_t \psi = -\nabla \cdot \mathsf{Flux}[\psi, H, H_3, H_4, \ldots];$$

$$\partial_t H = \mathsf{F}[\psi, H, H_3, H_4, \ldots];$$

$$\partial_t H_3 = \mathsf{F}_3[\psi, H, H_3, H_4, \ldots];$$

$$\vdots$$

An et al 2009.10742, PRL

- Small fluctuations are almost Gaussian
- **9** Introduce expansion parameter ε , so that $\delta \check{\psi} \sim \sqrt{\varepsilon}$.

Then $H_n \equiv \varepsilon^{n-1}$ and to leading order in ε :

$$\begin{split} \partial_t \psi &= -\nabla \cdot (\mathsf{Flux}[\psi] + \mathcal{O}(\varepsilon)); \\ \partial_t H &= -2\Gamma(H - \bar{H}[\psi]) + \mathcal{O}(\varepsilon^2); \\ &\vdots \\ \partial_t H_n &= -n\Gamma(H_n - \bar{H}_n[\psi, H, \dots, H^{n-1}]) + \mathcal{O}(\varepsilon^n); \end{split}$$

To leading order, the equations are iterative and "linear".

• In hydrodynamics the small parameter is $(q/\Lambda)^3$, i.e., fluctuation wavelength $1/q \gg$ size of hydro cell $1/\Lambda$ (UV cutoff).

Diagrammatic representation

An et al 2009.10742, 2212.14029, An's talk at CPOD 2024

• Leading order in $\varepsilon \Leftrightarrow$ tree diagrams.

Loops describe feedback of fluctuations (renormalization and long-time tails).

(—) • = — D + — 1-pt equation including leading loop conventional hydro equations one loop (renormalization & long-time tails)

Generalizing Wigner transform

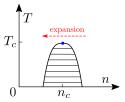
An et al 2009.10742, PRL

Definition:

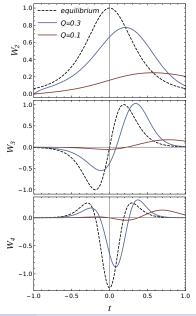
$$W_n(oldsymbol{x};oldsymbol{q}_1,\ldots,oldsymbol{q}_n)\equiv\int doldsymbol{y}_1^3\ldots\int doldsymbol{y}_n^3\,H_n\left(oldsymbol{x}+oldsymbol{y}_1,\ldots,oldsymbol{x}+oldsymbol{y}_n
ight)}{\delta^{(3)}\left(rac{oldsymbol{y}_1+\ldots+oldsymbol{y}_n}{n}
ight)e^{-i(oldsymbol{q}_1\cdotoldsymbol{y}_1+\ldots+oldsymbol{q}_n\cdotoldsymbol{y}_n)};$$

 $ightharpoonup W_n$'s quantify magnitude and non-gaussianity of fluctuation harmonics with wave-vectors q_i .

Example: expansion through a critical region



- Two main features:
 - Lag, "memory".
 - Smaller Q slower evolution. Conservation laws.



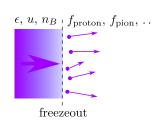
Freezeout of fluctuations

• Freezeout: translation of correlators of hydrodynamic fluctuations ($\psi=\epsilon,n_B,u$)

$$\langle \delta \psi \dots \delta \psi \rangle = H_n(\boldsymbol{x}_1, \dots, \boldsymbol{x}_n)$$

to particle correlators

$$\langle \delta f \dots \delta f \rangle = G_n(\boldsymbol{x}_1, \boldsymbol{p}_1, \dots, \boldsymbol{x}_n, \boldsymbol{p}_n).$$



- **Description** *Description Description Description*
- **lacksquare** But the p dependence in G_n is not constrained.

There are ∞ many possibilities/solutions (G_n) satisfying conservation laws.

Maximum entropy freezeout

Pradeep, MS, <u>2211.09142</u>, PRL

- There is a unique solution which maximizes the entropy!
 - \blacksquare for n=1 equivalent to Cooper-Frye
 - \blacksquare for critical fluctuations similar to the σ field coupling
 - but applies much more generally
 - model independent, i.e., determined by QCD EOS

$$\hat{\underline{\Delta}} G_{ABC} = \hat{\underline{\Delta}} H_{abc} \underbrace{(\bar{H}^{-1}P\bar{G})_A^a (\bar{H}^{-1}P\bar{G})_B^b (\bar{H}^{-1}P\bar{G})_C^c}_{\text{kinematic factors correlations (FC)}$$

Work in progress – implement in a hydro model and estimate nonequilibrium expectations for multiplicity cumulants in BES

Karthein, Pradeep, MS, Rajagopal, Yin; Karthein's talk

Summary

- BES-II data is in.
 - Qualitatively agrees with non-monotonic expectations from CP, not only in n=4 factorial cumulant, but n=3 and n=2.
- **●** To produce such signatures the CP has to be at $\mu_B > 420$ MeV. Agreement with recent theory estimates by different approaches.
- To convert these qualitative statements into quantitative ones, i.e., provide constraints on the QCD EOS from BES-II data more work is needed and is underway.

More

Factorial Cumulants are better experimental measures

Three reasons:

Normal cumulants (NC) measure non-gaussianity; Factorial cumulants (FC) measure non-poissonianity, (irreducible particle correlations).

NCs are for densities (continuous); FCs are for multiplicities (discrete).

Factorial Cumulants are better experimental measures

Three reasons:

Normal cumulants (NC) measure non-gaussianity; Factorial cumulants (FC) measure non-poissonianity, (irreducible particle correlations).

NCs are for densities (continuous); FCs are for multiplicities (discrete).

Acceptance dependence:

FCs are powers of Δy for small Δy ; NCs are polynomials.

Factorial Cumulants are better experimental measures

Three reasons:

Normal cumulants (NC) measure non-gaussianity; Factorial cumulants (FC) measure non-poissonianity, (irreducible particle correlations).

NCs are for densities (continuous); FCs are for multiplicities (discrete).

- Acceptance dependence: FCs are powers of Δy for small Δy ; NCs are polynomials.
- Maximum Entropy freezeout (Pradeep, MS 2211.09142):
 FCs of multiplicities are directly related to hydrodynamic correlators (or susceptibilities in thermodynamics).