Production of light/strange particles vs. the underlying event activity in small/large systems with ALICE

Oliver Matonoha

on behalf of ALICE collaboration

Postdoc at CTU in Prague, FNSPE oliver.matonoha@cvut.cz SQM 2024 Strasbourg, France June 4, 2024

CZECH TECHNICAL

CTU

IN PRACILE

Quark-gluon plasma (QGP) and small systems

• Small systems (pp, pA) exhibit many "QGP-typical" behaviours at LHC energies:

ALICE

• Anisotropic flow

see D. Sarkar, Tue 8:30

- Quarkonium dissociation
- Radial flow:
 - Boost of heavier particles to higher p_{T}

Quark-gluon plasma (QGP) and small systems

- Small systems (pp, pA) exhibit many "QGP-typical" behaviours at LHC energies:
- Anisotropic flow see D. Sarkar, Tue 8:30 Quarkonium dissociation Radial flow: • Boost of heavier particles to higher $p_{\rm T}$ Pb-Pb p-Pb pp ALICE p-Pb snn = 5.02 TeV ALICE Preliminary ALICE Preliminary pp 1s = 7 TeV • V0M Class I, (dN, /dη) = 21.3 Pb-Pb Vs_{NN} = 5.02 TeV V0M Class X. (dN /dn) = 2.3 60-80%, (dN /dn) = 9.8 70-80%, (dN_/dη) = 44.9 (VOM Multiplicity Classes) (V0A Mult. Classes - Pb side) high mult. 0.8 low mult. 0.6 0.4 ALI-PREL-135238 $p_{\rm T}$ (GeV/c)
 - Strangeness enhancement:
 - s-quark produced also thermally $(T \sim m_s)$
 - More strangeness content
 - \rightarrow bigger effect

ALICE

QGP and non-QGP mechanisms provide similarly valid explanations to data. Similar evolution w.r.t. to multiplicity increase regardless of system size!

p-Pb

pp

Pb-Pb

2Kc Ф

Φ¢¢ Ф

ALICE,

Nature Physics 13, 535-539 (2017

QGP features in small systems – the role of multiplicity

AA collisions:

- Higher N_{ch} arises from increase in the amount of colliding matter: N_{part}
- *N*_{part} and *N*_{ch} are directly related, can be determined from models

QGP features in small systems – the role of multiplicity

AA collisions:

- Higher $N_{\rm ch}$ arises from increase in the amount of colliding matter: N_{part}
- N_{part} and N_{ch} are directly related, can be determined from models

 $N_{\text{part}} = 2$, $N_{\text{coll}} = 1$, but multiplicity N_{ch} can vary a lot! Sometimes comparable with peripheral AA, where QGP is produced

pp collisions:

- Complex picture: N_{ch} cannot be directly linked to the initial state and consists of
 - "softer" contribution: from multiple semi-hard partonic interactions (MPI)
 - **"harder" contribution:** from the primary process and wide-angle initial/final state radiation (ISR/FSR)

oft pr. process

QGP features in small systems – the role of multiplicity

AA collisions:

- Higher N_{ch} arises from increase in the amount of colliding matter: N_{part}
- N_{part} and N_{ch} are directly related, can be determined from models

• $N_{\text{part}} = 2$, $N_{\text{coll}} = 1$, but multiplicity N_{ch} can vary a lot! Sometimes comparable with peripheral AA, where QGP is produced

pp collisions:

ALICE

- Complex picture: N_{ch} cannot be directly linked to the initial state and consists of
 - "softer" contribution: from multiple semi-hard partonic interactions (MPI)
 - **"harder" contribution:** from the primary process and wide-angle initial/final state radiation (ISR/FSR)

• How to isolate the number of parton-parton interactions $n_{\rm MPI}$?

Oliver Matonoha (CTU)

Accessing the n_{MPI}

- Relationship between $N_{
 m ch}$ and $n_{
 m MPI}$ is complex:
- Non-trivial dependences in both directions
 - \rightarrow Accessing $n_{\rm MPI}$ from $N_{\rm ch}$ also biases dominant physics sub-processes of our events

see A. Ortiz, Tue 11:20

 $N_{ch} \propto n_{MPI}$ $N_{ch} \propto$ hardness of the prim. process $N_{ch} \rightarrow$ smaller impact parameter \rightarrow harder events are more probable

Accessing the n_{MPI}

- Relationship between $N_{
 m ch}$ and $n_{
 m MPI}$ is complex:
- Non-trivial dependences in both directions
 - \rightarrow Accessing $n_{\rm MPI}$ from $N_{\rm ch}$ also biases dominant physics sub-processes of our events
- Let's use the *underlying event*:
 - collection of all particles NOT originating from the primary process or related fragmentation
 - Studied by measuring $\frac{1}{\Delta\eta\Delta\phi}\frac{1}{N_{ev}}N_{ch}$ in Toward/Transverse/Away, w.r.t. to the highest-momentum

 $N_{\rm ch} \propto$ hardness of the prim. process

irections $N_{ch} \rightarrow smaller$ impact parameter \rightarrow harder events are more probable

 $N_{\rm ch} \propto n_{\rm MPI}$

see A. Ortiz, Tue 11:20

ALI-PUB-340799

(GeV/c)

ALICE

Accessing the n_{MPI}

- Relationship between $N_{
 m ch}$ and $n_{
 m MPI}$ is complex:
- Non-trivial dependences in both directions
 - \rightarrow Accessing $n_{\rm MPI}$ from $N_{\rm ch}$ also biases dominant physics sub-processes of our events
- Let's use the *underlying event*:
 - collection of all particles NOT originating from the primary process or related fragmentation
 - Studied by measuring $\frac{1}{\Delta\eta\Delta\phi}\frac{1}{N_{ev}}N_{ch}$ in Toward/Transverse/Away, w.r.t. to the highest-momentum

Transverse/Away, w.r.t. to the highest-momentum JHEP04 (2020) 192 pp, is = 13TeV ALICE p_{T}^{5} $p_{T}^{13} < 0.15 \text{ GeV/c}, |\eta| < 0.8$

ALI-PUB-340799

ALICE

Oliver Matonoha (CTU)

(GeV/c)

see A. Ortiz, Tue 11:20

Relative underlying (transverse) activity $R_{\rm T}$

- $R_{\rm T} = N_{\rm T} / \langle N_{\rm T} \rangle$
 - in events with a trigger $p_{\mathrm{T}}^{\mathrm{lead}}$ > 5 GeV/c
 - proposed as a clean proxy of $\langle n_{
 m MPI}
 angle$

T. Martin, P. Skands, S. Farrington EPJ C 76, 5 (2016)

ALICE

Relative underlying (transverse) activity $R_{\rm T}$

- $R_{\rm T} = N_{\rm T} / \langle N_{\rm T} \rangle$
 - in events with a trigger $p_{\rm T}^{\rm lead}$ > 5 GeV/c
 - proposed as a clean proxy of $\langle n_{\rm MPI} \rangle$

ALICE

- $R_{\rm T}$ selects different event composition:
 - $R_T \rightarrow 0$: dominant jet, lower $\langle n_{\rm MPI} \rangle$
 - $R_T \rightarrow \infty$: dominant UE, higher $\langle n_{\rm MPI} \rangle$
- Measuring particle production in:
 - Toward/Away vs. R_{T} : tests the effect of mixing the jet- and UE-related production
 - **Transverse** vs. R_{T} : tests the soft production as a function of event $\langle n_{MPI} \rangle$

2

AT.T-PIIB-545299

3 JHEP 06 (2023) 027

 R_{τ}

ALICE detector in Run 2

THE IS

ALICE

- Heavy-ion dedicated detector at the LHC, tracking and identifying particles from $p_{\rm T}>0.15~{\rm GeV}/c$
- Most important sub-detectors for particle identification and tracking are *Time Projection Chamber (TPC)* and Inner Tracking System (ITS)
- Full azimuthal coverage, $|\eta| < 0.9$

- NEW publication
- The $R_{\rm T}$ distibution measured and compared accros different \sqrt{s} = 2.76 TeV, 5.02 TeV, 7 TeV, 13 TeV
- Charged hadron p_{T} spectra measured in **pp**, p-Pb, Pb-Pb collisions

- NEW publication
- The $R_{\rm T}$ distibution measured and compared accros different \sqrt{s} = 2.76 TeV, 5.02 TeV, 7 TeV, 13 TeV
- Charged hadron p_{T} spectra measured in pp, <u>**p-Pb**</u>, Pb-Pb collisions

- NEW publication
- The $R_{\rm T}$ distibution measured and compared accros different \sqrt{s} = 2.76 TeV, 5.02 TeV, 7 TeV, 13 TeV
- Charged hadron p_{T} spectra measured in pp, p-Pb, <u>**Pb-Pb**</u> collisions

- The $R_{\rm T}$ distibution measured and compared accros different \sqrt{s} = 2.76 TeV, 5.02 TeV, 7 TeV, 13 TeV
- Charged hadron p_{T} spectra measured in pp, p-Pb, Pb-Pb collisions
- Results indicate the presence of high-multiplicity jets in the Transverse regions

NEW publication

JHEP 01 (2024) 056

JHEP 06 (2023) 027

Even cleaner proxy of n_{MPI} ?

- Contamination in **transverse** by another jet, e.g. from hard ISR/FSR
 - \rightarrow losing sensitivity to $n_{\rm MPI}$
- How to disentangle the effects of ISR/FSR and high $n_{\rm MPI}$?

JHEP 06 (2023) 027

Even cleaner proxy of n_{MPI} ?

- Contamination in **transverse** by another jet, e.g. from hard ISR/FSR
 - ightarrow losing sensitivity to $n_{
 m MPI}$
- How to disentangle the effects of ISR/FSR and high $n_{\rm MPI}$?

- leading jet track $\varphi = 0$ Toward Transverse-max ISR/FSR $\Delta \varphi = 2\pi/3$ $\Delta \varphi = 2\pi/3$
- The two sub-regions of *transverse* $(\frac{\pi}{3} < \Delta \varphi \le \frac{2\pi}{3} \text{ and } \frac{-2\pi}{3} < \Delta \varphi \le \frac{-\pi}{3})$ are classified as *transverse-min* and *transverse-max* based on the N_{T} in each (event-by-event)
 - The two components of $N_{\rm T}$ are labeled $N_{\rm T,min}$ and $N_{\rm T,max}$

ALICE

JHEP 06 (2023) 027

Even cleaner proxy of n_{MPI} ?

- Contamination in **transverse** by another jet, e.g. from hard ISR/FSR
 - ightarrow losing sensitivity to $n_{
 m MPI}$
- How to disentangle the effects of ISR/FSR and high $n_{\rm MPI}$?

- The two sub-regions of *transverse* $(\frac{\pi}{3} < \Delta \varphi \le \frac{2\pi}{3} \text{ and } \frac{-2\pi}{3} < \Delta \varphi \le \frac{-\pi}{3})$ are classified as *transverse-min* and *transverse-max* based on the N_{T} in each (event-by-event)
- The two components of $N_{\rm T}$ are labeled $N_{\rm T,min}$ and $N_{\rm T,max}$
- Trivially,
 - $N_{\rm T} = N_{\rm T,min} + N_{\rm T,max}$
 - Transverse-max: contains soft UE + ISR/FSR
 - Transverse-min: contains only soft UE
 - Analogously:

$$R_{
m T,min} = N_{
m T,min} / \langle N_{
m T,min}
angle \quad \propto n_{
m MPI}$$

 $R_{
m T,max} = N_{
m T,max} / \langle N_{
m T,max}
angle \quad \propto
m ISR/FSR$

 $R_{T,min}$ suggested as one of the cleanest probes of $\langle n_{MPI} \rangle$!

Oliver Matonoha (CTU)

 $p_{\rm T}$ spectra: $K_{\rm S}^0$

ALI-PREL-573900

• **Toward/Away**: high- p_{T} particles do not depend on R_{T} (production from jet)

NEW!

 $p_{\rm T}$ spectra: $K_{\rm S}^0$

ALI-PREL-573900

р_т (GeV/*c*)

- **Toward/Away**: high- p_{T} particles do not depend on R_{T} (production from jet)
- Transverse(-max): hardening with $R_T \rightarrow$ events with high R_T are more likely to contain high- p_T particles (ISR/FSR?)

ALICE

• *Transverse-min:* similar, but seems to saturate for high *R*_{T,min}

Trans.-Max

ALI-PREL-573904

8.0 80 80 6 2 3 6 80 a) Pythia 8 Monash b) Pythia 8 Ropes c) EPOS LHC *p*_{_} (GeV/*c*) - Lund string based model - on top of CR, allows merging of - strangeness allowed to be produced thermally QGP droplets - implements Colour Reconnection overlapping strings into higher tension (CR), which mimicks radial flow ropes -> enhances strangeness ALICE

Oliver Matonoha (CTU)

p_{T} spectra: Ξ (comparison with models)

ALI-PREL-573924

- Toward/Away/Transverse: dependence on R_T present in all regions
- Transverse regions: no sizable differences
- EPOS LHC strongly overpredicts the effect of $R_{\rm T}$ selection on Ξ in the regions with jet fragmentation

Studying "radial flow"-like behaviour with Λ/K_S^0

NEW!

ALICE

• *Toward/Away*: strongest effect → mixing of the very different jet- and UE-production

See also: ALICE PLB 827 (2022) 136984

Studying "radial flow"-like behaviour with Λ/K_S^0

NEW!

- *Toward/Away*: strongest effect → mixing of the very different jet- and UE-production
- Transverse-min: comparable to Transverse and Transverse-max \rightarrow flow-like boost also solely from increase in $n_{\rm MPI}$

ALICE

Studying strangeness enhancement with $N_h/N_{K_s^0}$

ALICE

Oliver Matonoha (CTU)

NEW!

Studying strangeness enhancement with $N_h/N_{K_s^0}$

Oliver Matonoha (CTU)

NEW

- $R_{\rm T}$, the magnitude of UE: can classify low- $n_{\rm MPI}$ and high- $n_{\rm MPI}$ events
 - $R_{\rm T}$ is measured in ALICE in pp at \sqrt{s} = 2.76 TeV, 5.02 TeV, 7 TeV, 13 TeV, and also in p-Pb and Pb-Pb

- $R_{\rm T}$, the magnitude of UE: can classify low- $n_{\rm MPI}$ and high- $n_{\rm MPI}$ events
 - $R_{\rm T}$ is measured in ALICE in pp at \sqrt{s} = 2.76 TeV, 5.02 TeV, 7 TeV, 13 TeV, and also in p-Pb and Pb-Pb
- Extending $R_{\rm T}$ into $R_{\rm T,min}$ and $R_{\rm T,max}$ further increases the sensitivity to $n_{\rm MPI}$
- Strangeness is measured in pp at \sqrt{s} = 13 TeV vs. $R_T / R_{T,min} / R_{T,max}$

- $R_{\rm T}$, the magnitude of UE: can classify low- $n_{\rm MPI}$ and high- $n_{\rm MPI}$ events
 - $R_{\rm T}$ is measured in ALICE in pp at \sqrt{s} = 2.76 TeV, 5.02 TeV, 7 TeV, 13 TeV, and also in p-Pb and Pb-Pb
- Extending $R_{\rm T}$ into $R_{\rm T,min}$ and $R_{\rm T,max}$ further increases the sensitivity to $n_{\rm MPI}$
- Strangeness is measured in pp at \sqrt{s} = 13 TeV vs. $R_T / R_{T,min} / R_{T,max}$
 - $\Lambda/K_{\rm S}^0$ shows typical radial flow features
 - (Toward) : The largest effect seems to be mimicked by mixing the jet- and UE-related production
 - (Transverse-min) : The effect is also driven by $n_{
 m MPI}$ alone

- $R_{\rm T}$, the magnitude of UE: can classify low- $n_{\rm MPI}$ and high- $n_{\rm MPI}$ events
 - $R_{\rm T}$ is measured in ALICE in pp at \sqrt{s} = 2.76 TeV, 5.02 TeV, 7 TeV, 13 TeV, and also in p-Pb and Pb-Pb
- Extending $R_{\rm T}$ into $R_{\rm T,min}$ and $R_{\rm T,max}$ further increases the sensitivity to $n_{\rm MPI}$
- Strangeness is measured in pp at \sqrt{s} = 13 TeV vs. $R_T / R_{T,min} / R_{T,max}$
 - $\Lambda/K_{\rm S}^0$ shows typical radial flow features
 - (Toward) : The largest effect seems to be mimicked by mixing the jet- and UE-related production
 - (Transverse-min) : The effect is also driven by $n_{
 m MPI}$ alone
 - $N_{\Xi} / N_{K_s^0}$ shows clear enhancement
 - (Transverse-min) : enhancement seemingly most sensitive to n_{MPI}
 - (Transverse-max) : no enhancement in the ISR/FSR emphasised region
 - Despite the very controlled $R_{\rm T}$ approach, all models have limited success across the different observables

Thank you for your attention!

BACKUP

 p_{T} spectra: Λ

ALI-PREL-573912

 $p_{_{\rm T}}$ (GeV/c)

Particle ratio Ξ/K_S^0

ALI-PREL-573948