Study of charm fragmentation with charm meson and baryon angular correlation measurements with ALICE

Strangeness in Quark Matter

Antonio Palasciano* on behalf of the ALICE Collaboration

Ø

Heavy-flavour physics

Heavy-flavour (HF) quark mass of the order of ~ GeV/c^2 \rightarrow mainly produced in hard-scattering processes

Open heavy-flavour hadron production cross section calculated by factorisation approach:

$$\frac{d\sigma^{H_{c}}}{dp_{T}}(p_{T};\mu_{F},\mu_{R}) = PDF(x_{1},\mu_{F}) \otimes PDF(x_{2},\mu_{F}) \otimes \frac{d\sigma^{c}}{dp_{T}^{c}}(p_{T};\mu_{F},\mu_{R}) \otimes D_{c \to H_{c}}(z = p_{H_{c}}/p_{c},\mu_{F})$$
Parton distribution functions
$$Hard scattering cross section (pQCD)$$
Fragmentation functions
(hadronisation)
Assumed universal across collision systems (ee,..., AA)

Enhanced charm baryon-to-meson production in pp

Baryon-to-meson yield ratio measurements in hadronic collisions questioned fragmentation universality

 \mathcal{O}

3

ALICE

Fragmentation measurements

HF fragmentation can be further characterised by studying:

azimuthal correlations of HF hadrons with charged particles
 jet shape and its particle composition

 \rightarrow multidifferential investigation of fragmentation processes

➤ HF-tagged jets

 \rightarrow access to the original parton kinematics

0

 \rightarrow constrain the fragmentation functions

00

S@M 2024, Antonio Palasciano

Charm-to-meson fragmentation

SOM 2024, Antonio Palasciano

00

D-h near-side properties comparison with \sqrt{s}

ALTCE

Near-Side: description of charm-jet constituents, their momentum and angular displacement w.r.t. the D trigger ALICE

With increasing p_{T}^{D} :

- $\rightarrow\,$ More energetic charm quark
 - → more phase space to produce other fragments → increasing yields
- \rightarrow Larger heavy-quark boost
 - \rightarrow more collimated shower
 - \rightarrow sharpening of the peak

No centre-of-mass energy dependence

0

 \mathcal{O}

S@M 2024, Antonio Palasciano

D-h away-side properties comparison with \sqrt{s}

ALICE

Away-Side provide description of the recoil jet, not necessarily developed by a charm quark

Similarly as for the NS, with increasing p_T^{D} :

- ➤ More energetic parton
 - \rightarrow increasing yields
 - \rightarrow sharpening of the peak

No centre-of-mass energy dependence

Near-side comparison to predictions

NS yields:

- → Larger values at high-p_T(D) by POWHEG+PYTHIA 8 than PYTHIA 8
- → About 10% larger yields for POWHEG+PYTHIA 8 w.r.t. POWHEG+PYTHIA8 LO
- → HERWIG tends to underestimate the data at low $p_{T}(D)$ and at high $p_{T}(assoc)$
- → EPOS overestimates the results over the whole p_{T} range

0

PYTHIA8 and POWHEG+PYTHIA8 provide the best description

PYTHIA: Eur. Phys. J. C 74, 3024 (2014)
 POWHEG: JHEP 06 (2010) 043
 EPOS 3: Phys.Rev.C 82(2010)044904
 HERWIG: Eur.Phys.J C76 (2016) 196

p_T(assoc)

S@M 2024, Antonio Palasciano

D°-tagged jets

Constrain charm fragmentation functions

- > Good description of the z_{\parallel}^{chjet} distribution by MC predictions
- charm-to-mesons fragmentation not significantly modified varying PYTHIA 8 tunes

0

S©M 2024, Antonio Palasciano 败

Charm fragmentation with D_s⁺ mesons

Investigating the charm fragmentation in mesons with strange quark content

Similar $z_{\parallel}^{\text{ch jet}}$ distribution to **non-strange D mesons** \rightarrow correctly described by **PYTHIA 8** simulations

ന

Se PYTHIA: EPJC 74 3024 (2014), JHEP 1508 (2015) 003 Se POWHEG: JHEP 06 (2010) 043

First studies of D_-h correlation with Run 3 data

 \mathcal{O}

 \rightarrow D₂ - jet characterisation soon accessible

Charm-to-baryon fragmentation

SOM 2024, Antonio Palasciano

0

Comparison between Λ_c^* -h and D-h $\Delta \varphi$ distributions

 \bigcirc

Address charm fragmentation into baryons

 $p_{T}(D, \Lambda^{+})$

Characterisation of the Λ_{\uparrow}^{+} -h near-side peak

 \mathcal{O}

Characterisation of the recoil-jet in Λ_{\uparrow}^{+} -h

Λ_c^{+} -h: near-side peak description in simulations

Correlation distributions studied in **PYTHIA 8** including modes with **CR beyond leading colour approximation (CR-BLC)**

➤ yields:

 \rightarrow tensions with PYTHIA 8 predictions \rightarrow low-p_T(Λ_c^+) not correctly reproduced

➤ widths:

→ generally overestimated, though with large uncertainties

📚 PYTHIA: EPJC 74 3024 (2014), JHEP 1508 (2015) 003

charm-to-baryon fragmentation not properly described by MC generators

0

PYTHIA 8 CR-BLC modes, despite reproducing the $\Lambda_c^+/D^0 p_T^-$ dependence, do not describe the Λ_c^+-h correlation peak observables

Summary

ALICE has detailed the charm-quark fragmentation in D mesons via jets and correlations:

 $ightarrow p_{_{
m T}}$ -differential description of the charm-jet properties,

 (Ω)

 \rightarrow fragmentation in PYTHIA 8 reproduces within uncertainties the measurements.

The **charm-to-baryon** fragmentation accessible with pp data at \sqrt{s} = 13 TeV:

- \rightarrow indications of softer fragmentation from both Λ^+_{c} h and Λ^+_{c} jets;
- \rightarrow observed discrepancies between Λ_c^+ h measurements and PYTHIA 8 predictions.

More will come with Run 3 data:

- > extended trigger p_{T} reach, higher granularity, ...
- > more charm hadron states can be studied ($D_s^+, \Sigma_c^+, ...$)
- larger collision systems (Pb-Pb)

Thanks for your attention!

Additional Material

SOM 2024, Antonio Palasciano

00

A Large Ion Collider Experiment

Near side

Charm-jet characterisation as a function of different **underlying-event activity**:

0

 \rightarrow correlation peaks consistent across both pp high- and low-multiplicity events

No evidence of modification in **charm-to-meson** fragmentation with event multiplicity

Is it coalescence?

- The yields depends mainly on p_{τ}^{c}
- \rightarrow To a $p_T^{\Lambda c, \text{ coal}}$ would correspond a yield depending on p_T^c Should we observe a suppression wrt the fragmentation?

0

Rich parton environments required (?) :

- \rightarrow high-mult ?
- \rightarrow augmented not-correlated particles
- \rightarrow larger baseline \rightarrow NOT OBSERVED

Λ_{c}^{+} -h correlations: Near-side and Baseline

POWHEG: JHEP 06 (2010) 043

00

S©M 2024, Antonio Palasciano

D-h: Near-side comparisons with MC models predictions

Eur. Phys. J. C 82, 335 (2022)

PYTHIA: JHEP 1508 (2015) 003 POWHEG: JHEP 06 (2010) 043 EPOS 3: Phys.Rev.C 82(2010)044904 HERWIG: Eur.Phys.J C76 (2016) 196

00

SOM 2024, Antonio Palasciano