Measurement of strange baryon production in charged-particle jets in pp and p-Pb collisions with ALICE Gijs van Weelden (Nikhef) On behalf of the ALICE collaboration

Motivation

Strangeness yields across multiplicity

Enhancement increases with strangeness, rather than mass

Motivation

Strangeness yields across multiplicity

Enhancement increases with strangeness, rather than mass

Disentangle strangeness production mechanisms in jets and in underlying event

- Run 2 published results (ALICE: JHEP 07 (2023), 136)
- Novel Run 3 jet analysis

Cluster jets with charged particles using anti- $k_{\rm T}$ algorithm

Reconstruct K_{S}^{0} , Λ , Ξ , Ω

Jet Cone

Cluster jets with charged particles using anti- $k_{\rm T}$ algorithm

Reconstruct K_{S}^{0} , Λ , Ξ , Ω

Measure strange hadrons within jet cone

Jet Cone

Cluster jets with charged particles using anti- $k_{\rm T}$ algorithm

Reconstruct
$$K_S^0, \Lambda, \Xi, \Omega$$

Measure strange hadrons within jet cone

Subtract underlying event (UE) contributions to find true jet yield

Jet Cone

Estimate UE yields with perpendicular cone (PC) method

Underlying event

Estimate UE yields with perpendicular cone (PC) method

Jet yield = yield within jet cone (JC) - yield within PC

$$\frac{d\rho^{JE}}{dp_{T}} = \frac{d\rho^{JC}}{dp_{T}} - \frac{d\rho^{UE}}{dp_{T}}$$

Jet Cone

Underlying event

.10⁻³ Underlying event yield has similar slope with p_{T^4} as inclusive sample **10**⁻⁵

High $p_{\rm T}$ is dominated 0 2 by jet fragmentation

10⁻⁵

Underlying event yield has similar slope with $p_{\rm T}$ as inclusive sample

High $p_{\rm T}$ is dominated by jet fragmentation

Underlying event yield has similar slope with $p_{\rm T}$ as inclusive sample

High $p_{\rm T}$ is dominated by jet fragmentation

First measurement of Ξ, Ω in jets

Underlying event yield has similar slope with $p_{\rm T}$ as inclusive sample

High $p_{\rm T}$ is dominated by jet fragmentation

First measurement of Ξ, Ω in jets

See posters by <u>Jimun Lee</u> and Upasana Sharma

pp Yields: model comparison

PYTHIA 8 with colour reconnection

Modes: time dilation constraints (none, strict, loose)

Only Λ and K_S^0 in jets well-described for $p_{\rm T}^{\Lambda, {\rm K}_{\rm S}^0} \gtrsim 2 ~{\rm GeV}/c$

<u>See talk by Chiara de Martin</u>

Gijs van Weelden

SQM, Strasbourg, 05.06.2024

Christiansen, Skands: JHEP 08 (2015) 003

pp Yield ratios

Baryon¹⁰¹² Meson 0.05 **UE yield** enhanced w₂r.to₀in-jet₄yield for 10 12 $2 < p_{\rm T} < 4 \, {\rm GeV}/c$

6

2

SQM, Strasbourg, 05.06.2024

ALI-PUB-559868

SQM, Strasbourg, 05.06.2024

pp Yield ratios: model comparison

 Λ/K_{S}^{0} : well-described by model both in jets and inclusive

SQM, Strasbourg, 05.06.2024

Christiansen, Skands: JHEP 08 (2015) 003

p-Pb Yield ratios

In-jet yield not significantly enhanced

See talks by Roman Nepeivoda and Oliver Matonoha

Gijs van Weelden

10

p-Pb Yield ratios

In-jet yield not significantly enhanced

See talks by Roman Nepeivoda and Oliver Matonoha

Gijs van Weelden

Jet: anti-
$$k_{\rm T}$$
, $p_{\rm T, \, jet}^{\rm ch} > 10$

p-Pb Yield ratios

 $2K_S^0$

In-jet yield not significantly enhanced

See talks by Roman Nepeivoda and Oliver Matonoha

	0.2						0–10% 10–40%				
			Q).3				40–10 MB p	00% –Pb		
)%6	8	10	12 ().20	2	4	6	мв р 8	р 10	12	
100%	0.1										
рр 6	8	10	12	0	2	4	6	8	10	12	

MB pp

0.02

Jet: anti- $k_{\rm T}$, R = 0.4 $p_{\rm T, \, jet}^{\rm ch}$ > 10 GeV/*c* |η_{jet}| < 0.35

Jet: anti- $k_{\rm T}$, R = 0.4 $p_{\rm T, jet}^{\rm ch}$ > 10 GeV/*c* $|\eta_{\rm jet}| < 0.35$

$|\eta_{\rm jet}| < 0.35$ 12

Jet fragmentation into Λ, K^0_S with Run 3

See talk by Joshua Koenig

Gijs van Weelden

SQM, Strasbourg, 05.06.2024

Jet fragmentation into Λ, K^0_S with Run 3

See talk by Joshua Koenig

Gijs van Weelden

SQM, Strasbourg, 05.06.2024

Jet fragmentation into Λ , K_S^0 with Run 3

See talk by Joshua Koenig

Gijs van Weelden

SQM, Strasbourg, 05.06.2024

Jet fragmentation into Λ, K_S^0 with Run 3

See talk by Joshua Koenig

Gijs van Weelden

Gluon \rightarrow charged hadrons

Describes how jets shower and hadronise

d'Enterria et al.: Nucl.Phys.B 883 (2014) 615-628

Jet fragmentation into Λ, K_S^0 with Run 3

$$z_{\Lambda,K_{S}^{0}} = \frac{\mathbf{p}_{\Lambda,K_{S}^{0}} \cdot \mathbf{p}_{jet}}{\mathbf{p}_{jet}^{2}}$$

Not yield inside jet cone, but Λ , K_{S}^{0} candidates (V0) included as input for jet clustering

Due to long lifetimes, Λ , K_S^0 decay daughters are removed from jet clustering input

SQM, Strasbourg, 05.06.2024

Charged particles

V0 particle

Gijs van Weelden

Ch jet

Charged particles

V0 particle

Gijs van Weelden

Ch jet

Gijs van Weelden

SQM, Strasbourg, 05.06.2024

Charged particles

V0 particle

Charged particles

V0 particle

ך +V0 particle

Ch+V0 jet

Ch+V0 jets

$V0 = \Lambda, K_S^0$ candidate

Increased statistics per event for Ch + V0 jets

Ch+V()jets

$V0 = \Lambda, K_S^0$ candidate

Increased statistics per event for Ch + V0 jets

Increased sensitivity to jets with high z_{Λ,K_s^0}

ALI-SIMUL-573122

$\Lambda, K_{\varsigma}^{U}$ in jets

Run 3: enough statistics for $p_{T, iet}$ -differential analysis

ALI-PERF-574311

$\Lambda, \mathbf{K}^{\mathsf{U}}_{\mathsf{S}}$ in jets

Run 3: enough statistics for $p_{T, iet}$ -differential analysis

Capable of identifying Λ, K_S^0 up to very high $p_{\rm T}$

ALI-PERF-574316

Summary

First measurement of Ξ, Ω yield in jets

- and $\frac{2S}{1S}$ yield ratios show enhancement Baryon Meson with multiplicity in UE, but not in jets

First look at novel measurement of jet fragmentation into Λ , K_S^0 for Run 3 data

Ch + V0 jet clustering gives unprecedented access to high z_{Λ, K_s^0}

Backup

Jet correction

Correct jets for bkg:
$$p_{T,jet}^{ch} = p_{T,jet}^{rec}$$
 -
 $\rho_{bkg}^{ch} = \frac{\Sigma_i A_i}{A_{acc}} \times \text{median} \left\{ \frac{p_{T,jet}^{rec}}{A_{jet}} \right\}$

• A_i : area of k_T jets with at least one track

 $-\rho_{\rm bkg}^{\rm ch} \times A_{\rm jet}$

Decay channels

$K_{S}^{0} \rightarrow \pi^{+}\pi^{-}$ $\Lambda(\bar{\Lambda}) \rightarrow p(\bar{p}) + \pi^{-}(\pi^{+})$ $\Xi^{-}(\Xi^{+}) \rightarrow \Lambda(\bar{\Lambda}) + \pi^{-}(\pi^{+})$ $\Omega \to \Lambda(\bar{\Lambda}) + K^{-}(K^{+})$

SQM, Strasbourg, 05.06.2024

$(69.20 \pm 0.05)\%$ $(63.9 \pm 0.5)\%$ $(99.887 \pm 0.035)\%$ $(67.8 \pm 0.7)\%$

Gijs van Weelden

Gijs van Weelden

p-Pb Yields

Yields in p-Pb similar to pp

UE fraction $pp \rightarrow p-Pb$ increases $\sim 15\%$, except for Ω

Gijs van Weelden

p-Pb Yields

