

The role of strangeness in heavy-quark hadronisation from small to large collision systems with ALICE

Mattia Faggin, CERN on behalf of the ALICE Collaboration

Strangeness in Quark Matter 2024 Strasbourg, France 4th June 2024

Heavy quarks: a unique probe for high-density QCD

- Charm and beauty quarks: $m_c \sim 1.3 \text{ GeV}/c^2$, $m_b \sim 4.2 \text{ GeV}/c^2$
- Produced in hard scattering processes among partons
- Ultrarelativistic heavy-ion collisions at the LHC: quark-gluon plasma (QGP)
 - \circ ~ state of matter expected in the first \sim 10 μs after the Big Bang
 - heavy quarks experience the full evolution of the system

Charm- and **beauty- quarks dynamic** tested via **measurements** of **charm-** and **beauty- hadron production**

• Test of pQCD calculations

- heavy-quark production
- hadronization
- parton distribution functions (PDFs)
- Reference for Pb–Pb collisions

p-Pb collisions

Cold nuclear matter effects

• Modification in PDFs in bound nucleons

Pb–Pb collisions

Hot nuclear matter effects

- Energy loss in the QGP
- Collective motion
- Modification of hadronization

Strange heavy-flavour hadron production vs. multiplicity

mfaggin@cern.ch

- Strangeness enhancement (SE): yield-ratio between (multi)strange hadrons and π^{\pm} larger in heavy-ion collisions than minimum-bias pp collisions
- Smooth increase vs. event multiplicity, without a clear collision-system dependence
- Baryon production in Pb–Pb collisions at intermediate *p*_T enhanced by hadronization via coalescence

"Measuring the system size dependence of the strangeness production with ALICE" R. Nepeivoda, 04/06/2024

charm
up
strange
down

- What do strange D-meson production measurements teach us about heavy-quark hadronization at the LHC?
- Do their production evolve vs. event multiplicity?
- Are they sensitive to QGP-induced effects (e.g. strangeness enhancement, coalescence, *E*-loss, flow, ...)?

ALI-PUB-498577

The ALICE experiment in Run 1 and Run 2

 $\Xi_c^{+} \rightarrow \Xi^{-} \pi^{+} \pi^{+}$

 $\Omega_{a}^{0} \rightarrow \Omega^{-} \pi^{+}$

 $\Sigma_{c}^{0,++} \rightarrow \Lambda_{c}^{+} \pi^{-,+}$

 $D_{c}^{+} \rightarrow \phi \pi^{+} \rightarrow K^{+} K^{-} \pi^{+}$

 $D_{s1}^{+} \rightarrow D^{*+}K_{s}^{0}$

 $D_{c2}^{*+} \rightarrow D^+ K_c^0$

J. Cho, 04/06/2024

 $\begin{array}{|c|c|c|c|c|c|c|}\hline \textbf{p-Pb} \ \sqrt{s_{NN}} = 5.02 \ \text{TeV} \ \rightarrow \mathcal{L}_{\text{int}} \sim 287 \ \mu\text{b}^{-1} \ (\text{MB}) \\ Pb-Pb \ \sqrt{s_{NN}} = 5.02 \ \text{TeV} \rightarrow \mathcal{L}_{\text{int}} \sim 130 \ \mu\text{b}^{-1} \ (0\text{-}10\%) \\ \rightarrow \mathcal{L}_{\text{int}} \sim 56 \ \mu\text{b}^{-1} \ (30\text{-}50\%) \end{array}$

mfaggin@cern.ch

The ALICE experiment in Run 3

Charm-hadron decay channels D^+ , $D_s^+ \rightarrow \phi \pi^+ \rightarrow K^+ K^- \pi^+$

- \rightarrow same decay channel, to reduce the systematic uncertainties on the D_{c}^{+}/D^{+} ratio
- \rightarrow better separation between primary vertex and HF decay points to the improved pointing resolution to the primary vertex

Datasets

pp
$$\sqrt{s}$$
 = 13.6 TeV $\rightarrow \mathcal{L}_{int} \sim 1 \text{ pb}^{-1}$ (2022 MB)

Strange/non-strange D-meson ratio

• Prompt and non-prompt $D_s^+/(D^++D^0)$ ratios in pp collisions do not depend significantly on p_T and collision energy

Charm and beauty $f_s/(f_u + f_d)$

- Prompt and non-prompt $D_s^+/(D^++D^0)$ ratios in pp collisions do not depend significantly on p_T and collision energy
- No significant collision system and energy dependence of charm quark fragmentation function ratios into strange and non-strange D mesons

- Charm and beauty $f_s/(f_u + f_d)$ fragmentation-fraction ratio from prompt and non-prompt $D_s^+/(D^0+D^+)$ ratio, respectively
 - Beauty: FONLL+PYTHIA correction for D_s⁺ from non-strange B-meson decays
- Beauty $f_s/(f_u + f_d) = \operatorname{charm} f_s/(f_u + f_d)$

- First measurement of prompt D_s^+/D^+ ratio in pp collisions at $\sqrt{s} = 13.6$ TeV
 - \circ x2 improvement in granularity for 1 < $p_{\rm T}$ < 6 GeV/c
 - \circ down to $p_{\rm T} = 0.5 \ {\rm GeV}/c$

- No significant energy dependence observed
- No significant rapidity dependence observed

Prompt D_s^+/D^+ in pp collisions at $\sqrt{s} = 13.6$ TeV

O → ← Omfaggin@cern.chpp collisions9/16

- PYTHIA 8 (J. R. Christiansen, P. Z. Skands): <u>IHEP 08 (2015) 003</u>
- POWLANG (A. Beraudo et. al.): <u>arXiv:2306.02152</u>
- CATANIA (V. Minissale et al.): <u>Phys. Lett. B 821 (2021) 136622</u>

- PYTHIA 8
 - Monash: colour reconnection (CR) among different multiparton interactions (MPIs) only with leading-colour topology
 - $\circ \quad \mbox{CR Mode 0, 2, 3: colour reconnections among MPIs} \\ allowed also beyond leading-colour topologies} \rightarrow \\ baryon enhancement$
 - <u>Measurement underestimated</u>
 - \rightarrow D⁺-meson production overestimated
- **POWLANG** and **Catania**
 - fireball/thermalised system formation already assumed in pp collisions
 - $\circ \quad heavy-quark \ hadronization \ also \ via \ coalescence$
 - <u>Measurement overestimated</u> by <u>POWLANG</u>
 - <u>Catania better describes it</u>

Strange charm hadrons vs. multiplicity

Phys.Lett.B 829 (2022) 137065

pp collisions

CE-SH (J Y. Chen, M. He): Phys. Lett. B 815 (2021) 136144

mfaggin@cern.ch

10/16

- D_s^+/D^0 ratio in pp collisions at midrapidity does not show any significant dependence vs. p_T and event multiplicity
- D_s^+/D^0 ratio described by PYTHIA 8 predictions at both low and high multiplicity
- D_s⁺/D⁰ ratio not described by canonical-ensemble statistical hadronization model (CE-SH) at high event multiplicity
- Ξ_c^0/D^0 ratio significantly underestimated by PYTHIA 8 predictions

- No multiplicity dependence on D-meson ratios in pp collisions
- No differences compared to e⁺e⁻ collisions
 - \rightarrow What about charm-resonances?

- No multiplicity dependence on D_{s1}^{+}/D_{s}^{+} ratio
- Hint of tension with SHM predictions for D_{s2}^{*+}/D_{s}^{+} ratio
 - SHM predictions $p_{\rm T}$ integrated, measurement for $p_{\rm T} > 2 \text{ GeV}/c$
 - BR not measured

$$R_{\rm AA}(p_{\rm T},y) = \frac{1}{\langle T_{\rm AA} \rangle} \frac{{\rm d}^2 N_{\rm AA}/{\rm d} p_{\rm T} {\rm d} y}{{\rm d}^2 \sigma_{\rm pp}/{\rm d} p_{\rm T} {\rm d} y}$$

Nuclear modification factor sensitive to QGP-induced effects on (heavy) quark dynamics

- 1. R_{AA} of strange and non-strange D-mesons significantly lower than 1 at high p_T \circ in-medium parton energy loss
- 2. Hint of $R_{AA}(D_s^+) > R_{AA}$ (non-strange D mesons) for $p_T < 6 \text{ GeV}/c$
 - hadronization via coalescence + strangeness enhancement in the QGP

Prompt and non-prompt D_s^+ -meson R_{AA}^-

Phys. Lett. B 846 (2023) 137561

 TAMU: (M. He et. al.) Phys. Lett. B 735 (2014) 445–450 (M. He, R. Rapp) Phys. Rev. Lett. 124 (2020) 042301

Pb-Pb collisions

- ALICE
- Hint of R_{AA} (non-prompt D_s^+) > R_{AA} (non-prompt D^0) for $p_T < 6 \text{ GeV}/c$
 - hadronization via coalescence + strangeness enhancement in the QGP
- Hint of R_{AA} (non-prompt D_s^+) > R_{AA} (prompt D_s^+) for $p_T^- < 6 \text{ GeV}/c$
 - sensitivity to different in-medium diffusion (collisional *E*-loss) for charm and beauty quarks $(D_s \sim 1/m_0)$
 - At higher $p_{T}: m_{b} > m_{c}$ and dead-cone effect \rightarrow uncertainties still too large

- TAMU: transport model with
 - hadronization via fragmentation and coalescence
 - *E*-loss only via elastic collisional processes only
 - \rightarrow measurement overestimated at high $p_{_{\rm T}}$

- $v_2(D_s^+) > 0$ by ~6.4 σ
 - charm-quark participation to collective motion
- No significant difference between $v_2(D_s^+)$ and $v_2(\text{non-strange D mesons})$
- $v_2(D_s^+)$ in $p_T < 10 \text{ GeV}/c$ described by models implementing charm-quark hadronization via coalescence and strange-quark v_2

Summary and outlook

we are here!

- Prompt and non-prompt strange D-meson production measurements in pp collisions useful to probe the charm- and beauty-quark fragmentation
- Prompt and non-prompt strange D-meson production measurements in Pb–Pb support scenarios with charm- and beauty-quark hadronization via coalescence and charm-quark thermalization in the QGP

"Study of charm fragmentation with charm meson and baryon angular correlation measurements with ALICE" A. Palasciano, 04/06/2024 miss!

Thank you very much for the attention

0

0

measurements

Factorization approach $\frac{\mathrm{d}\sigma^{\mathrm{H_c}}}{\mathrm{d}p_{\mathrm{T}^{\mathrm{c}}}^{\mathrm{H_c}}}(p_{\mathrm{T}};\mu_{\mathrm{F}},\mu_{\mathrm{R}}) = \mathrm{PDF}(x_1,\mu_{\mathrm{F}}) \cdot \mathrm{PDF}(x_2,\mu_{\mathrm{F}}) \otimes \frac{\mathrm{d}\sigma^{\mathrm{c}}}{\mathrm{d}p_{\mathrm{T}}^{\mathrm{c}}}(x_1,x_2,\mu_{\mathrm{F}},\mu_{\mathrm{R}}) \otimes D_{\mathrm{c}\to\mathrm{H_c}}(z=p_{\mathrm{H_c}}/p_{\mathrm{c}},\mu_{\mathrm{F}})$ Parton distribution Hard scattering Fragmentation functions (PDFs) cross section function (hadronization) (pQCD) No first-principle description of hadronization Non-perturbative problem, pQCD calculations not applicable Necessary to resort to models and make use of phenomenological parameters Q Charm-hadron production typically described by models 0 via a factorisation approach $\sigma(x_1, x_2)$ Independent fragmentation Fragmentation functions assumed universal across Q collision systems and constrained from e⁺e⁻ and e⁻p

The ALICE experiment in Run 3

1. Upgraded ITS detector

Run 3 upgrades

- up to $\sim 100x$ higher readout rate than Run 2
- \circ ~3x lower material budget than Run 2 (1st layer)
- 2. Gas Electron Multipliers (GEMs) in TPC readout
- 3. Data acquisition in continuous readout mode
- 4. New Fast Interaction Trigger (FIT) detector
 - excellent time resolution ($\sigma \le 18 \text{ ps}$)
- 5. Muon Forward Tracker $\rightarrow 2.5 < \eta < 3.6$
 - Secondary vertex reconstruction at forward-*y*

Charm-hadron decay channels

Datasets

 $\begin{array}{ll} \operatorname{pp} \sqrt{s} = 5.02 \ \mathrm{TeV} & \rightarrow \mathcal{L}_{\mathrm{int}} \sim 19 \ \mathrm{nb}^{-1} \ \mathrm{(MB)} \\ \operatorname{pp} \sqrt{s} = 7 \ \mathrm{TeV} & \rightarrow \mathcal{L}_{\mathrm{int}} \sim 5.9 \ \mathrm{nb}^{-1} \ \mathrm{(MB)} \\ \operatorname{pp} \sqrt{s} = 13 \ \mathrm{TeV} & \rightarrow \mathcal{L}_{\mathrm{int}} \sim 32 \ \mathrm{nb}^{-1} \ \mathrm{(MB)} \\ \operatorname{pp} \sqrt{s} = 13.6 \ \mathrm{TeV} & \rightarrow \mathcal{L}_{\mathrm{int}} \sim 1 \ \mathrm{pb}^{-1} \ \mathrm{(2022 \ MB)} \\ \operatorname{p-Pb} \sqrt{s_{\mathrm{NN}}} = 5.02 \ \mathrm{TeV} & \rightarrow \mathcal{L}_{\mathrm{int}} \sim 287 \ \mathrm{\mu b}^{-1} \ \mathrm{(MB)} \\ \operatorname{Pb-Pb} \sqrt{s_{\mathrm{NN}}} = 5.02 \ \mathrm{TeV} & \rightarrow \mathcal{L}_{\mathrm{int}} \sim 130 \ \mathrm{\mu b}^{-1} \ \mathrm{(0-10\%)} \\ \rightarrow \mathcal{L}_{\mathrm{int}} \sim 56 \ \mathrm{\mu b}^{-1} \ \mathrm{(30-50\%)} \end{array}$

- No strong $p_{\rm T}$ dependence for strange/non-strange D-meson ratios
- The measured yield ratios do not depend significantly neither on collision system nor collision energy

Valid for both prompt and non-prompt D mesons!

- Beauty $f_s/(f_u + f_d)$ fragmentation-fraction ratio from non-prompt $D_s^+/(D^0+D^+)$
 - FONLL+PYTHIA correction for D_s⁺ from non-strange B-meson decays
- Beauty $f_s/(f_u + f_d) = \text{charm} f_s/(f_u + f_d)$
- Beauty $f_s/(f_u + f_d)$ in line with SHM (~0.1) and PYTHIA 8

Strange/non-strange D-meson ratio

pp collisions

mfaggin@cern.ch 22/16

- Prompt and non-prompt $D_s^+/(D^++D^0)$ ratios do not depend significantly on p_T , collision system or energy
- No significant collision system and energy dependence of charm quark fragmentation function ratios into strange and non-strange D mesons

- Charm and beauty $f_s/(f_u + f_d)$ fragmentation-fraction ratio from prompt and non-prompt $D_s^+/(D^0+D^+)$ ratio, respectively
 - Beauty: FONLL+PYTHIA correction for D_s⁺ from non-strange B-meson decays
- Beauty $f_s/(f_u + f_d) = \operatorname{charm} f_s/(f_u + f_d)$

Phys. Rev. C 109, 014911 (2024)

