Investigation of early magnetic field and angular momentum in ultrarelativistic heavy-ion collisions via D*⁺-meson spin alignment with ALICE

> Himanshu Sharma, INFN Padova On behalf of the ALICE Collaboration

Strangeness in Quark Matter, 2024

The 21st International Conference on Strangeness in Quark Matter 3-7 June 2024, Strasbourg, France

• In heavy ion collisions, system evolves through various phases.

"Simplified" spacetime evolution of heavy ion collisions

- In heavy ion collisions, system evolves through various phases.
- In **non-central** collisions:
 - Charged spectator motion produces magnetic field (B) ~ 10¹⁵ T ⁺
 - Decreases with time
 - A highly vortical system with orbital angular momentum (L), $ω^* \sim 10^{22} \text{ s}^{-1} \text{ *}$

Motivation

- In heavy ion collisions, system evolves through various phases.
- In **non-central** collisions:
 - Charged spectator motion produces magnetic field (B) ~ 10¹⁵ T ⁺
 - Decreases with time
 - A highly vortical system with orbital angular momentum (L), $ω^* \sim 10^{22} \text{ s}^{-1} \text{ *}$

can preferentially **align** a **particle's spin projection** along the spin quantization axis through spin-orbit coupling

Motivation

- Charm quarks produced in early stages,
 - t ~ 1/m_q ~ 0.1 fm/c
 - More sensitive to the high intensity of the EM fields than light quarks

Spin alignment measurements

- Hadrons' spin alignment measurements rely on spin density matrix element (ρ₀₀)
 - $\rho_{00} = 1/3 \Rightarrow$ No spin alignment
 - $\rho_{00} \neq 1/3 \Rightarrow$ spin alignment observed
- Polarisation/Quantization axis
 - Orthogonal to event plane: In the direction of L and B fields (in Pb–Pb collisions)
 - **Helicity**: In the direction of vector meson momentum, (considered in pp collisions)

Angular distribution of decay products:

 $\frac{\mathrm{d}N}{\mathrm{d}\cos\theta^*} = N_0 \left[(1-\rho_{00}) + (3\rho_{00}-1)\cos^2\theta^* \right]$

Spin alignment measurements

- Hadrons' spin alignment measurements rely on spin density matrix element (ρ₀₀)
 - $\rho_{00} = 1/3 \Rightarrow$ No spin alignment
 - $\rho_{00} \neq 1/3 \Rightarrow$ spin alignment observed
- Vector meson spin alignment governed by two
 mechanisms

$$\rho_{00} = \frac{1 - P_q \cdot P_{\overline{q}}}{3 + P_q \cdot P_{\overline{q}}} = \begin{cases} \leq 1/3^* \Rightarrow \vec{B} \\ < 1/3 \Rightarrow \vec{L} \end{cases}$$

* > for Neutral meson, < for Charged meson **P**_q = Polarisation of quark

Angular distribution of decay products:

$$\frac{\mathrm{d}N}{\mathrm{d}\cos\theta^*} = N_0 \left[(1 - \rho_{00}) + (3\rho_{00} - 1)\cos^2\theta^* \right]$$

Quark fragmentation

$$\rho_{00} = \frac{1 + \beta \cdot P_{\bar{q}}^2}{3 - \beta \cdot P_{\bar{q}}^2} > 1/3$$

ALICE experiment

Central barrel detectors $|\eta| < 0.9$

1) ITS

 Tracking
 Primary and secondary vertex reconstruction

2) TPC

TrackingParticle identification

3) TOF• Particle identification

Excellent tracking and PID capabilities down to very low momentum

V0

 $\odot 2.8 < \eta < 5.1 \& -3.7 < \eta < -1.7$

- Triggers
- Collision centrality determination
- Background rejection
- Event plane determination

Muon spectrometer $\odot 2.5 < y < 4$ \odot Muon trigger \odot Muon tracking down to very low p_T

In this presentation, we focus on $\odot D^{*^+} \rightarrow D^0 \pi^+ \rightarrow K^- \pi^+ \pi^+$ $\odot J/\psi \rightarrow \mu^+ \mu^-$

D*⁺ yield extraction

- For D*⁺ analysis in pp and Pb–Pb collisions, Boosted Decision Trees (BDT) are used to
 - Reduce the combinatorial background
 - Separate prompt and non-prompt D*⁺ components

- For D*⁺ analysis in pp and Pb–Pb collisions
 - $\circ \quad \varrho_{_{00}}$ extraction for prompt and non-prompt D*⁺ in different $p_{_{T}}$ intervals

Spin alignment measurement in pp collisions

- First measurement of the prompt and non-prompt
 D*⁺ spin alignment at the LHC
- Measurements performed in the Helicity axis
 - $\rho_{00} = \frac{1}{3} \Rightarrow$ No spin alignment for prompt D*⁺
 - $\varrho_{00} > \frac{1}{3} \Rightarrow$ Spin alignment observed for non-prompt D^{*+}
 - Due to Helicity conservation in b-hadron decays
- "PYTHIA 8 (MC generator) + EVTGEN (decayer)" predictions are consistent with the measurements

Serves as a benchmark for D*⁺ spin alignment measurements in Pb–Pb collisions

Prompt D*⁺ spin alignment in **Pb-Pb** collisions at $\sqrt{s_{NN}} = 5.02 \text{ TeV}$

First measurement of D*⁺ spin alignment with respect to the reaction plane in Pb–Pb collisions

- Extracted ρ_{00} parameter for **prompt D***⁺
 - In two rapidity regions
 - Hint of rising trend with p_{T}
 - 0-10%: Consistent with $\rho_{00} = \frac{1}{3}$
 - **30-50%**: Evidence of ρ_{00} larger than $\frac{1}{3}$ at high p_{T}
 - \Rightarrow Hadronization by quark fragmentation

Spin alignment measurement in different rapidity region

First measurement of D*⁺ spin alignment with respect to the reaction plane in Pb–Pb collisions

Spin alignment measurement: Prompt D*+ vs Inclusive J/ ψ

- Rising trend for inclusive J/ ψ with $p_{_{\rm T}}$
- Results are compatible within the uncertainties in overlapping $p_{\rm T}$ region
- Significantly small ρ_{00} at p_{T} < 5 GeV/c
 - ⇒ J/ ψ dominantly produced by recombination

 $\varrho_{00} < \frac{1}{3}$: Quark **recombination** at low p_{T} $\varrho_{00} > \frac{1}{3}$: Quark **fragmentation** at high p_{T}

ALICE $\rho_{_{00}}$ **ALICE Preliminary** 0.6 30–50% Pb–Pb, $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ **Reaction plane** Prompt D** 0.4 $Q_{00} = \frac{1}{3}$ • Prompt D^{*+} , 0.3 < |y| < 0.8 0.2**⊢Incl. J/***ψ* Inclusive J/ ψ , -4.0 < y < -2.5 a b $(\rho_{00}^{-1/3})/$ 111 | 1111 | 1111 10 20 25 30

1418.0

|y| < 0.3

himanshu.sharma@cern.ch | INFN Padova |

344408

SQM 2024

ALI-PREL-559677

 $p_{_{T}}$ (GeV/c)

Spin alignment measurement: Prompt D*+ vs Inclusive J/ ψ

- Rising trend for inclusive J/ ψ with $p_{_{\rm T}}$
- Results are compatible within the uncertainties in overlapping $p_{\rm T}$ region
- Significantly small ρ_{00} at p_{T} < 5 GeV/c
 - ⇒ J/ ψ dominantly produced by recombination

 $\varrho_{00} < \frac{1}{3}$: Quark **recombination** at low p_{T} $\varrho_{00} > \frac{1}{3}$: Quark **fragmentation** at high p_{T}

> **J/\psi polarisation in ALICE** by D. Mallick's on 5th June @ 10:40

0.34740.8

|y| < 0.3

1418.0

-4.0 < v < -2.5

Outlook

- Large datasets are collected by the ALICE during LHC Run 3 (Ongoing)
 - Large data taking rates: **500 kHz in pp** and **50 kHz in Pb-Pb** collisions

himanshu.sharma@cern.ch | INFN Padova | SQM 2024

- Large datasets are collected by the ALICE during LHC Run 3 (Ongoing)
 - Large data taking rates: **500 kHz in pp** and **50 kHz in Pb-Pb** collisions
- More differential measurements in p_{T} and $\cos \theta^*$, up to $p_{T} \sim 100 \text{ GeV/}c$ in pp collisions

ALI-PERF-571952

Analysis Ongoing

Summary

• First results of prompt D*⁺ spin alignment with respect to the reaction plane in Pb–Pb collisions are presented

- Significant spin alignment observed in prompt D*⁺
 in semicentral collisions at high p_T.
 - Larger effect at forward-backward rapidity compared to midrapidity
 - Consistent with quark fragmentation scenario
- Results consistent with inclusive J/ψ polarization in the overlapping p_{T} region in semicentral collisions
- Theoretical predictions are required for conclusive remarks!

A summary of spin alignment/polarisation for different vector mesons in ALICE

Additional slides

Run 3 performance for D*⁺

ALICE

• A comparison of relative uncertainties on raw yields of D*+

EM field evolution vs rapidity

LHC: Pb+Pb@2.76 ATeV $b=9.5 \text{ fm}, x_{T}=0$ 10 eB_y [GeV/fm] n=1.5 10⁻² =1.0n=0.5 10^{-3} 0.5 1.5 2 2.5 3 3.5 4.5 4 5 t [fm/c]

Sreco *et al*, Phys.Lett.B 768 (2017), 260-264

Spin dependent FF for light flavour vector meson

Spin alignment in Reaction plane vs Random axis

Quark recombination

$$\rho_{00} = \frac{1 - P_q \cdot P_{\bar{q}}}{3 + P_q \cdot P_{\bar{q}}} = \begin{cases} \leq 1/3^* \Rightarrow \vec{B} \\ < 1/3 \Rightarrow \vec{L} \end{cases}$$

* > for Neutral meson, < for Charged meson P_g = Polarisation of quark

Quark fragmentation

$$\rho_{00} = \frac{1 + \beta \cdot P_{\bar{q}}^2}{3 - \beta \cdot P_{\bar{q}}^2} > 1/3$$

 β : Correlation between constituent quark and anti-quark

Low $p_{_{T}}$

p_T(GeV/c)

 $\mathrm{High}\ p_{_{\mathrm{T}}}$

- Quark charge and quark polarisation has same sign
 - B field effect:
 - In case of neutral meson (c-cbar), ρ_{00} is always > 1/3
 - In case of, charged meson (D*⁺), Q₀₀ is always < ⅓</p>
- Quark charge doensn't affect spin alignment originating from L

• Quark charge is squared so the charge signs do not matter here...