# Fast timing silicon R&D for the future Electron-Ion Collider

Xuan Li (xuanli@lanl.gov), Eric Renner, Ming Liu, Walter Sondheim

Los Alamos National Laboratory

**Carlos Solans** 

CERN

Marcos Vazquez Nuñez, Vicente Gonzalez

University of Valencia

**Yasser Corrales Morales** 

Massachusetts Institute of Technology



## Outline

- Introduction to the Electron-Ion Collider (EIC) and the EIC detectors.
- Motivation of the proposed Fast MAPS Tracker (FMT) for the EIC.
- Fast MALTA2 R&D progress.
- Performance and impacts of the proposed FMT evaluated in simulation.
- Summary and Outlook.

### **Introduction to the future Electron-Ion Collider (EIC)**

- The future Electron-Ion Collider (EIC) will utilize high-luminosity high-energy e+p and e+A collisions to solve several fundamental questions in the nuclear physics field.
- The EIC project has received CD3/A approval from the US DOE in 2024 and is scheduled to start construction at BNL in 2025 and operation in early 2030s.
- The EIC will support up to two Interaction Points (IP6, IP8).
- The future EIC will operate:
  - (Polarized) p and nucleus (A=2-238) beams at 41, 100-275 GeV.
  - (Polarized) e beam at 5-18 GeV.
  - Instantaneous luminosity L<sub>int</sub> ~ 10<sup>33-34</sup> cm<sup>-</sup>
    <sup>2</sup>sec<sup>-1</sup>. A factor of ~1000 higher than HERA.
  - Bunch crossing rate: 10.2 ns.
  - Beam crossing angle at IP6: 25 mrad.



### **Current EIC project detector design by the ePIC collaboration**

- The ePIC collaboration is leading the EIC project detector (at IP6) technical design towards the EIC CD2/3 approval (scheduled in April 2025).
- The 2<sup>nd</sup> EIC detector (at IP8) is to be designed.



#### More EIC details in C.M. Camacho's talk on Friday

- The ePIC central detector (9.5m X 3.3m) consists of optimized vertex, tracking, PID, EMCal and HCAL subsystems and will utilize a new 1.7 T magnet.
- The high granularity ePIC vertex and tracking detector includes
  - 65 nm Monolithic Active Pixel Sensor (MAPS) vertex and tracking subsystems (innermost 5 layers).
  - Micro Pattern Gas Detector (MPGD) tracking subsystem (intermediate).
  - AC coupled Low Gain Avalanche Diode (AC-LGAD) layer/plane as the outer tracker.

#### The proposed 4D MAPS tracking detector for the EIC

 We propose a Fast MAPS Tracking detector (FMT) based on the Depleted Monolithic Active Pixel Sensor (DMAPS), i.e., MALTA2, technology, which could be used either for the ePIC detector upgrade or the 2<sup>nd</sup> EIC detector.



- The current design of the **proposed FMT** consists of 2 planes in the forward (hadron endcap) region and 2 planes in the backward (electron endcap) region, near the edge of the EIC central magnet. It aims to improve the track reconstruction in the  $|\eta| > 2.5$  region.
- The proposed FMT can achieve 2 ns timing resolution and it helps separate backgrounds from DIS physics events in 2.5 < |η| < 3.5.</li>
- Further geometry optimization will be performed for detector integration purpose.

### **MALTA2** sensor technical feature

- The MALTA2 prototype sensors made of Tower 180 nm CMOS technology are under extensive bench and beam tests with well established readout chain.
- MALTA2 sensor has
  - 20 X10 mm<sup>2</sup> active area,
  - 224 X 512 pixels with 36.4  $\mu$ m pixel pitch,
  - 10 mW/cm<sup>2</sup> digital power consumption, 70 mW/cm<sup>2</sup> analog power consumption.

#### **MALTA2** prototype sensor



MALTA2 pixel design w/ improved charge collection in the pixel edge

IEEE Transactions on Nuclear

*Science, vol. 69, no. 6, pp.* 

1299-1309, 2022.



### **MALTA2** readout scheme

- At the periphery, arbitration and merging resolve timing conflicts of simultaneous signals.
- 40-bit wide data packet transmitted off chip by 5 Gbps LVDS drivers.
- Fully established front-end and back-end readout chain for MALTA2 prototype sensor characterization.



**MALTA2** pixel front-end schematic

w/ amplification, shaping and digitization

#### I Berdalovic et al. 2018 JINST 13 C01023



#### MALTA2 readout architecture



## Latest MALTA2 R&D results (I)

• MALTA telescope beam tests have been performed at DESY, ELSA, SPS and PS from 2021 to 2023.

MALTA telescope in SPS H6



#### Spatial resolution of MALTA telescope + MALTA2 DUT @SPS



#### MALTA telescope in PS T9



#### Timing distribution of MALTA chips @SPS



#### Eur. Phys. J. C 83(2023), 58

# In-pixel timing projected in a 2x2 MALTA pixel matrix @SPS



- Spatial resolution: ~4.1+0.2  $\mu$ m
- Timing resolution: ~2.1 ns

#### Latest MALTA2 R&D results (II)

• MALTA2 Cz sensors can tolerate radiation dose up to 3x10<sup>15</sup> n<sub>eq</sub>/cm<sup>2</sup>.



 No significant impacts on the hit efficiency, cluster size and timing RMS for irradiation dose at 1x10<sup>15</sup> n<sub>eq</sub>/cm<sup>2</sup>. The current estimated irradiation dose at EIC is << 1x10<sup>14</sup> n<sub>eq</sub>/cm<sup>2</sup>. Will use the characterization tests at 1x10<sup>15</sup> n<sub>eq</sub>/cm<sup>2</sup> (highlight in red) to evaluate the proposed FMT detector performance.

#### New MALTA2 quar-sensor stave design

• The first engineer design of the MALTA2 quad-sensor prototype module has been submitted for production. Utilize 100  $\mu m$  thick silicon wafer and Cu-Al hybrid FPC.



### The proposed FMT detector geometry

• The proposed FMT is planned to be placed around the beam pipe near the edge of the magnet of the EIC.



- Use the design of the IP6 beam pipe, the 1.7T ePIC magnet and the ePIC central barrel detector as the reference.
- Assume three 65 nm MAPS based disks (z=25cm, 62.5cm, 100cm, maximum pseudorapidity η=2.5) to fill the gap between the central barrel and the forward region to be covered by the FMT. A symmetric design is applied in the backward region as well (not shown).
- The proposed FMT consists of 2 disks based on MALTA2 staves in the forward and backward region. Each MALTA2 stave will consist of 8 MALTA2 sensors or groups of two quad-sensor modules next to each other.

#### The proposed FMT detector performance (I)

• Assume the FMT will utilize 8-sensor staves, or groups of two quad-sensor modules next to each other to assemble disks.

| Parameter              | Disk 1                | Disk 2                |
|------------------------|-----------------------|-----------------------|
| Inner Radius           | 7.014 cm              | 7.014 cm              |
| Outer Radius           | 23.095 cm             | 23.095 cm             |
| z location             | 150 cm                | 160 cm                |
| Material budget        | 0.74%X/X <sub>0</sub> | 0.74%X/X <sub>0</sub> |
| Average hit efficiency | 98%                   | 98%                   |

Hadron endcap FMT geometry (config 1)

**DCA<sub>2D</sub>:** Distance of Closest Approach of tracks in the x-y plane at the primary vertex

Projected  $p_T$  dependent DCA<sub>2D</sub> resolution



### The proposed FMT detector performance (I)

• Projected  $p_T$  dependent  $p_T$  resolution (left) and  $p_T$  dependent DCA<sub>3D</sub> resolution w/ and w/o FMT.

#### Hadron endcap FMT geometry (config 1)



### The proposed FMT detector performance (II)

• Assume the FMT will utilize 8-sensor staves, or groups of two quad-sensor modules next to each other to assemble disks.

| Parameter              | Disk 1                | Disk 2                |
|------------------------|-----------------------|-----------------------|
| Inner Radius           | 7.014 cm              | 7.014 cm              |
| Outer Radius           | 23.095 cm             | 23.095 cm             |
| z location             | 145 cm                | 165 cm                |
| Material budget        | 0.74%X/X <sub>0</sub> | 0.74%X/X <sub>0</sub> |
| Average hit efficiency | 98%                   | 98%                   |

**DCA<sub>2D</sub>:** Distance of Closest Approach of tracks in the x-y plane at the primary vertex

Hadron endcap FMT geometry (config 2)



### The proposed FMT detector performance (II)

• Projected  $p_T$  dependent  $p_T$  resolution (left) and  $p_T$  dependent DCA<sub>3D</sub> resolution w/ and w/o FMT.

Projected  $p_{\tau}$  dependent  $\Delta p_{\tau}/p_{\tau}$  resolution Projected  $p_{T}$  dependent DCA<sub>3D</sub> resolution  $dp_T/p_T$  resolution JCA<sub>3D</sub> resolution (µm) Standalone MC  $10^{2}$ w/o FMT  $\eta = 2.5$ w/o FMT  $\eta = 2.5$  $10^{-2}$  $-\Phi$  w/ FMT  $\eta$  = 2.7 **Standalone MC** - w/ FMT  $\eta = 3.0$ - w/ FMT  $\eta = 3.0$ 10 → w/ FMT n = 3.5  $10^{-3}$ 2 10 2 10 0 6 8 4 0

 $\pi^{\pm} p_{\tau} \text{ (GeV/c)}$ 

#### Hadron endcap FMT geometry (config 2)

 $\pi^{\pm} p_{\tau} (\text{GeV/c})$ 

## Forward D meson reconstruction w/ and w/o FMT timing

- On average, the EIC has one collision every 2  $\mu$ s and its bunching crossing rate is ~10 ns.
- Reconstructed forward D<sup>0</sup> mass spectrums with the projected FMT performance (config 2) in 63 GeV e+p collisions.



#### *PYTHIA8 + FMT detector performance in standalone MC*

- Need to add realistic EIC backgrounds for future studies.
- Faster readout provided by the proposed FMT can significantly reduce backgrounds from pileup events in forward heavy flavor reconstruction.

## **Summary and Outlook**

- Good progresses have been achieved for the proposed MALTA2 based FMT detector R&D, module design and associated performance validation.
- New MALTA2 quad-sensor FPC design has been submitted for production. Will characterize the performance of new modules in bench and beam tests.
- The mechanical design of the FMT disk utilizing the MALTA2 quad-sensor modules is underway.
- More to come! Special thanks to the EIC generic R&D program @JLab!

|                                          | NAS    | EIC    | EIC     | EIC     | EIC   | EIC                       | E   | IC            |              |
|------------------------------------------|--------|--------|---------|---------|-------|---------------------------|-----|---------------|--------------|
| U.SBASED ELECTRONION<br>COLLIDER SCIENCE | review | CD0    | CD1     | CD3/A   | CD2/3 | CD-4a                     |     | )-4           |              |
|                                          |        |        |         |         |       |                           |     | $\rightarrow$ |              |
|                                          | 2018   | 2020 2 | 2021    | 2024 20 | 025   | 2034                      | 203 | 36            |              |
|                                          |        | De     | sign Ph | ase     |       | <b>Construction Phase</b> |     | S             | cience Phase |

## Backup

## EIC detector requirements for a silicon vertex/tracking detector

- To meet the heavy flavor physics measurements, a silicon vertex/tracking detector with low material budgets and fine spatial resolution is needed.
- Particles produced in the asymmetric electron+proton and electron+nucleus collisions have a higher production rate in the forward pseudorapidity. The EIC detector is required to have large granularity especially in the forward region.



• Fast timing (1-10ns readout) capability allows the separation of different collisions and suppress the beam backgrounds.

#### **EIC Yellow Report requirement on tracking**

• Estimated tracking requirement based on the 3T magnetic field.

Nucl. Phys. A 1026 (2022) 122447

Table 11.2: Requirements for the tracking system from the physics groups.

| Tracking requirements from PWGs |          |                     |                       |                 |               |                            |
|---------------------------------|----------|---------------------|-----------------------|-----------------|---------------|----------------------------|
|                                 |          |                     | Momentum res.         | Material budget | Minimum pT    | Transverse pointing res.   |
| η                               |          |                     |                       |                 |               |                            |
|                                 |          |                     |                       |                 |               |                            |
| -3.5 to -3.0                    |          |                     | σp/p ~ 0.1%×p ⊕ 0.5%  |                 | 100-150 MeV/c |                            |
| -3.0 to -2.5                    |          | Backward            |                       |                 | 100-150 MeV/c | dca(xy) ~ 30/pT µm ⊕ 40 µm |
| -2.5 to -2.0                    |          | Detector            |                       |                 | 100-150 MeV/c |                            |
| -2.0 to -1.5                    | ]        |                     | σp/p ~ 0.05%×p ⊕ 0.5% |                 | 100-150 MeV/c | dca(xy) ~ 30/pT µm ⊕ 20 µm |
| -1.5 to -1.0                    | ]        |                     |                       |                 | 100-150 MeV/c |                            |
| -1.0 to -0.5                    | 1        |                     |                       |                 |               |                            |
| -0.5 to 0                       | Central  | Dorrol              |                       | ~5% X0 or less  | 100-150 MeV/c | dca(xy) ~ 20/pT µm ⊕ 5 µm  |
| 0 to 0.5                        | Detector | Barrel              | op/p ~ 0.05%^p & 0.5% |                 |               |                            |
| 0.5 to 1.0                      |          |                     |                       |                 |               |                            |
| 1.0 to 1.5                      | 1        |                     |                       |                 | 100-150 MeV/c |                            |
| 1.5 to 2.0                      | 1        | Forward<br>Detector | σp/p ~ 0.05%×p ⊕ 1%   |                 | 100-150 MeV/c | dca(xy) ~ 30/pT µm ⊕ 20 µm |
| 2.0 to 2.5                      | 1        |                     |                       |                 | 100-150 MeV/c | 1                          |
| 2.5 to 3.0                      | 1        |                     |                       |                 | 100-150 MeV/c | dca(xy) ~ 30/pT µm ⊕ 40 µm |
| 3.0 to 3.5                      | 1        |                     | op/p ~ 0.1%^p ⊕ 2%    |                 | 100-150 MeV/c | dca(xy) ~ 30/pT μm ⊕ 60 μm |

#### ePIC tracing performance

• Track  $p_T$  dependent DCA<sub>2D</sub> resolution



### ePIC tracing performance

• Track p dependent momentum resolution



#### **MALTA sensor R&D test results**

- Threshold and noise scan has been performed.
- Successfully suppressing the noise hits with optimized DAC configuration and the hit occupancy has been studied with the <sup>90</sup>Sr source tests.



#### MALTA prototype sensor test setup



## The proposed FMT detector performance (III)

• Assume the FMT will utilize 8-sensor staves, or groups of two quad-sensor modules next to each other.

#### Hadron endcap FMT geometry (config 3)

| Parameter              | Disk 1                | Disk 2                |
|------------------------|-----------------------|-----------------------|
| Inner Radius           | 7.014 cm              | 7.014 cm              |
| Outer Radius           | 23.095 cm             | 23.095 cm             |
| z location             | 155 cm                | 170 cm                |
| Material budget        | 0.74%X/X <sub>0</sub> | 0.74%X/X <sub>0</sub> |
| Average hit efficiency | 98%                   | 98%                   |

**DCA<sub>2D</sub>:** Distance of Closest Approach of tracks in the x-y plane at the primary vertex

DCA<sub>2D</sub> resolution (µm) ••••• EIC YR  $3.0 \le \eta < 3.5$ EIC YR  $2.5 \le \eta < 3.0$ 10<sup>2</sup> – w/o FMT η = 2.5  $-\Phi$  w/ FMT  $\eta$  = 2.7 - w/ FMT  $\eta = 3.0$ Standalone MC  $-\phi$  w/ FMT  $\eta = 3.3$ 10 -**▼** w/ FMT η = 3.5 10 0 2 6 8  $\pi^{\pm} p_{\tau} \text{ (GeV/c)}$ 

Projected  $p_{\tau}$  dependent DCA<sub>2D</sub> resolution

#### Simulation studies to evaluate w/ and w/o FMT timing

Reconstructed D<sup>±</sup> and D<sup>0</sup> with projected FMT performance in 63 GeV e+p collisions w/ 20 pileup (40 μs timing) events. Need to add realistic EIC backgrounds for future studies.

