

Differential measurement of the common particle-emitting source using p–p and p–A correlations in pp collisions at 13.6 TeV with ALICE

Anton Riedel

on behalf of the ALICE Collaboration

Technical University of Munich

Strange Quark Matter 2024, Strasbourg, France

 $C(k^*) = \mathcal{N} \frac{N_{\mathrm{SE}}(k^*)}{N_{\mathrm{ME}}(k^*)}$ * $\Psi(k^*,r^*)$

M. A. Lisa et al., Ann.Rev.Nucl.Part.Sci.55:357-402, 2005

$$C(k^*) = \mathcal{N}\frac{N_{\rm SE}(k^*)}{N_{\rm ME}(k^*)} = \int S(r^*) |\psi(r^*, k^*)|^2 d^3r \xrightarrow{k^* \to \infty} 1$$

$$C(k^*) = \mathcal{N}\frac{N_{\rm SE}(k^*)}{N_{\rm ME}(k^*)} = \int S(r^*) |\psi(r^*, k^*)|^2 d^3r \xrightarrow{k^* \to \infty} 1$$

Workflow for accessing interaction:

- Measure correlation function C(k*)
- Fix source S(r*)
- Study interaction $\psi(r^*,k^*)$

$$C(k^*) = \mathcal{N}\frac{N_{\rm SE}(k^*)}{N_{\rm ME}(k^*)} = \int S(r^*) |\psi(r^*, k^*)|^2 d^3r \xrightarrow{k^* \to \infty} 1$$

Femtoscopy @ SQM 2024: Thomas Humanic 4 Jun, 09:10 Neelima Agrawal 4 Jun, 18:30 Anton Riedel 4 Jun, 17:30 Valentina Mantovani Sarti 5 Jun, 08:30 Raffaele del Grande 6 Jun, 17:30

Common baryonic source in pp collisions

- Scaling is expected for common radial flow velocity and hadronization time scale
- Effects influencing the scaling include non-Gaussian contributions to the source

Common baryonic source in pp collisions

- Scaling is expected for common radial flow velocity and hadronization time scale
- Effects influencing the scaling include non-Gaussian contributions to the source
- Feed-down from resonances[1,2]

Common baryonic source in pp collisions

- Common scaling is restored by accounting for non-Gaussian contributions
- Motivates the assumption of a universal particle source for baryons

anton.riedel@tum.de

Common hadron source in pp collisions

- Common scaling is restored by accounting for non-Gaussian contributions
- Motivates the assumption of a universal particle source for baryons
- Common scaling also holds for mesonbaryon and meson-meson pairs

Common hadron source in pp collisions

- Common scaling is restored by accounting for non-Gaussian contributions
- Motivates the assumption of a universal particle source for baryons
- Common scaling also holds for mesonbaryon and meson-meson pairs
 - Saturation observed at low m_{T}

Common hadron source in pp collisions

- In Pb–Pb collisions, there is also a scaling with centrality/multiplicity
- Can this be observed in pp collisions?

 $r_{\rm core}~({
m fm})$

2.5

1.5

Femtoscopy at ALICE in pp 13.6 TeV

- Upgraded ALICE detector collected roughly **500 billion** pp collisions at 13.6 TeV in 2022 alone
- So far roughly 800x more pp collisions recorded compared to Run 2
- Large minimum bias data sample allows to to study the femtoscopic source differentially in m_T and multiplicity
- p-p correlations can be used as standard candle

p-p correlation function in Run 3

- p-p correlation function is measured in bins of m_τ and charged track multiplicity
- Modeling of the interaction: Coulomb, quantum statistics and strong interaction with Argonne v18 potential
- Source modelled effectively with Gaussian profile

Run 2 data points measured in high multiplicity collisions

Observations:

• Source size decreases with $m_{\rm T}$ in high multiplicity collisions

Run 2 data points measured in high multiplicity collisions

Observations:

• Source size decreases with $m_{\rm T}$ in high multiplicity collisions

Run 2 data points measured in high multiplicity collisions

Observations:

• Source size decreases with $m_{\rm T}$ in high multiplicity collisions

Run 2 data points Measured in high multiplicity collisions

- Source size decreases with m_{T} in high multiplicity collisions
- Source size decrease across all new multiplicity bins with $m_{\rm T}$

p—p correlation function in Run 3

Run 2 data points • measured in high multiplicity collisions

Observations:

- Source size decreases with $m_{\rm T}$ in high multiplicity collisions
- Source size decrease across all new multiplicity bins with $m_{\rm T}$

Run 2 data points Measured in high multiplicity collisions

- Source size decreases with m_{T} in high multiplicity collisions
- Source size decrease across all new multiplicity bins with $m_{\rm T}$

 $\langle m_{\rm T} \rangle$ (GeV/ c^2)

Run 2 data points Measured in high multiplicity collisions

Observations:

- Source size decreases with m_{T} in high multiplicity collisions
- Source size decrease across all new multiplicity bins with $m_{\rm T}$
- Source size increases with multiplicity

p-p correlation function in Run 3

Observations:

- Source size decreases with m_T in high multiplicity collisions
- Source size decrease across all new multiplicity bins with $m_{\rm T}$
- Source size increases with multiplicity

Caveats:

- Multiplicity estimators are not the same in Run 2 and Run 3 (yet)
- Multiplicity percentile in Run 2 is not identical with multiplicity bin [27,200)

p-p correlation function in Run 3 @ 900 GeV

Accessing lower multiplicities with lower center of mass energies

ALI-PREL-572546

Outlook: p– Λ correlations in Run 3

$\Lambda \text{ reconstruction}: \Lambda \rightarrow p\pi$

- Excellent PID and vertex finding of ALICE allows for efficient identification of Λ daughter tracks
- V0 algorithm is used to reconstruct Λ candidates

Outlook: p-A correlations in Run 3

$\Lambda \text{ reconstruction}: \Lambda \rightarrow p\pi$

- Excellent PID and vertex finding of ALICE allows for efficient identification of Λ daughter tracks
- V0 algorithm is used to construct Λ candidates

 $p-\Lambda$ correlation measurement:

- High purity sample necessary to extract femto signal
- Need good distinction between protons from primary collisions and A decays to avoid autocorrelation

Stay tuned for

2

-2

nσ

- Measurement of the p-p and of p-A in similar multiplicity class to Run 2 to benchmark Run 3 results -
- Extend the common source model with multiplicity scaling of the source

=> Source constrained for future femtoscopic measurements in Run 3 with ALICE

Backup

M. A. Lisa et. al., Ann.Rev.Nucl.Part.Sci.55:357-402, 2005

Anton Riedel | SQM 2024