

Studying (anti)nucleosynthesis via event-by-event fluctuations at the LHC with ALICE

Mario Ciacco, on behalf of the ALICE Collaboration

Politecnico di Torino, INFN

(Anti)nuclei at the LHC

- (Anti)(hyper)nuclei production in heavy-ion collisions
 - How do composite objects survive in the environment created in Pb–Pb collisions?
- System-size scan of light-nuclei-to-proton yield ratio
 - Smooth evolution across different colliding systems
 - Reproduced in different phenomenological models

mario.ciacco@cern.ch

SQM2024

Y. Wang - June 5th, h. 8.50

(Anti)nucleosynthesis models

- ALICE

- Statistical hadronization model
 - Statistical-mechanical description of light-flavour hadron yields from a few parameters (T_{ch} , V, μ_{B})
 - Canonical ensemble → exact conservation of quantum numbers over correlation volume, $V_{\rm C}$

V. Vovchenko et al., Phys. Lett. B 785, 171 (2018)

(Anti)nucleosynthesis models

ALICE

- Statistical hadronization model
 - Statistical-mechanical description of light-flavour hadron yields from a few parameters (T_{ch} , V, μ_{B})
 - Canonical ensemble → exact conservation of quantum numbers over correlation volume, $V_{\rm C}$

V. Vovchenko et al., Phys. Lett. B 785, 171 (2018)

- Nuclear coalescence model
 - Nuclei are formed by nucleons emitted by a freeze-out hypersurface
 - System-size dependence of source size compared to fixed deuteron size

K.-J. Sun et al., Phys. Lett. B 792, (2019) 132F. Bellini and A. P. Kalweit, Phys. Rev. C 99 (2019) 5, 054905

mario.ciacco@cern.ch

SQM2024

(Anti)nucleosynthesis models

- Statistical hadronization model
 - Statistical-mechanical description of light-flavour hadron yields from a few parameters (T_{ch} , V, μ_{B})
 - Canonical ensemble → exact conservation of quantum numbers over correlation volume, $V_{\rm C}$

V. Vovchenko et al., Phys. Lett. B 785, 171 (2018)

- Nuclear coalescence model
 - Nuclei are formed by nucleons emitted by a freeze-out hypersurface
 - System-size dependence of source size compared to fixed deuteron size

F. Bellini and A. P. Kalweit, Phys. Rev. C 99 (2019) 5, 054905

 \rightarrow Can we say more going to higher-order moments?

mario.ciacco@cern.ch

K.-J. Sun et al., Phys. Lett. B 792, (2019) 132

Event-by-event observables and charge conservation

S. Saha - June 4th, h. 17.10

• Net-particle fluctuations at the LHC

- $\circ \quad \text{Net-proton} \rightarrow V_{\text{C}} \sim 3 \text{ dV/dy}$
- $\circ \quad \text{Net-}\Xi \qquad \rightarrow V_{\text{C}} \sim 3 \text{ dV/dy}$
- Large correlation volume for baryon and strangeness conservation
 - \circ Exact V_c value depends on the different model implementations

The ALICE detector during the LHC Run 2

Observables

- Antideuteron–net-Λ number correlation
 - Probe charge conservation in the processes underlying nuclear formation
 - As are not present inside antideuterons
- Antideuteron-antiproton number correlation
 - Probe the effective V_c of baryon-number conservation in the (anti)nucleosynthesis process

Definitions

• Antimatter \rightarrow no contamination from spallation reactions in the detector material

Demiliuons	
$\kappa_1 = \langle n \rangle$	Mean value
$\kappa_2 = \langle (n - \langle n \rangle)^2 \rangle$	Variance
$\kappa_{11}(n,m) = \langle (n - \langle n \rangle)(m - \langle m \rangle) \rangle$	Covariance
$\rho(n,m) = \frac{\kappa_{11}(n,m)}{\sqrt{\kappa_2(n)\kappa_2(m)}}$	Pearson correlation coefficient

• Antideuteron and antiproton

- Particle identification (PID) using:
 - Low $p_{T} \rightarrow \text{TPC } dE/dx$
 - Intermediate $p_{T} \rightarrow TPC + TOF \beta$
- Negligible cross-contamination in overlapping momentum region
 - Purity > 99%
- (Anti)∧
 - Two-body decay topology
 - $\Lambda \rightarrow p + \pi^{-}$
 - High-purity (> 93%) sample obtained via:
 - Topological selections
 - TPC PID of the decay product

Analysis methods

• Antideuteron and antiproton

- Particle identification (PID) using:
 - Low $p_T \rightarrow \text{TPC } dE/dx$
 - Intermediate $p_{T} \rightarrow TPC + TOF \beta$
- Negligible cross-contamination in overlapping momentum region
 - Purity > 99%
- (Anti)∧
 - Two-body decay topology
 - $\Lambda \rightarrow p + \pi^{-}$
 - High-purity (> 93%) sample obtained via:
 - Topological selections
 - TPC PID of the decay product

Efficiency correction

- $\kappa_1 = \langle q_1 \rangle$
- $\kappa_2^{1} = \langle q_1^{12} \rangle \langle q_1 \rangle^2 + \langle q_1 \rangle \langle q_2 \rangle$
- $\kappa_{11}^{2}(A, B) = \langle q_{1,A}^{2} q_{1,B}^{2} \rangle \langle q_{1,A}^{2} \rangle \langle q_{1,B}^{2} \rangle$

 $\mathbf{q}_{n} = \sum_{i=1}^{M} (N_{i} / \boldsymbol{\varepsilon}_{i}^{n})$

 $M = \text{number of } p_{T} \text{ bins}$ $\boldsymbol{\varepsilon}_{i} = \text{efficiency in i-th } p_{T} \text{ bin}$ $N_{i} = \text{raw counts in i-th } p_{T} \text{ bin}$

T. Nonaka et al., Phys. Rev. C 95, 064912 (2017)

Volume fluctuations

- Antideuteron–antiproton \rightarrow centrality bin-width correction (CBWC)
- Net-particles \rightarrow suppressed at $\mu_B \sim 0$

X. Luo et al., J. Phys. G: Nucl. Part. Phys. 40 105104 (2013)

ALICE Collaboration, arXiv:2311.13332 [nucl-ex]

Antideuteron-net- Λ correlation

A positive correlation is observed

- Expected from baryon-number conservation in canonical ensemble (CE) SHM
 - Thermal-FIST model

V. Vovchenko et al., Comput. Phys. Commun. 244 (2019) 295-310

• Parameters from published fits

V. Vovchenko et al., Phys. Rev. C 100 (2019) 5, 054906

Antideuteron-net- Λ correlation

A positive correlation is observed

- Expected from baryon-number conservation in canonical ensemble (CE) SHM
 - Thermal-FIST model

V. Vovchenko et al., Comput. Phys. Commun. 244 (2019) 295-310

 \circ Parameters from published fits

V. Vovchenko et al., Phys. Rev. C 100 (2019) 5, 054906

- Consistent with $V_c = 3 dV/dy$
 - Baryon-number conservation in the underlying processes is consistent with previous observations
- Tension with $V_c = 1.6 \, dV/dy$
 - Extracted from observables pairing deuterons with protons (e.g. d/p, ρ_{dp})

Net- Λ normalized second-order cumulant

Negative κ_2/κ_1 for net- Λ

- Expected from baryon-number conservation in Canonical ensemble (CE) SHM
 - Thermal-FIST model

V. Vovchenko et al., Comput. Phys. Commun. 244 (2019) 295-310

• Parameters from published fits

V. Vovchenko et al., Phys. Rev. C 100 (2019) 5, 054906

- Consistent with $V_c = 3 dV/dy$
 - Consistent with the previous observations in the baryon and strangeness sectors
 - Large correlation volume in Pb–Pb collisions

Probing (anti)nucleosynthesis mechanisms

Models

- Simple coalescence → convolution of proton and neutron distributions
 - Model A: correlated nucleons
 - Model B: independent nucleons

Z. Fecková et al., Phys. Rev. C 93, 054906 (2016)

- Improved coalescence
 - MUSIC+UrQMD+Coalescence
 - No initial correlation between protons and neutrons

K.-J. Sun et al., Phys. Lett. B, 840, 137864 (2023)

- Canonical Statistical Model
 - \circ Correlation depends on the baryon number conservation volume, $V_{\rm C}$

V. Vovchenko et al., Phys. Lett. B 785, (2018) 171

Antideuteron-antiproton correlation

ALICE Coll., Phys. Rev. Lett. 131, 041901 (2023)

$\rho_{\overline{pd}}$ ALICE Significant anticorrelation is observed Coalescence Model A (\times 1/30) Baryon number conservation \rightarrow strength of the Coalescence Model B correlation \rightarrow probe of the (anti)nucleosynthesis MUSIC+UrQMD+Coalescence 0.005 Thermal-Fist: CE SHM, 4.8 dV/dymechanism Thermal-Fist: CE SHM, 1.6 dV/dy Models Simple coalescence Anticorrelation qualitatively described Ο MUSIC+UrQMD+Coalescence -0.005Anticorrelation qualitatively described Ο Pb–Pb, $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ $|\eta| < 0.8$ **Canonical Statistical Model** \overline{d} : 0.8 < p_{τ} < 1.8 GeV/*c* \overline{p} : 0.4 < p_{-} < 0.9 GeV/c Smaller V_c than other light-flavor hadrons Ο -0.0120 40 60 80 Centrality (%)

ALI-PUB-561640

Event-by-event fluctuations: the full picture at LHC

<u>mario.ciacco@cern.ch</u>

Summary and outlook

- Event-by-event observables are sensitive probes of nuclear formation mechanisms
 - Antideuteron-net- Λ correlation \rightarrow observed correlation volume for quantum-number conservation is consistent with net-[p, Λ , Ξ]
 - Antideuteron-antiproton correlation \rightarrow (anti)nucleosynthesis processes correlate baryon number over a smaller effective volume
- Full system-size scan and heavier nuclei (³He) using Run 3 data sample

mario.ciacco@cern.ch

ALIC

Additional slides

Antideuteron normalized second-order cumulant

