

The Ohio State University

Investigating the nature of the $K_0^*(700)$ state with $\pi^{\pm}K_S^0$ correlations with ALICE at the LHC

ALICE Collaboration

Thomas Humanic (Ohio State University)

Outline of talk

- Introduction
- Previous ALICE study of $a_0(980)$
- New results from ALICE study of $K_0^*(700)$
- Summary

The 21st International Conference on Strangeness in Quark Matter 3-7 June 2024, Strasbourg, France

 (\mathcal{O})

Predicted low-lying tetraquark nonet

Tetraquark nonet Alford and Jaffe, Nucl. Phys. B 578 (2000) Mass $uar{u}/dar{d}$ $K\overline{K}$ $uar{d}sar{s}$ $d\bar{u}s\bar{s}$ $u\overline{s}d\overline{d}$ $K\pi$ $ar{u}duar{d}$ $\pi\pi$ I_3 _1 0 1

Low-lying tetraquark states have been predicted for > 40 years.

Candidate mesons with the expected masses, isospins and decay channels have been found: e.g. $a_0(980)$, $f_0(980)$, $K_0^*(700)$, $f_0(500)$..

→ But, it is still controversial whether or not these mesons are four-quark states
(e.g. see "Non-qq-bar Mesons" in 2021
Review of Particle Physics).

Predicted low-lying tetraquark nonet with candidate mesons

Tetraquark nonet Alford and Jaffe, Nucl. Phys. B 578 (2000)

Mass $a_0(980)$ $uar{u}/dar{d}$ KK $u \bar{d} s \bar{s}$ $d\bar{u}s\bar{s}$ $\pi\eta$ f₀(980) $K_0^*(700)$ $u\bar{s}d\bar{d}$ $K\pi$ $f_0(500)$ $ud \overline{u} d$ $\pi\pi$ I_3 0 -11

Low-lying tetraquark states have been predicted for > 40 years.

Candidate mesons with the expected masses, isospins and decay channels have been found: e.g. $a_0(980)$, $f_0(980)$, $K_0^*(700)$, $f_0(500)$..

 → But, it is still controversial whether or not these mesons are four-quark states
 (e.g. see "Non-qq-bar Mesons" in 2021
 Review of Particle Physics).

Predicted low-lying tetraquark nonet with $a_0(980)$ candidate meson

Tetraquark nonet Alford and Jaffe, Nucl. Phys. B 578 (2000)

The $a_0(980)$ has been studied with $K_S^0 K^{\pm}$ femtoscopy in pp and Pb–Pb collisions **by ALICE** → PLB 774 (2017), PLB 790 (2019), PLB 833 (2022).

Thomas Humanic -- SQM2024

476

36

495

319

490

Meson 'molecule'

Tetraguark

K⁰_S**K**[±] **femtoscopy** (ALICE first to study this!)

Pair-wise interactions present (or absent) for $K_S^0 K^{\pm}$ pairs

- > Non-identical pairs \rightarrow no quantum statistics.
- > K_S^0 is uncharged \rightarrow no Coulomb interaction.
- > $f_0(980)$ resonance is isospin = 0 → no $f_0(980)$ strong interaction.
- ➤ $a_0(980)$ resonance is isospin = 1 → $a_0(980)$ strong interaction. should be present for both $K_S^0K^+$ and $K_S^0K^-$ pairs.

→ $K_S^0 K^{\pm}$ femtoscopy selects for the $a_0(980)^{\pm}$ as the Final-state Interaction (FSI).

ALICE results for $K_S^0 K_S^0$ and $K_S^0 K^{\pm}$ femtoscopy in 5.02, 7 and 13 TeV pp collisions (*Phys. Lett. B833 (2022*))

➤ $a_0(980)$ is the FSI for the $K_S^0 K^{\pm}$ pair. The $K_S^0 K_S^0$ correlation function is dominated by quantum statistics due to identical-boson pairs.

> λ from K⁰_SK[±] is significantly smaller than λ from K⁰_SK⁰_S.

\rightarrow tetraquark signature for the a₀(980)?

A simple geometric picture in pp collisions

Tetraquark a₀ FSI -- suppressed due to strange quark annihilation opening up a non-resonant channel.

Diquark a₀ FSI -- favored from the annihilation process.

Predicted low-lying tetraquark nonet with $K_0^*(700)$ candidate meson

Tetraquark nonet Alford and Jaffe, Nucl. Phys. B 578 (2000)

Mass

$ \rightarrow \mathbf{K}_{0}^{*}(700) $ $ = \overline{u\bar{s}d\bar{d}} \longrightarrow K\pi $	
$\overline{\overline{u}dud} \longrightarrow \pi\pi$	K*(892)DEC. $K \pi$ $K^0 \gamma$ $K^{\pm} \gamma$ $K \pi \pi$
$\xrightarrow{-1} 0 1 I_3$	$K_0^*(7)$

Meson 'molecule'	Tetraquark
QQ	q q
qq	q q

K*(7	00)	$I(J^P) = \frac{1}{2}(0^+$	-)	
	Mass (T-M Mass (Breit Full width (atrix Pole $\sqrt{s})=(630730)-t$:-Wigner $)=824\pm30$ MeV (Breit-Wigner $)=478\pm50$ MeV	i (260–340) M€ √	٩V
K*(8	92) $K^*(892)^{\pm}$ $K^*(892)^{\pm}$	$I(J^P)=rac{1}{2}(1^-)$ hadroproduced mass $m=891.7$ in $ au$ decays mass $m=895.5\pm1$	7) 76 ± 0.25 MeV 0.8 MeV	
	$egin{array}{c} K^*(892)^0 \ K^*(892)^\pm \ K^*(892)^\pm \ K^*(892)^0 \end{array}$	mass $m = 895.55 \pm 0.20$ MeV hadroproduced full width $\Gamma = 5$ in τ decays full width $\Gamma = 46.2$ full width $\Gamma = 47.3 \pm 0.5$ MeV	$({ m S}=1.7)$ $0.3\pm0.8~{ m MeV}$ $\pm1.3~{ m MeV}$ $({ m S}=1.9)$	
K*(892)	DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>р</i> (MeV/c)
$K\pi$		\sim 100 %	2	290

$\Lambda \pi$	~ 100	%		290
$\zeta^0 \gamma$	$(2.46 \pm$	$0.21) imes 10^{-3}$		307
$\zeta^{\pm}\gamma$	$(1.00 \pm$	$0.09) \times 10^{-3}$		309
$\kappa \pi \pi$	< 7	imes 10 ⁻⁴	95%	223

 $K_0^*(700)$ decay channel listed in RPP as 100% πK same as for K^{*}(892)

The $K_0^*(700)$ has been studied with $\pi^{\pm}K_S^0$ femtoscopy in 13 TeV pp collisions by the ALICE Collaboration \rightarrow Paper is submitted to PLB (arXiv:2312.12830v2). $_{6/4/24}^{K_0^*(700)}$

Two scenarios for FSI of $\pi^+ K^0 \rightarrow K_0^* (700)^+ \rightarrow \pi^+ K^0$ Tetraquark vs. Diquark

Tetraquark formation is a 1st-order process that proceeds through the direct transfer of existing quarks to the $K_0^*(700)$ from the collision of π^+K^0 .

Diquark formation is a higher-order process requiring the annihilation of the *d* quarks in the π^+K^0 collision and transfer of energy via gluons to $K_0^*(700)$.

Can we see a signature of tetraquark vs. diquark in femtoscopy?

Run 2 data set used in this analysis

 $\sqrt{s} = 13$ TeV pp collisions, minimum bias trigger

6/4/24

Thomas Humanic -- SQM2024

 π^{\pm} purity ~98%

Femtoscopy using strong final-state interactions R. Lednický and V.L. Lyuboshits, (Sov. J. Nucl. Phys. 35 (1982) 770)

Consider the correlations of two **non-identical particles**, e.g. $\pi^{\pm}K_{S}^{0}$, emitted from the interaction region

 $\vec{r}^* \rightarrow$ relative distance between the particle emission points in the pair reference frame. $\vec{k}^* \rightarrow$ momentum of the particles in the pair reference frame.

The wave function describing the elastic interaction between the particles is:

S-wave scattering amplitude

$$\Psi_{-\vec{k}^{*}} = e^{-\vec{k}^{*} \cdot \vec{r}^{*}} + f(\vec{k}^{*}) \frac{e^{ik^{*}r^{*}}}{r^{*}}$$

plane wave S-wave final-state interaction (FSI) term Thomas Humanic -- SQM2024

6/4/24

Two-particle correlation function:

Correction to spherical outgoing wave assumption

Lambda parameter

$$\blacktriangleright C(k^*) = 1 + \lambda \alpha \left[\frac{1}{2} \left| \frac{f(k^*)}{R} \right|^2 + \frac{2\Re f(k^*)}{\sqrt{\pi}R} F_1(2k^*R) - \frac{\Im m f(k^*)}{R} F_2(2k^*R) + \Delta C \right]$$

Integral functions

Assume the FSI of the $\pi^{\pm}K^{0}{}_{S}$ is due to a **Resonance** $\implies f(k^{*}) = \frac{\gamma}{M_{R}^{2} - s - i\gamma k^{*}}$

 γ is the coupling parameter for the decay of the resonance into $\pi^{\pm}K_{S}^{0} \implies \Gamma_{R} = \frac{\langle k^{+} \rangle}{M_{P}} \gamma$

where M_R and Γ_R are the mass and width of the FSI resonance, and $\langle k^* \rangle$ is the average k^* over the fit range.

$$C(k^*)$$
 is measured experimentally as $\implies C(k^*) = \frac{A(k^*)}{B(k^*)}$

 $C(k^*) = \int d^3 \vec{r}^* S(r^*) |\Psi_{-\vec{k}^*}(\vec{r}^*)|^2 \text{, where } S(r^*) \sim e^{-\frac{r^{*2}}{4R^2}}$ Radius parameter

where $A(k^*)$ is the measured distribution of particle pairs from the same event in a k^* bin, and $B(k^*)$ is the reference distribution of particle pairs from mixed events in a k^* bin. $_{6/4/24}$ Thomas Humanic -- SQM2024 1

Analyze these three sets of $C(k^*)$ with different kinematic cuts in order to extract the multiplicity and k_T dependences of λ and R.

PYTHIA8 does a good job describing the baseline of the data. Data show large enhancement at $k^* \sim 0$ compared with PYTHIA8.

→ Is the extra enhancement in the data due to $K_0^*(700)$ FSI ??

Add a Breit-Wigner resonance term to the Lednický equation to fit out the small K*(892) overcompensation in the MC:

$$C'(k^*) = C(k^*) + \varepsilon \frac{dN_{BW}}{dm} \frac{dm}{dk^*}$$
 where, $\frac{dN_{BW}}{dm} \propto \frac{\Gamma_{892}}{(m - m_{892})^2 + \Gamma_{892}^2/4}$

→ Fit $C'(k^*)$ to $C_{data}(k^*)/C_{MC}(k^*)$, with fit parameters R, λ , M_R , γ and ε

The Lednický equation, assuming a resonance FSI, does a good job fitting the correlation function for each case.

Results of Lednický fits to 13 TeV pp $\rightarrow \pi^{\pm} K_{S}^{0}$ for (M_{R}, Γ_{R}) and comparisons with other measurements

The $\pi^{\pm} K_{S}^{0} \Gamma_{R}$ and M_{R} agree with BES and E791 measurements of $K_{0}^{*}(700)$. \rightarrow Shows that the $\pi^{\pm} K_{S}^{0}$ FSI is due to the $K_{0}^{*}(700)$.

Results of Lednický fits to 13 TeV pp $\rightarrow \pi^{\pm}K_{S}^{0}$ for (*R*, λ) and comparisons with other measurements and a toy model

17

 λ vs *R* from published ALICE pp, Pb–Pb \rightarrow K⁰_SK⁰_S, $\pi\pi$ (PLB 833 (2022), PRC92 (2015), PRD84 (2011)) and the new 13 TeV pp $\rightarrow \pi^{\pm}$ K⁰_S results.

Summary

► $K_S^0 K^{\pm}$ femtoscopic analyses in $\sqrt{s_{NN}} = 2.76$ TeV Pb–Pb, and $K_S^0 K^{\pm}$ and $K_S^0 K_S^0$ analyses in $\sqrt{s} = 5.02$, 7 and 13 TeV pp collisions from ALICE are published in PLB **Main physics take-away:**

A simple geometric model used to explain these results is suggestive of the $a_0(980)$ being a tetraquark state.

> $\pi^{\pm}K_{S}^{0}$ femtoscopic analysis in $\sqrt{s} = 13$ TeV pp collisions from ALICE was shown.

Main physics take-aways:

1) The FSI is shown to be due to the formation of the $K_0^*(700)$.

2) The extracted *R* parameters are comparable to those from published $\pi\pi$ and K⁰_SK⁰_S measurements in pp collisions.

3) The λ parameter is much smaller than in the identical boson measurements.

4) The dependence of λ on R is as expected by a geometric toy model assuming a tetraquark $K_0^*(700)$.

Backup slides

Toy model based on geometry to describe R dependence of λ for 13 TeV pp $\rightarrow \pi^{\pm} K_{S}^{0}$

Thomas Humanic -- SQM2024

Predicted low-lying tetraquark nonet with $f_0(500)$ candidate meson

Tetraquark nonet Alford and Jaffe, Nucl. Phys. B 578 (2000)

 $uar{u}/dar{d}$ $uar{d}sar{s}$ -

 $u\bar{s}d\bar{d} \longrightarrow K\pi$

 $\pi\pi$

1

 $a_0(980)$

 $K_0^*(700)$

 \rightarrow f₀(500)

 $ar{u} du ar{d}$

0

 $d\bar{u}s\bar{s}$

_1

See the review on "Scalar Mes Mass (T-Matrix Po	ons below 1 GeV."	
Mass (Breit-Wigner Full width (Breit-W		350) MeV
f0(500) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV
ππ	seen	

Full width $\Gamma = 149.1 \pm 0.8$ MeV

P(770) DECAY MODES	Fraction (Γ_i/Γ)		Scale factor/ Confidence level	р (MeV/c)
ππ	\sim 100	%		363

 \rightarrow Recently initiated the study of the f₀(500) with $\pi^+\pi^-$ femtoscopy in 13 TeV pp collisions by ALICE \rightarrow Work in progress!

6/4/24

Mass

Thomas Humanic -- SQM2024

 $\rightarrow I_3$

 $\rightarrow \begin{cases} KK \end{cases}$