Investigation of charm-quark hadronization into baryons in hadronic collisions with ALICE

JaeYoon Cho* on behalf of the ALICE Collaboration

SQM2024 | 2024.06.04 👾

Heavy-flavour hadronization

 $d\sigma_{AB \to h} = f_{i/A}(x_i, Q^2) \otimes f_{i/B}(x_i, Q^2) \otimes d\sigma_{ii \to q\bar{q}}(x_i x_i, Q^2) \otimes D_{q \to h}(z, Q^2)$

Production cross section of HF hadrons

Parton distribution functions

JaeYoon CHO | jaeyoon.cho@cern.ch

Hard-scattering Fragmentation cross section *function* (Hadronization)

Heavy-flavour hadronization

JaeYoon CHO | jaeyoon.cho@cern.ch

$_{\rightarrow q\bar{q}}(x_i x_j, Q^2) \otimes D_{q \rightarrow h}(z, Q^2)$

ng Fragmentation function (Hadronization) section

— (),+

FF is determined by measurement from leptonic collisions. Is the hadronization universal among the collision systems? SQM2024 | 2024.06.04 😤

5

Charm baryon reconstruction Hadronic decays $\simeq \Sigma_c^{0,++} \to \Lambda_c^+ \pi^{-,+}$ $\sum_{u(d)}^{0,++}(2455)$ u Λ_c^+ Cd s Ω⁰_c CS С Hadronic decays S $\simeq \Omega_{\rm c}^0 \to \Omega^- \pi^+$ Semileptonic decays $\simeq \Omega_{\rm c}^0 \to \Omega^- {\rm e}^+ \nu_{\rm e}$

JaeYoon CHO | jaeyoon.cho@cern.ch

Charge conj. included for all measured hadrons

Hadronic decays

- $\dot{\sim} \Lambda_{\rm c}^+ \to {\rm pK}^- \pi^+$
- $\sim \Lambda_{\rm c}^+ \rightarrow {\rm pK}_{\rm s}^0$

Semileptonic decays

 $\sim \Lambda_c^+ \to \Lambda e^+ \nu_e$

u(d) $\Xi_{c}^{0,+}$ Hadronic decays $\simeq \Xi_c^+ \to \Xi^- \pi^+ \pi^+$ $\simeq \Xi_{\rm c}^0 \to \Xi^- \pi^+$ Semileptonic decays $\Xi_c^0 \rightarrow \Xi^- e^+ \nu_e$

6

SQM2024 | 2024.06.04

JaeYoon CHO | jaeyoon.cho@cern.ch

Measurements from e+e- collisions : Phys.Rev.D 43 (1991) 3599

Comparing to eter collisions

Significantly larger baryon-to-meson ratio at low and intermediate p_T and strong p_T dependence in pp collisions

JaeYoon CHO | jaeyoon.cho@cern.ch

Monash : Eur.Phys.J.C 74 (2014) 3024

JaeYoon CHO | jaeyoon.cho@cern.ch

SQM2024 | 2024.06.04 😤

JaeYoon CHO | jaeyoon.cho@cern.ch

Model comparison

Statistical model + RQM

SHM : Phys.Lett.B 795 (2019) 117-121 RQM : Phys.Rev.D 84 (2011) 014025

- \overleftrightarrow Hadronization driven by the species statistical weight
 - Weights are governed by the masses of hadron states at hadronization temperature
- \Rightarrow Feed-down from (not yet measured) charm baryon states
 - Takes a large enhanced set of charm baryon state beyond the current list of PDG into account
 - PDG : 5 Λ_c , 3 Σ_c , 8 Ξ_c , 2 Ω_c states
 - RQM : Additional 18 Λ_c , 42 Σ_c , 62 Ξ_c , 34 Ω_c states

Λ^+/D^0 vs. event multiplicity

- Multiplicity dependence in baryon-to-meson ratio
- \Rightarrow Significant multiplicity dependence(5.3 σ) for $p_T < 12$ GeV/c region going from lowest to highest multiplicity class
- \downarrow Even in lowest multiplicity class, Λ_c^+/D^0 is much higher than e+e- collisions

Λ_{c}^{+}/D^{0} vs. event multiplicity

ALI-DER-501055

- Multiplicity dependence in baryon-to-meson ratio
- \Rightarrow Significant multiplicity dependence(5.3 σ) for $p_T < 12$ GeV/*c* region going from lowest to highest multiplicity class
- \rightleftharpoons Even in lowest multiplicity class, Λ_c^+/D^0 is much higher than e+e- collisions
- Model comparison
- ☆ PYTHIA 8 Monash doesn't reproduce neither magnitude nor multiplicity dependence

JaeYoon CHO | jaeyoon.cho@cern.ch

Collision system dependence

← The overall magnitude of enhancement in Λ_c^+/D^0 ratios with respect to e⁺e⁻ collisions is similar between pp and p—Pb collisions within uncertainties

JaeYoon CHO | jaeyoon.cho@cern.ch

Collision system dependence

Modification of pr spectra?

- \rightleftharpoons The Λ_c^+/D^0 in p—Pb collisions is higher Λ_c^+/D^0
- than that in pp collisions for $p_T > 3 \text{ GeV}/c$
- ☆ Contribution from radial flow or different
- hadronization process?

送 SQM2024 | 2024.06.04 送

Λ^+/D^0 in Pb-Pb collisions

JaeYoon CHO | jaeyoon.cho@cern.ch

Collision system dependence

- \downarrow Indication for enhancement of Λ_c^+/D^0 at intermediate
- $p_{\rm T}$ in Pb—Pb collisions with respect to pp collisions

Λ^+/D^0 in Pb-Pb collisions

JaeYoon CHO | jaeyoon.cho@cern.ch

Collision system dependence

 \downarrow Indication for enhancement of Λ_c^+/D^0 at intermediate $p_{\rm T}$ in Pb—Pb collisions with respect to pp collisions

Modification of pr spectra?

- rightarrow In intermediate p_T region, the Λ_c^+/D^0 in Pb—Pb is higher than that in pp collisions
 - By 3.7 σ for Pb—Pb 0-10% and by 2.0 σ for Pb—Pb 30-50%
- \mathbf{a} Due to recombination? Or radial flow?

Λ^+/D^0 in hadronic collisions

JaeYoon CHO | jaeyoon.cho@cern.ch

Among hadronic collisions **NO** multiplicity dependence in *p***_T integrated** Λ_c^+/D^0 ratios within the uncertainty

SQM2024 | 2024.06.04 送

Among hadronic collisions **NO** multiplicity dependence in *p***_T integrated** Λ_c^+/D^0 ratios within the uncertainty

☆ Observed multiplicity dependence in $p_{\rm T}$ differential $\Lambda_{\rm c}^+/{\rm D}^0$ ratios

Due to different p_T redistribution for baryons and mesons rather than multiplicity dependence in hadronization process itself?

Λ^+/D^0 in hadronic collisions

pr integrated

Comparing to etecollisions

 \Leftrightarrow Significant difference between leptonic collisions and hadronic collisions

process in parton rich

environment?

2 ALICE $\stackrel{+}{<}$ **1.8** $\stackrel{-}{\vdash}$ • pp, $\sqrt{s} = 13$ TeV ▼ pp, √*s* = 5.02 TeV 1.6⊢ ▲ p-Pb, $\sqrt{s_{NN}}$ = 5.02 TeV extr. 1.4⊨ = \diamond Au–Au, $\sqrt{s_{NN}}$ = 200 GeV STAR, PRL 124 (2020) 172301 0.8 0.6 0.4 Different hadronization 0.2 10

Among hadronic collisions **NO** multiplicity dependence in **p**_T integrated Λ_c^+/D^0 ratios within the uncertainty

☆ Observed multiplicity dependence in $p_{\rm T}$ differential $\Lambda_{\rm c}^+/{\rm D}^0$ ratios

Due to different p_{T} redistribution for baryons and mesons rather than multiplicity dependence in hadronization process itself?

Comparing to Run 2 data, Larger data sample thanks to TPC continuous readout

Improved resolution thanks to upgraded tracking detector during Long Shutdown 2

JaeYoon CHO | jaeyoon.cho@cern.ch

SQM2024 | 2024.06.04 送

JaeYoon CHO | jaeyoon.cho@cern.ch

SQM2024 | 2024.06.04 😤

☆ PYTHIA 8 Mode 0, 2, 3 and SHM+RQM

underestimate data

SQM2024 | 2024.06.04 😤

$\Sigma_{c}^{0,++}$ in pp collisions

 $probQQ1 to QQ0 join \ \vdots \ arXiv \ \vdots \ 2404.12040 \ and \ arXiv \ \vdots \ 2405.19137$

Tune on parameter?

PYTHIA 8 Mode 2 tune with modified

parameter related to amount of suppression for

heavy diquark spin 1 state with respect to spin 0

We have constraint

power for model!

can catch the data in measured p_T region

3

→ PYTHIA 8 Monash overestimate data

☆ PYTHIA 8 Mode 0, 2, 3 and SHM+RQM

underestimate data

😸 SQM2024 | 2024.06.04 🛞

 \mathcal{C}

$\Xi_c^{0,+}/D^0$ in pp collisions

ALI-PUB-567881

JaeYoon CHO | jaeyoon.cho@cern.ch

Comparing to e+e- collisions \Leftrightarrow Enhancement in $\Xi_c^{+,0}/D^0$ ratio in pp collisions

Model comparisons

 \Rightarrow Poor description from models which describe well the Λ_c^+/D^0 ratio

 Much larger enhancement than for non-strange baryons?

$\Xi_c^{0,+}/D^0$ in pp collisions

ALI-PUB-567881

JaeYoon CHO | jaeyoon.cho@cern.ch

Comparing to e+e- collisions \Leftrightarrow Enhancement in $\Xi_c^{+,0}/D^0$ ratio in pp collisions

Model comparisons

 \Rightarrow Poor description from models which describe well the Λ_c^+/D^0 ratio

- Much larger enhancement than for non-strange baryons?
- **Catania** gets closer to data
 - Both coalescence and fragmentation in hadronization process even in pp collisions?

$\Xi_{c}^{0,+}/D^{0}$ vs. event multiplicity

E_{c}^{0}/D^{0} in p-Pb collisions

JaeYoon CHO | jaeyoon.cho@cern.ch

Modification of pr spectra?

 \Rightarrow Hint of enhanced Ξ_c^0/D^0 ratio in p—Pb collisions

than that in pp collisions?

 \Rightarrow Precision is not enough to conclude possible effect as shown for Λ_c^+/D^0 in p—Pb collisions

Model comparison

 \checkmark Underestimated by QCM in both pp and p-Pb collisions

 $BR \times \Omega_c^0/D^0$ and model comparison \simeq No measurement of $BR(\Omega_c^0 \to \Omega^- \pi^+)$ • BR($\Omega_c^0 \to \Omega^- \pi^+$) = $(0.51^{+2.19}_{-0.31})$ % from theory calculations **Catania (+resonance states)** is closer to data

 \Rightarrow BR measurement is needed!

Theoretical calculation for BR : Y.Hisao et al. EPJC 80, 1066 (2020)

JaeYoon CHO | jaeyoon.cho@cern.ch

SQM2024 | 2024.06.04 🌞

 \uparrow Measured ratio is $BR(\Omega_c^0 \to \Omega^- e^+ \nu_e)/BR(\Omega_c^0 \to \Omega^- \pi^+)$ $= 1.12 \pm 0.22$ (stat.) ± 0.27 (syst.)

Agreement with measurement from CLEO Collaboration and model calculations within 1σ and within 2.3 σ from BELLE measurement

JaeYoon CHO | jaeyoon.cho@cern.ch

SQM2024 | 2024.06.04 😤

JaeYoon CHO | jaeyoon.cho@cern.ch

Probability of a charm quark to produce a hadron h_c

D's

A size mailing solution is a size

31

D

ALI-PUB-570972

0.4

0.2

JaeYoon CHO | jaeyoon.cho@cern.ch

🕴 SQM2024 | 2024.06.04 🏶

For different collisions energy

 \Rightarrow No energy dependence within the uncertainties

ALI-PUB-567906

JaeYoon CHO | jaeyoon.cho@cern.ch

🛞 SQM2024 | 2024.06.04 🏶

In different collisions energy

 \mathbf{a} No energy dependence within the uncertainties

Comparing to e+e- collisions

- \Leftrightarrow Significantly increased baryon production, decreased meson production
- Indicate different hadronization mechanism in hadronic collisions with respect to leptonic collisions

* SQM2024 | 2024.06.04

hadronic collisions with respect to leptonic collisions

 $\dot{\mathbf{x}}$ Charm fragmentation function is not universal!

JaeYoon CHO | jaeyoon.cho@cern.ch

Charm baryon measurement with Run 3 data

Larger dataset with improved

Precise measurement

 \rightarrow More differential measurement and

extended $p_{\rm T}$ reach

QUality!

 \rightleftharpoons Better understanding of charm Stay tuned.

hadronization!

SQM2024 | 2024.06.04 🏶

JaeYoon CHO | jaeyoon.cho@cern.ch

SQM2024 | 2024.06.04 🌞

Λ_c^+/D^0 vs. event multiplicity

Comparing to baryon-to-meson ratio of light-flavour hadrons \Leftrightarrow Similar p_T shape and magnitude of the ratios

 \rightleftharpoons Similar hadron production mechanism in light- and heavy-flavour hadrons?

Λ^+/D^0 in Pb-Pb collisions

Catania

- Pb—Pb collisions
- \mathbf{a} Consider both coalescence and
- fragmentation for hadronization

SHMc

- \simeq Consider only charm meson and charm baryon
- **Core-corona** approach

JaeYoon CHO | jaeyoon.cho@cern.ch

TAMU

 \Rightarrow Exploit SHM for pp collisions

 \mathbf{i} Consider both coalescence and fragmentation for hadronization for Pb—Pb collisions

2 Consider excited state baryon from RQM for both pp and Pb-Pb collisions

JaeYoon CHO | jaeyoon.cho@cern.ch

C

Feed-down Nc

Лc

u(d)

in pp collisions

- Production yield ratio to Λ_c^+
- \Rightarrow No strong p_{T} dependence
- Addels underestimate data
- Production yield ratio to $\Sigma_c^{0,+,++}$
- \Rightarrow No strong p_{T} dependence
- 🙀 Catania and PYTHIA 8 Monash describe the data
 - Both Catania and PYTHIA 8 Monash underestimate the $\Xi_{c}^{0,+}/D^{0}$ ratio
 - Similar amount of suppression for $\Xi_c^{0,+}$ and $\Sigma_c^{0,+,++}$?

Production yield ratio to D^0 and Λ_c^+ $\dot{\sim}$ No strong multiplicity dependence in baryonto-meson and baryon-to-baryon ratio within the uncertainties

Model comparison

→ PYTHIA 8 Monash doesn't reproduce neither magnitude nor multiplicity dependence

→ PYTHIA 8 CR-BLC tunes, which describe the Λ_c^+/D^0 ratio significantly underestimate the data

ALI-PREL-556423

 p_{τ} (GeV/c)

$\Xi_{c}^{0}/\Lambda_{c}^{+}$ in p-Pb collisions

JaeYoon CHO | jaeyoon.cho@cern.ch

Production yield ratio to $\Lambda_{\rm c}^+$

 \Rightarrow No strong p_T dependence in both pp and p—Pb collisions

- \simeq Similar magnitude of Ξ_c^0 / Λ_c^+ in p-Pb collisions with respect to pp collisions
 - No appreciable additional modification of the hadronization process going from pp to p-Pb collisions

Underestimated by both QCM and POWHEG+PYTHIA 6

Energy dependence in hadron production

ALI-PUB-567886

13 TeV / 5.02 TeV

Production cross section ratio between different collision energy

 $\dot{\mathbf{x}}$ increasing trend going from low to high p_{T} region for given hadron species

 \Leftrightarrow Similar energy dependence in baryon and meson production

 \rightarrow No energy dependence in

baryon-to-meson ratios

