Dependences of Directed Flow on Net Conserved Charges from Quark Coalescence

Zi-Wei Lin East Carolina University

The 21st International Conference on Strangeness in Quark Matter Strasbourg, France, June 3-7, 2024

Outline

Introduction

- (1) Coalescence sum rule relations for Δv_1
- (2) Extracting the Δq , ΔS , or ΔB dependences
- (3) Demonstration with the STAR data
- Summary

(1) and (2) are based on work with Kishora Nayak and Shusu Shi: Phys. Lett. B 849 (2024) 138479 & Universe 10 (2024) 3, 112

• Directed flow v_1 depends on properties of the created matter in heavy ion collisions such as the equation of state and electromagnetic fields. Sorge, Phys. Rev. Lett. 78 (1997) 2309; Herrmann, Wessels, Wienold, Annu. Rev. Nucl. Part. Sci. 49 (1999) 581; Das, Plumari, Chatterjee, Alam, Scardina, Greco, Phys. Lett. B 768 (2017) 260; STAR, Phys. Rev. X 14 (2024) 1, 011028

• Directed flow v_1 , like elliptic flow v_2 , are expected to follow the coalescence sum rule (CSR) or NCQ scaling when initial matter is in parton degrees of freedom and hadronizes via quark coalescence. *Greco, Ko, Levai, Phys. Rev. Lett.* 90

Greco, Ko, Levai, Phys. Rev. Lett. 90 (2003) 202302; Fries, Muller, Nonaka, Bass, *Phys. Rev. Lett.* 90 (2003) 202303; *Molnár, Voloshin, Phys. Rev. Lett.* 91 (2003) 092301

- CSR relates the primordial hadron v_n to the sum of v_n of its constituent quarks.
- If 2 combination of hadrons have the same constituent quarks, we expect their v_1 to be the same.

To avoid complications from transported u/d quarks,

combinations consisting of 7 produced hadrons $(K^-, \phi, \overline{p}, \overline{\Lambda}, \overline{\Xi}^+, \overline{\Omega}, \Omega)$ were constructed: two sides in each combination have the same $N_{\overline{u}} + N_{\overline{d}}$ and the same $N_s + N_{\overline{s}}$.

Index	Quark mass	Charge	Strangeness	Δv_1 combination
1	$\Delta m = 0$	$\Delta q = 0$	$\Delta S = 0$	$[\bar{p}(\bar{u}\bar{u}\bar{d}) + \phi(s\bar{s})] - [\bar{K}(\bar{u}s) + \bar{\Lambda}(\bar{u}\bar{d}\bar{s})]$
2	$\Delta m = 0$	$\Delta q = 0$	$\Delta S = 0$	$[\overline{\Xi}^+(\bar{d}\bar{s}\bar{s}) + \bar{K}(\bar{u}s)] - [\bar{\Lambda}(\bar{u}\bar{d}\bar{s}) + \phi(s\bar{s})]$
3	$\Delta m pprox 0$	$\Delta q = rac{1}{3}$	$\Delta S = 0$	$\frac{1}{3}[\Omega^{-}(sss) + \bar{p}(\bar{u}\bar{u}\bar{d})] - [\bar{K}(\bar{u}s)]$
4	$\Delta m pprox 0$	$\Delta q = \frac{2}{3}$	$\Delta S = 1$	$[\bar{\Lambda}(\bar{u}\bar{d}\bar{s})] - [\frac{1}{2}\phi(s\bar{s}) + \frac{2}{3}\bar{p}(\bar{u}\bar{u}\bar{d})]$
5	$\Delta m pprox 0$	$\Delta q = 1$	$\Delta S = 2$	$[\bar{\Lambda}(\bar{u}\bar{d}\bar{s})] - [\frac{1}{3}\Omega^{-}(sss) + \frac{2}{3}\bar{p}(\bar{u}\bar{u}\bar{d})]$
6	$\Delta m pprox 0$	$\Delta q = \frac{4}{3}$	$\Delta S = 2$	$[\bar{\Lambda}(\bar{u}\bar{d}\bar{s})] - [\bar{K}(\bar{u}s) + \frac{1}{3}\bar{p}(\bar{u}\bar{u}\bar{d})]$
7	$\Delta m pprox 0$	$\Delta q = \frac{4}{3}$	$\Delta S = 2$	$[\overline{\Xi}^+(\bar{d}\bar{s}\bar{s})] - [\phi(s\bar{s}) + \frac{1}{3}\bar{p}(\bar{u}\bar{u}\bar{d})]$
8	$\Delta m pprox 0$	$\Delta q = \frac{5}{3}$	$\Delta S = 2$	$[\overline{\Xi}^+(\bar{d}\bar{s}\bar{s})] - [\bar{K}(\bar{u}s) + \frac{1}{3}\overline{\Omega}^+(\bar{s}\bar{s}\bar{s})]$
9	$\Delta m = 0$	$\Delta q = 2$	$\Delta S = 6$	$[\overline{\Omega}^+(\overline{s}\overline{s}\overline{s})] - [\Omega^-(sss)]$
10	$\Delta m pprox 0$	$\Delta q = rac{7}{3}$	$\Delta S = 4$	$[\overline{\Xi}^+(\bar{d}\bar{s}\bar{s})] - [\bar{K}(\bar{u}s) + \frac{1}{3}\Omega^-(sss)]$

Sheikh, Keane, Tribedy, Phys. Rev. C 105 (2022) 014912

Non-zero v_1 difference of the two sides in these hadron sets, especially if Δv_1 depends on Δq from the data, was proposed to be a consequence of electromagnetic fields. *STAR, arXiv:2304.02831*

There are only 5 independent hadron sets for such hadron combinations.

Sheikh, Keane, Tribedy, Phys. Rev. C 105 (2022) 014912

Nayak, Shi & ZWL, Phys. Lett. B 849 (2024) 138479

Set $\#$	Δq_{ud}	ΔS	Δq	L (left side)	R (right side)
1	0	0	0	$v_1[K^-(ar u s)] + v_1[\overline\Lambda(ar u ar dar s)]$	$v_1[ar p(ar uar uar d)]+v_1[\phi(sar s)]$
2	0	0	0	$v_1ig[\overline{\Lambda}(ar{u}ar{d}ar{s})ig]$	$rac{1}{2}v_1[ar{p}(ar{u}ar{u}ar{d})]+rac{1}{2}v_1[\overline{\Xi}^+(ar{d}ar{s}ar{s})]$
3	0	0	0	$rac{1}{3}v_1[\Omega^-(sss)]+rac{1}{3}v_1[\overline{\Omega}^+(ar{s}ar{s}ar{s})]$	$v_1[\phi(sar s)]$
4	0	1	1/3	$rac{1}{2}v_1[\phi(sar s)]$	$rac{1}{3}v_1[\Omega^-(sss)]$
5A	1/3	1	2/3	$rac{1}{2} v_1 [\phi(sar{s})] + rac{1}{3} v_1 [ar{p}(ar{u}ar{u}ar{d})]$	$v_1\big[K^-(\bar{u}s)\big]$
$5\mathrm{B}$	1/3	1	2/3	$v_1ig[\overline{\Lambda}(ar{u}ar{d}ar{s})ig]$	$rac{1}{2} v_1[\phi(sar{s})] + rac{2}{3} v_1[ar{p}(ar{u}ar{u}ar{d})]$

For example, our default choice = Sets 1, 2, 3, 4, 5A.

• One can choose other 5 independent hadron sets, e.g., Sets 1, 2, 3, 4, 5B,

• Any other hadron set will not be independent, including a hadron set with the hadron weights *scaled* by a constant. For example, Set5B = Set1+Set5A and is not independent of Choice 1; hadron set $(3\phi - 2\Omega)$ is equivalent to Set4 $(\phi/2 - \Omega/3)$ (scaled by 1/6)

Relations between our 5 hadron sets and those used by STAR:

Index1 = -Set1, Index2 = Set1 + Set4 + Set5A, Index3 = Set1 + 2*Set5A,

Index4 = 3*Set3+6*Set4, Index5 = 2*Set1-2*Set2+Set4+3*Set5A.

So they are equivalent.

Set #	Δq_{ud}	ΔS	Δq	L (left side)	R (right side)
1	0	0	0	$v_1[K^-(ar u s)] + v_1[\overline\Lambda(ar u ar d ar s)]$	$v_1[ar p(ar uar uar d)]+v_1[\phi(sar s)]$
2	0	0	0	$v_1ig[\overline{\Lambda}(ar{u}ar{d}ar{s})ig]$	$rac{1}{2}v_1[ar{p}(ar{u}ar{u}ar{d})]+rac{1}{2}v_1[\overline{\Xi}^+(ar{d}ar{s}ar{s})]$
3	0	0	0	$rac{1}{3}v_1[\Omega^-(sss)]+rac{1}{3}v_1[\overline{\Omega}^+(ar{s}ar{s}ar{s})]$	$v_1[\phi(sar s)]$
4	0	1	1/3	$rac{1}{2}v_1[\phi(sar s)]$	$rac{1}{3}v_1[\Omega^-(sss)]$
$5\mathrm{A}$	1/3	1	2/3	$rac{1}{2}v_1[\phi(sar{s})]+rac{1}{3}v_1[ar{p}(ar{u}ar{u}ar{d})]$	$v_1\big[K^-(\bar{u}s)\big]$
$5\mathrm{B}$	1/3	1	2/3	$v_1ig[\overline{\Lambda}(ar{u}ar{d}ar{s})ig]$	$rac{1}{2}v_1[\phi(sar{s})]+rac{2}{3}v_1[ar{p}(ar{u}ar{u}ar{d})]$

Nayak, Shi & ZWL, Phys. Lett. B 849 (2024) 138479

Index	Quark mass	Δq	ΔS	Δv_1 combination	STAR, arXiv:2304.02831
1	$\Delta m = 0$	0	0	$[\bar{p}(\bar{u}\bar{u}\bar{d}) + \phi(s\bar{s})] - [\bar{K}(\bar{u}s) + \bar{\Lambda}(\bar{u}\bar{d}\bar{s})]$	
2	$\Delta m pprox 0$	1	2	$[\bar{\Lambda}(\bar{u}ar{d}ar{s})] - [rac{1}{3}\Omega^-(sss) + rac{2}{3}ar{p}(ar{u}ar{u}ar{d})]$	
3	$\Delta m pprox 0$	$\frac{4}{3}$	2	$[\bar{\Lambda}(ar{u}ar{d}ar{s})] - [K(ar{u}s) + rac{1}{3}ar{p}(ar{u}ar{u}ar{d})]$	
4	$\Delta m = 0$	2	6	$[\overline{\Omega}^+(ar{s}ar{s}ar{s})]-[\Omega^-(sss)]$	
5	$\Delta m \approx 0$	$\frac{7}{3}$	4	$[\overline{\Xi}^+(\bar{d}\bar{s}\bar{s})] - [\bar{K}(\bar{u}s) + \frac{1}{3}\Omega^-(sss)]$	

(1)

Coalescence sum rule relations for Δv_1

Hadrons formed via quark coalescence are expected to follow CSR:

$$v_n^H(p_T^H) = \sum_j v_n^j(p_T^j)$$

Molnár, Voloshin, Phys. Rev. Lett. 91 (2003) 092301 ZWL, Molnár, Phys. Rev. C 68 (2003) 044901

We neglect the mass difference of u, d and s constituent quarks, then every constituent quark in a hadron has the same p_T :

$$v_n^H(p_T^H) = \sum_j v_n^j(p_T) \tag{2}$$

When v_n of different quark species are the same, Eq(2) reduces to the NCQ scaling relation:

$$v_2^H(p_T^H) = N_{cq}v_n(p_T)$$

with $p_T^H = N_{cq}p_T$

Coalescence sum rule relations for Δv_1

						Inde	x Qua	ark mass	Δq	ΔS	Δv_1 combi	nation
Index	Quark mass	Charge	Strangeness	Δv_1 combination		1	Δm	n = 0	0	0	$[\bar{p}(\bar{u}\bar{u}\bar{d}) + \phi(s\bar{s})$	$\left[- \left[K \overline{(\bar{u}s)} + \overline{\Lambda}(\bar{u}d\overline{s}) \right] \right]$
1	$\Delta m = 0$	$\Delta q = 0$	$\Delta S = 0$	$[\bar{p}(\bar{u}\bar{u}\bar{d}) + \phi(s\bar{s})] - [\bar{K}(\bar{u}s) + \bar{\Lambda}(\bar{u}\bar{d}\bar{s})]$		-		, 0		0	$\left[\overline{p}\left(\overline{a},\overline{a},\overline{a}\right)\right] + \overline{\phi}\left(\overline{a},\overline{a},\overline{a}\right)$	$= () : 2 = (\overline{z})$
2	$\Delta m = 0$	$\Delta q = 0$	$\Delta S = 0$	$[\overline{\Xi}^+(\bar{d}\bar{s}\bar{s}) + \bar{K}(\bar{u}s)] - [\bar{\Lambda}(\bar{u}\bar{d}\bar{s}) + \phi(s\bar{s})]$		2	Δm	$n \approx 0$	1	2	$[\Lambda(uds)] - [\frac{1}{3}\Omega]$	$(sss) + \frac{2}{3}p(uud)]$
3	$\Delta m pprox 0$	$\Delta q = \frac{1}{3}$	$\Delta S = 0$	$\frac{1}{3}[\Omega^{-}(sss) + \bar{p}(\bar{u}\bar{u}\bar{d})] - [\bar{K}(\bar{u}s)]$		3	Δm	n pprox 0	$\frac{4}{3}$	2	$[ar{\Lambda}(ar{u}ar{d}ar{s})] - [K]$	$(ar{u}s)+rac{1}{3}ar{p}(ar{u}ar{u}ar{d})]$
4	$\Delta m pprox 0$	$\Delta q = \frac{2}{3}$	$\Delta S = 1$	$[\bar{\Lambda}(\bar{u}\bar{d}\bar{s})] - [\frac{1}{2}\phi(s\bar{s}) + \frac{2}{3}\bar{p}(\bar{u}\bar{u}\bar{d})]$		4	Δm	u = 0	2	6	$[\overline{\Omega}^{+}(\bar{s}\bar{s}\bar{s})] - [\Omega$	$^{-}(sss)]$
5	$\Delta m pprox 0$	$\Delta q = 1$	$\Delta S = 2$	$[\bar{\Lambda}(\bar{u}\bar{d}\bar{s})] - [\frac{1}{3}\Omega^{-}(sss) + \frac{2}{3}\bar{p}(\bar{u}\bar{u}\bar{d})]$		5	Δm	≈ 0	<u>7</u>	4	$[\overline{\Xi}^+(\overline{d}\overline{s}\overline{s})] - [K$	$[\bar{u}s] + \frac{1}{2}\Omega^{-}(sss)$
6	$\Delta m pprox 0$	$\Delta q = rac{4}{3}$	$\Delta S = 2$	$[\bar{\Lambda}(\bar{u}\bar{d}\bar{s})] - [\bar{K}(\bar{u}s) + \frac{1}{3}\bar{p}(\bar{u}\bar{u}\bar{d})]$					3	-		(40) + 312 (000)]
7	$\Delta m pprox 0$	$\Delta q = \frac{4}{3}$	$\Delta S = 2$	$[\overline{\Xi}^+(\overline{d}\overline{s}\overline{s})] - [\phi(s\overline{s}) + \frac{1}{3}\overline{p}(\overline{u}\overline{u}\overline{d})]$	Set #	Δq_{ud}	ΔS	Δq		L (le	ft side)	R (right side)
8	$\Delta m pprox 0$	$\Delta q = \frac{5}{3}$	$\Delta S = 2$	$[\overline{\Xi}^+(\overline{d}\overline{s}\overline{s})] - [\overline{K}(\overline{u}s) + \frac{1}{3}\overline{\Omega}^+(\overline{s}\overline{s}\overline{s})]$	1	0	0	0	$v_1[K]$	$\bar{(\bar{u}s)}$	$+ v_1 [\overline{\Lambda}(\bar{u}\bar{d}\bar{s})]$	$v_1[ar p(ar uar uar d)]+v_1[\phi(sar s)]$
9	$\Delta m = 0$	$\Delta q = 2$	$\Delta S = 6$	$[\overline{\Omega}^+(\overline{s}\overline{s}\overline{s}\overline{s})] - [\Omega^-(sss)]$	2	0	0	0		$v_1 \overline{\Lambda}$	$[(\bar{u}\bar{d}\bar{s})]$	$\frac{1}{2}v_1[\bar{p}(\bar{u}\bar{u}\bar{d})] + \frac{1}{2}v_1[\overline{\Xi}^+(\bar{d}s\bar{s})]$
10	$\Delta m pprox 0$	$\Delta q = \frac{7}{3}$	$\Delta S = 4$	$[\overline{\Xi}^+(\bar{d}\bar{s}\bar{s})] - [\bar{K}(\bar{u}s) + \frac{1}{3}\Omega^-(sss)]$	3	0	0	0	$\frac{1}{3}v_1[\Omega^-$	(<i>sss</i>)]	$+ \frac{1}{3}v_1[\overline{\Omega}^+(\bar{s}\bar{s}\bar{s})]$	$v_1[\phi(s\bar{s})]$
					4	0	1	1/3		$\frac{1}{2}v_1 $	$[\phi(sar{s})]$	$rac{1}{3}v_1[\Omega^-(sss)]$
					5A	1/3	1	2/3	$\frac{1}{2}v_1[q$	$\phi(sar{s})]$ -	$+ \frac{1}{3}v_1[ar{p}(ar{u}ar{u}ar{d})]$	$v_1ig[K^-(ar us)ig]$

5B

1/3

 $1 \ 2/3$

For every such hadron set,

the two sides have the same $N_{\overline{u}} + N_{\overline{d}}$ and the same $N_{S} + N_{\overline{S}}$.

So the differences between the two sides

in electric charge and strangeness are given by

$$\Delta q = \Delta N_{\bar{d}} + \frac{2}{3} \Delta N_{\bar{s}}, \qquad \Delta S = 2 \Delta N_{\bar{s}}$$

CSR of Eq(2) then gives $\Delta v_1 \equiv v_1^L - v_1^R = \sum_{i=\overline{u},\overline{d},s,\overline{s}} \Delta N_i v_{1,i}$

$$= \left(v_{1,\bar{d}} - v_{1,\bar{u}}\right)\Delta q + \left(\frac{v_{1,\bar{s}} - v_{1,\bar{s}}}{2} - \frac{v_{1,\bar{d}} - v_{1,\bar{u}}}{3}\right)\Delta S \quad (3)$$

 $v_1[\overline{\Lambda}(\bar{u}\bar{d}\bar{s})]$

 $\frac{1}{2}v_1[\phi(s\bar{s})] + \frac{2}{3}v_1[\bar{p}(\bar{u}\bar{u}\bar{d})]$

Coalescence sum rule relations for Δv_1

The relation gets simpler

when we use the electric charge difference from \overline{u} and \overline{d} :

$$\Delta q_{ud} \equiv q_{ud}^L - q_{ud}^R = \Delta q - \frac{1}{3} \Delta S$$

Then Eq(3) becomes

$$\Delta v_1 = \left(v_{1,\overline{d}} - v_{1,\overline{u}}\right) \Delta q_{ud} + \left(\frac{v_{1,\overline{s}} - v_{1,s}}{2}\right) \Delta S \tag{4}$$

So CSR predicts:

- Δv_1 depends linearly on both Δq and ΔS
- the coefficients reflect quark-level v₁ differences for quarks of different electric charges, so they should be affected by electromagnetic fields
- $\Delta v_1 = 0$ if $\Delta q = \Delta S = 0$, while $\Delta v_1 \neq 0$ if Δq or $\Delta S \neq 0$

Extracting the Δq , ΔS , or ΔB dependences

The same applies to the v_1 slope differences:

$$\Delta v_{1}' = \left(v_{1,\bar{d}}' - v_{1,\bar{u}}'\right) \Delta q_{ud} + \left(\frac{v_{1,\bar{s}}' - v_{1,\bar{s}}'}{2}\right) \Delta S$$
$$= \left(v_{1,\bar{d}}' - v_{1,\bar{u}}'\right) \Delta q + \left(\frac{v_{1,\bar{s}}' - v_{1,\bar{s}}'}{2} - \frac{v_{1,\bar{d}}' - v_{1,\bar{u}}'}{3}\right) \Delta S$$

To extract the dependences,

a 2-variable linear function (a plane over Δq and ΔS) should be used to fit the five independent data points

 $\Delta v_1' = c_0 + c_q \Delta q_{ud} + c_S \Delta S$

(we call this the 5-set method):

 $c_0^* + c_a^* \Delta q + c_s^* \Delta S$ or

Nayak, Shi & ZWL, Phys. Lett. B 849 (2024) 138479

Although CSR expects $c_0 = 0$ and $c_0^* = 0$, we add them in the fit function, because a non-zero c_0 or c_0^* value extracted from data indicates the breaking of CSR.

A linear combination or scaling of hadron sets changes the value of non-zero c_0 or c_0^* , so dependence of coefficients on the choice of hadron sets also indicates the breaking of CSR.

Set $\#$	Δq_{ud}	ΔS	Δq	L (left side)	R (right side)
1	0	0	0	$v_1[K^-(ar u s)] + v_1[\overline\Lambda(ar u ar dar s)]$	$v_1[ar p(ar uar uar d)]+v_1[\phi(sar s)]$
2	0	0	0	$v_1ig[\overline{\Lambda}(ar{u}ar{d}ar{s})ig]$	$rac{1}{2}v_1[ar{p}(ar{u}ar{u}ar{d})]+rac{1}{2}v_1[\overline{\Xi}^+(ar{d}ar{s}ar{s})]$
3	0	0	0	$rac{1}{3}v_1[\Omega^-(sss)]+rac{1}{3}v_1[\overline{\Omega}^+(ar{s}ar{s}ar{s})]$	$v_1[\phi(sar s)]$
4	0	1	1/3	$rac{1}{2}v_1[\phi(sar s)]$	$rac{1}{3}v_1[\Omega^-(sss)]$
5A	1/3	1	2/3	$rac{1}{2} v_1 [\phi(sar{s})] + rac{1}{3} v_1 [ar{p}(ar{u}ar{u}ar{d})]$	$v_1\big[K^-(\bar{u}s)\big]$
$5\mathrm{B}$	1/3	1	2/3	$v_1ig[\overline{\Lambda}(ar{u}ar{d}ar{s})ig]$	$rac{1}{2}v_1[\phi(sar{s})] + rac{2}{3}v_1[ar{p}(ar{u}ar{u}ar{d})]$

Extracting the Δq , ΔS , or ΔB dependences

Nayak, Shi & ZWL, Phys. Lett. B 849 (2024) 138479

Since our Sets 1, 2, 3 all have $\Delta q_{ud} = \Delta S = \Delta q = 0$, we can combine their data into one. Then we will have 3 data points: $\Delta v'_{1,1-3}$, $\Delta v'_{1,4} & \Delta v'_{1,5}$.

For
$$\Delta v'_1 = c_0 + c_q \Delta q_{ud} + c_s \Delta S$$
 we can analytically extract

$$c_0 = \Delta v'_{1,1-3}$$

$$c_q = -3(\Delta v'_{1,4} - \Delta v'_{1,5})$$

$$c_S = -\Delta v'_{1,1-3} + \Delta v'_{1,4}$$

We call this the 3-set method.

Extracting the Δq , ΔS , or ΔB dependences

CSR gives
$$\Delta v'_1 = c_0 + c_q \Delta q_{ud} + c_S \Delta S$$

with $c_0 = 0$, $c_q = v'_{1,\bar{d}} - v'_{1,\bar{u}}$, $c_S = \frac{1}{2}(v'_{1,\bar{S}} - v'_{1,\bar{S}})$

For these hadron combinations, $\Delta B = -\Delta S/3$, so $\Delta v'_1$ can also be written as

$$\Delta v'_{1} = c_{0} + c_{q} \Delta q_{ud} + c_{B} \Delta B$$

with $c_{B} = -3c_{S} = \frac{3}{2}(v'_{1,S} - v'_{1,\bar{S}})$

Nayak, Shi & ZWL, Universe 10 (2024) 3, 112

We now demonstrate a correct way of extracting the Δq and ΔS dependences by using the STAR 10-40% Au+Au data at 27A GeV as example (*central values only for demonstration, without considering the error bars*).

Index	Quark mass	Δq	ΔS	Δv_1 combination	F_{Δ} :	$\times 10^4 (27 \text{ GeV}) = \Delta v_1' * 10^4$
1	$\Delta m = 0$	0	0	$[ar{p}(ar{u}ar{u}ar{d})+\phi(sar{s})]-[K^{-}(ar{u}s)+ar{\Lambda}(ar{u}ar{d}ar{s})]$	03	$\pm 43 \pm 13$
2	$\Delta m \approx 0$	1	2	$[\bar{\Lambda}(\bar{u}ar{d}ar{s})] - [rac{1}{3}\Omega^{-}(sss) + rac{2}{3}ar{p}(ar{u}ar{u}ar{d})]$	41	$\pm 25 \pm 16$
3	$\Delta m pprox 0$	$\frac{4}{3}$	2	$[ar{\Lambda}(ar{u}ar{d}ar{s})] - [K^{-}(ar{u}s) + rac{1}{3}ar{p}(ar{u}ar{u}ar{d})]$	39	$\pm 07 \pm 03$
4	$\Delta m = 0$	2	6	$[\overline{\Omega}^+(\bar{s}\bar{s}\bar{s})]-[\Omega^-(sss)]$	83	$\pm 130 \pm 25$ STAR or Viv: 2204 02821
5	$\Delta m \approx 0$	$\frac{7}{3}$	4	$[\overline{\Xi}^+(ar{d}ar{s}ar{s})] - [K^-(ar{u}s) + rac{1}{3}\Omega^-(sss)]$	64	$\pm 36 \pm 19$

dq

dS

When we follow the STAR method in *STAR arXiv:2304.02831* and perform 1-D fits with $\Delta v'_1 = K_{\Delta q} \Delta q \quad \& \quad \Delta v'_1 = K_{\Delta S} \Delta S$ (without intercept), we get $\Delta v'_1 = 33.4 \Delta q \quad \& \quad \Delta v'_1 = 15.2 \Delta S$

They are close to the STAR values in *STAR arXiv:2304.02831* : $K_{\Delta q}(x10^4) = 29 \pm 4.2 \pm 3.7, K_{\Delta S}(x10^4) = 19 \pm 2.8 \pm 2.5.$

However, some of them are **far** from values from the 2-D fit: $\Delta v'_1 = 6.66 + 8.66 \Delta q + 9.93 \Delta S$ or **12.8** $\Delta q + 9.67 \Delta S$ (without intercept c_0^*)

Since $\Delta v'_1$ is a linear function of **both** Δq and ΔS , one should use 2-D fit. One cannot use 1-D fit, e.g., simply fit data as a 1-D function of Δq without correcting for the different ΔS values of the data points.

Demo2) We can convert the STAR hadron sets into our hadron sets:

Quark mass	Δq	ΔS	Δv_1 combination	$F_{\Delta} \times 10^4 \ (27 \text{ GeV})$		Set $\#$	Δq_{ud}	ΔS	Δq	L (left side)	R (right side)
$\Delta m = 0$	0	0	$[ar{p}(ar{u}ar{u}ar{d}) + \phi(sar{s})] - [K^{-}(ar{u}s) + ar{\Lambda}(ar{u}ar{d}ar{s})]$	$03 \pm 43 \pm 13$	-3	1	0	0	0	$v_1[K^-(ar u s)] + v_1[\overline\Lambda(ar u dar s)]$	$v_1[ar p(ar uar uar d)]+v_1[\phi(sar s)]$
$\Delta m \approx 0$	1	2	$[ar{\Lambda}(ar{u}ar{d}ar{s})] - [rac{1}{3}\Omega^-(sss) + rac{2}{3}ar{p}(ar{u}ar{u}ar{d})]$	$41 \pm 25 \pm 16^{2} q(1)$) 8	2	0	0	0	$v_1ig[\overline{\Lambda}(ar{u}ar{d}ar{s})ig]$	$\frac{1}{2}v_1[\bar{p}(\bar{u}\bar{u}\bar{d})] + \frac{1}{2}v_1[\overline{\Xi}^+(\bar{d}\bar{s}\bar{s})]$
$\Delta m \approx 0$	$\frac{4}{3}$	2	$[ar{\Lambda}(ar{u}ar{d}ar{s})] - [K^{-}(ar{u}s) + rac{1}{3}ar{p}(ar{u}ar{u}ar{d})]$	$39 \pm 07 \pm 03$	-55/	/3 3	0	0	0	$rac{1}{3}v_1[\Omega^-(sss)]+rac{1}{3}v_1[\overline{\Omega}^+(ar{s}ar{s}ar{s})]$	$v_1[\phi(sar{s})]$
$\Delta m = 0$	2	6	$[\overline{\Omega}^+(ar{s}ar{s}ar{s})]-[\Omega^-(sss)]$	$83 \pm 130 \pm 25$	23	4	0	1	1/3	$rac{1}{2}v_1[\phi(sar s)]$	$rac{1}{3}v_1[\Omega^-(sss)]$
$\Delta m pprox 0$	$\frac{7}{3}$	4	$[\overline{\Xi}^+(ar{ds}ar{s})] - [K^-(ar{u}s) + rac{1}{3}\Omega^-(sss)]$	$64\pm36\pm19$	21	$5\mathrm{A}$	1/3	1	2/3	$rac{1}{2}v_1[\phi(sar{s})]+rac{1}{3}v_1[ar{p}(ar{u}ar{u}ar{d})]$	$v_1\big[K^-(\bar{u}s)\big]$
	Quark mass $\Delta m = 0$ $\Delta m \approx 0$ $\Delta m \approx 0$ $\Delta m = 0$ $\Delta m \approx 0$	Quark mass Δq $\Delta m = 0$ 0 $\Delta m \approx 0$ 1 $\Delta m \approx 0$ $\frac{4}{3}$ $\Delta m = 0$ 2 $\Delta m \approx 0$ $\frac{7}{3}$	Quark mass Δq ΔS $\Delta m = 0$ 00 $\Delta m \approx 0$ 12 $\Delta m \approx 0$ $\frac{4}{3}$ 2 $\Delta m = 0$ 26 $\Delta m \approx 0$ $\frac{7}{3}$ 4	Quark mass Δq ΔS Δv_1 combination $\Delta m = 0$ 0 $[\bar{p}(\bar{u}\bar{u}\bar{d}) + \phi(s\bar{s})] - [K^-(\bar{u}s) + \bar{\Lambda}(\bar{u}\bar{d}\bar{s})]$ $\Delta m \approx 0$ 12 $[\bar{\Lambda}(\bar{u}\bar{d}\bar{s})] - [\frac{1}{3}\Omega^-(sss) + \frac{2}{3}\bar{p}(\bar{u}\bar{u}\bar{d})]$ $\Delta m \approx 0$ $\frac{4}{3}$ 2 $[\bar{\Lambda}(\bar{u}\bar{d}\bar{s})] - [K^-(\bar{u}s) + \frac{1}{3}\bar{p}(\bar{u}\bar{u}\bar{d})]$ $\Delta m = 0$ 26 $[\overline{\Omega^+}(\bar{s}\bar{s}\bar{s})] - [\Omega^-(sss)]$ $\Delta m \approx 0$ $\frac{7}{3}$ 4 $[\overline{\Xi^+}(\bar{d}\bar{s}\bar{s})] - [K^-(\bar{u}s) + \frac{1}{3}\Omega^-(sss)]$	Quark mass Δq ΔS Δv_1 combination $F_{\Delta} \times 10^4$ (27 GeV) $\Delta m = 0$ 0 $[\bar{p}(\bar{u}\bar{u}\bar{d}) + \phi(s\bar{s})] - [\bar{K}(\bar{u}s) + \bar{\Lambda}(\bar{u}d\bar{s})]$ $03 \pm 43 \pm 13$ $\Delta m \approx 0$ 12 $[\bar{\Lambda}(\bar{u}d\bar{s})] - [\frac{1}{3}\Omega^{-}(sss) + \frac{2}{3}\bar{p}(\bar{u}\bar{u}d\bar{d})]$ $41 \pm 25 \pm 16$ $\Delta m \approx 0$ $\frac{4}{3}$ 2 $[\bar{\Lambda}(\bar{u}d\bar{s})] - [\bar{K}(\bar{u}s) + \frac{1}{3}\bar{p}(\bar{u}\bar{u}d\bar{d})]$ $39 \pm 07 \pm 03$ $\Delta m = 0$ 26 $[\bar{\Omega}^{+}(\bar{s}s\bar{s})] - [\Omega^{-}(sss)]$ $83 \pm 130 \pm 25$ $\Delta m \approx 0$ $\frac{7}{3}$ 4 $[\bar{\Xi}^{+}(\bar{d}\bar{s}\bar{s})] - [\bar{K}(\bar{u}s) + \frac{1}{3}\Omega^{-}(sss)]$ $64 \pm 36 \pm 19$	Quark mass Δq ΔS Δv_1 combination $F_{\Delta} \times 10^4$ (27 GeV) $\Delta m = 0$ 0 $[\bar{p}(\bar{u}\bar{u}\bar{d}) + \phi(s\bar{s})] - [K^-(\bar{u}s) + \bar{\Lambda}(\bar{u}d\bar{s})]$ $03 \pm 43 \pm 13$ -3 $\Delta m \approx 0$ 12 $[\bar{\Lambda}(\bar{u}d\bar{s})] - [\frac{1}{3}\Omega^-(sss) + \frac{2}{3}\bar{p}(\bar{u}\bar{u}\bar{d})]$ $41 \pm 25 \pm 16$ $eq(1)$ $\Delta m \approx 0$ $\frac{4}{3}$ 2 $[\bar{\Lambda}(\bar{u}d\bar{s})] - [K^-(\bar{u}s) + \frac{1}{3}\bar{p}(\bar{u}\bar{u}\bar{d})]$ $39 \pm 07 \pm 03$ 55.7 $\Delta m = 0$ 26 $[\bar{\Omega}^+(\bar{s}\bar{s}\bar{s})] - [\Omega^-(sss)]$ $83 \pm 130 \pm 25$ 23 $\Delta m \approx 0$ $\frac{7}{3}$ 4 $[\bar{\Xi}^+(\bar{d}\bar{s}\bar{s})] - [K^-(\bar{u}s) + \frac{1}{3}\Omega^-(sss)]$ $64 \pm 36 \pm 19$	Quark mass Δq ΔS Δv_1 combination $F_{\Delta} \times 10^4$ (27 GeV)Set # $\Delta m = 0$ 0 $[\bar{p}(\bar{u}\bar{u}\bar{d}) + \phi(s\bar{s})] - [\bar{K}(\bar{u}s) + \bar{\Lambda}(\bar{u}\bar{d}\bar{s})]$ $03 \pm 43 \pm 13$ -3 1 $\Delta m \approx 0$ 12 $[\bar{\Lambda}(\bar{u}\bar{d}\bar{s})] - [\frac{1}{3}\Omega^{-}(sss) + \frac{2}{3}\bar{p}(\bar{u}\bar{u}\bar{d})]$ $41 \pm 25 \pm 16$ $Eq(1)$ 8 $\Delta m \approx 0$ $\frac{4}{3}$ 2 $[\bar{\Lambda}(\bar{u}\bar{d}\bar{s})] - [\bar{K}(\bar{u}s) + \frac{1}{3}\bar{p}(\bar{u}\bar{u}\bar{d})]$ $39 \pm 07 \pm 03$ $-55/3$ 3 $\Delta m \approx 0$ $\frac{4}{3}$ 2 $[\bar{\Lambda}(\bar{u}\bar{d}\bar{s})] - [\bar{K}(\bar{u}s) + \frac{1}{3}\bar{p}(\bar{u}\bar{s}s)]$ $83 \pm 130 \pm 25$ 23 4 $\Delta m \approx 0$ $\frac{7}{3}$ 4 $[\bar{\Xi}^+(\bar{d}\bar{s}\bar{s})] - [\bar{K}(\bar{u}s) + \frac{1}{3}\Omega^-(sss)]$ $64 \pm 36 \pm 19$ 21 $5A$	Quark mass Δq ΔS Δv_1 combination $F_{\Delta} \times 10^4$ (27 GeV)Set # Δq_{ud} $\Delta m = 0$ 0 $[\bar{p}(\bar{u}\bar{u}\bar{d}) + \phi(s\bar{s})] - [\bar{K}(\bar{u}s) + \bar{\Lambda}(\bar{u}\bar{d}\bar{s})]$ $03 \pm 43 \pm 13$ -3 10 $\Delta m \approx 0$ 12 $[\bar{\Lambda}(\bar{u}\bar{d}\bar{s})] - [\frac{1}{3}\Omega^-(sss) + \frac{2}{3}\bar{p}(\bar{u}\bar{u}\bar{d})]$ $03 \pm 43 \pm 13$ $41 \pm 25 \pm 16$ 8 20 $\Delta m \approx 0$ $\frac{4}{3}$ 2 $[\bar{\Lambda}(\bar{u}\bar{d}\bar{s})] - [\bar{K}(\bar{u}s) + \frac{1}{3}\bar{p}(\bar{u}\bar{u}\bar{d})]$ $39 \pm 07 \pm 03$ $83 \pm 130 \pm 25$ 3 0 $\Delta m \approx 0$ $\frac{7}{3}$ 4 $[\bar{\Xi}^+(\bar{d}\bar{s}\bar{s})] - [K^-(\bar{u}s) + \frac{1}{3}\Omega^-(sss)]$ $64 \pm 36 \pm 19$ 21 $5A$ $1/3$	Quark mass Δq ΔS Δv_1 combination $F_{\Delta} \times 10^4$ (27 GeV) Set # Δq_{ud} ΔS $\Delta m = 0$ 0 $[\bar{p}(\bar{u}\bar{u}\bar{d}) + \phi(s\bar{s})] - [\bar{K}(\bar{u}s) + \bar{\Lambda}(\bar{u}\bar{d}\bar{s})]$ $03 \pm 43 \pm 13$ -3 1 0 0 $\Delta m \approx 0$ 1 2 $[\bar{\Lambda}(\bar{u}\bar{d}\bar{s})] - [\frac{1}{3}\Omega^{-}(sss) + \frac{2}{3}\bar{p}(\bar{u}\bar{u}\bar{d})]$ $41 \pm 25 \pm 16$ 8 2 0 0 $\Delta m \approx 0$ $\frac{4}{3}$ 2 $[\bar{\Lambda}(\bar{u}\bar{d}\bar{s})] - [\bar{K}(\bar{u}s) + \frac{1}{3}\bar{p}(\bar{u}\bar{u}\bar{d})]$ $39 \pm 07 \pm 03$ $-55/3$ 3 0 0 $\Delta m \approx 0$ $\frac{7}{3}$ 4 $[\overline{\Xi}^+(\bar{d}\bar{s}\bar{s})] - [\bar{K}(\bar{u}s) + \frac{1}{3}\Omega^-(sss)]$ $64 \pm 36 \pm 19$ $5A$ $1/3$ 1	Quark mass Δq ΔS Δv_1 combination $F_{\Delta} \times 10^4$ (27 GeV)Set # Δq_{ud} ΔS Δq $\Delta m = 0$ 0 $[\bar{p}(\bar{u}\bar{u}\bar{d}) + \phi(s\bar{s})] - [\bar{K}(\bar{u}s) + \bar{\Lambda}(\bar{u}d\bar{s})]$ $03 \pm 43 \pm 13$ -3 1000 $\Delta m \approx 0$ 12 $[\bar{\Lambda}(\bar{u}d\bar{s})] - [\frac{1}{3}\Omega^-(sss) + \frac{2}{3}\bar{p}(\bar{u}\bar{u}d\bar{d})]$ $41 \pm 25 \pm 16$ 8 2000 $\Delta m \approx 0$ $\frac{4}{3}$ 2 $[\bar{\Lambda}(\bar{u}d\bar{s})] - [\bar{K}(\bar{u}s) + \frac{1}{3}\bar{p}(\bar{u}\bar{u}d\bar{d})]$ $39 \pm 07 \pm 03$ 8 2000 $\Delta m \approx 0$ $\frac{7}{3}$ 4 $[\bar{\Xi}^+(\bar{d}\bar{s}\bar{s})] - [\bar{K}(\bar{u}s) + \frac{1}{3}\Omega^-(sss)]$ $64 \pm 36 \pm 19$ $5A$ $1/3$ 1 $2/3$	Quark mass Δq ΔS Δv_1 combination $F_{\Delta} \times 10^4$ (27 GeV)Set # Δq_{ud} ΔS Δq L (left side) $\Delta m = 0$ 0 $[\bar{p}(\bar{u}\bar{u}\bar{d}) + \phi(s\bar{s})] - [\bar{K}(\bar{u}s) + \bar{\Lambda}(\bar{u}\bar{d}\bar{s})]$ $03 \pm 43 \pm 13$ 1 00 $v_1[K^-(\bar{u}s)] + v_1[\bar{\Lambda}(\bar{u}\bar{d}\bar{s})]$ $\Delta m \approx 0$ 12 $[\bar{\Lambda}(\bar{u}\bar{d}\bar{s})] - [\frac{1}{3}\Omega^-(sss) + \frac{2}{3}\bar{p}(\bar{u}\bar{u}\bar{d})]$ $03 \pm 43 \pm 13$ $41 \pm 25 \pm 16$ 8 200 $v_1[K^-(\bar{u}s)] + v_1[\bar{\Lambda}(\bar{u}\bar{d}\bar{s})]$ $\Delta m \approx 0$ $\frac{4}{3}$ 2 $[\bar{\Lambda}(\bar{u}\bar{d}\bar{s})] - [\bar{K}(\bar{u}s) + \frac{1}{3}\bar{p}(\bar{u}\bar{u}\bar{d})]$ $39 \pm 07 \pm 03$ 8 130 ± 25 3 00 $\frac{1}{3}v_1[\Omega^-(sss)] + \frac{1}{3}v_1[\bar{\Omega}^+(\bar{s}\bar{s}\bar{s}\bar{s})]$ $\Delta m \approx 0$ $\frac{7}{3}$ 4 $[\bar{\Xi}^+(\bar{d}\bar{s}\bar{s})] - [K^-(\bar{u}s) + \frac{1}{3}\Omega^-(sss)]$ $64 \pm 36 \pm 19$ $1/3$ $1/3$ $2/3$ $\frac{1}{2}v_1[\phi(s\bar{s})] + \frac{1}{3}v_1[\bar{p}(\bar{u}\bar{u}\bar{d}]]$

This difference is due to the nonzero value at $\Delta q = \Delta S = 0$ (or nonzero c_0^*), which indicates the breaking of CSR.

To further demonstrate this, we set $\Delta v'_1$ data=0 at $\Delta q = \Delta S = 0$ (to test the ideal CSR case) and then convert to the STAR hadron sets:

Index Quark mass	Δq	ΔS	Δv_1 combination			_	Set $\#$	Δq_{ud}	ΔS	Δq	L (left side)	R (right side)
$1 \qquad \Delta m = 0$	0	0	$[ar{p}(ar{u}ar{u}ar{d}) + \phi(sar{s})] - [K^{-}(ar{u}s) + ar{\Lambda}(ar{u}ar{d}ar{s})]$	0	$E_{a}(1)$	0	1	0	0	0	$v_1[K^-(ar u s)] + v_1[\overline\Lambda(ar u ar d ar s)]$	$v_1[ar p(ar uar uar d)]+v_1[\phi(sar s)]$
2 $\Delta m \approx 0$	1	2	$[\bar{\Lambda}(\bar{u}\bar{d}\bar{s})] - [\frac{1}{3}\Omega^{-}(sss) + \frac{2}{3}\bar{p}(\bar{u}\bar{u}\bar{d})]$	44		0	2	0	0	0	$v_1ig[\overline{\Lambda}(ar{u}ar{d}ar{s})ig]$	$\frac{1}{2}v_1[\bar{p}(\bar{u}\bar{u}\bar{d})] + \frac{1}{2}v_1[\overline{\Xi}^+(\overline{d}\bar{s}\bar{s})]$
$\Delta m \approx 0$	$\frac{4}{3}$	2	$[ar{\Lambda}(ar{u}ar{d}ar{s})] - [K^{-}(ar{u}s) + rac{1}{3}ar{p}(ar{u}ar{u}ar{d})]$	42		0	3	0	0	0	$\frac{1}{3}v_1[\Omega^-(sss)] + \frac{1}{3}v_1[\overline{\Omega}^+(\bar{s}\bar{s}\bar{s})]$	$v_1[\phi(sar{s})]$
4 $\Delta m = 0$	2	6	$[\overline{\Omega}^+(ar{s}ar{s}ar{s})]-[\Omega^-(sss)]$	138		23	4	0	1	1/3	$rac{1}{2}v_1[\phi(sar{s})]$	$rac{1}{3}v_1[\Omega^-(sss)]$
5 $\Delta m \approx 0$	$\frac{7}{3}$	4	$[\overline{\Xi}^+(\bar{d}\bar{s}\bar{s})] - [\bar{K}(\bar{u}s) + \frac{1}{3}\Omega^-(sss)]$	86		21	$5\mathrm{A}$	1/3	1	2/3	$rac{1}{2} v_1[\phi(sar{s})] + rac{1}{3} v_1[ar{p}(ar{u}ar{u}ar{d})]$	$v_1\big[K^-(\bar{u}s)\big]$
 From we get A same as 2-D: So S (for the 	$\frac{v_1'}{fit}$ $\frac{fit}{ex}$ TA $\frac{fit}{fit}$	-D w/ of of ac R al	fit of the STAR set $0.00 - 6.00 \Delta q + 6$ o intercept on previour hadron sets give tly the same result (and our hadron sets <i>case where CSR is</i>	s tes - 25. ious es (as e are satis	t data, $0 \Delta S$ slide (a xpected equiva fied).	as ex d). lent	kpec	ted).	Te ∆v1	st '(*10 ⁴	20 0 10 0 0.0 0.2 Δq 0.4	1.0 0.5ΔS

When we follow STAR arXiv:2304.02831, 1-D fits of the STAR sets test data give

 $\Delta v'_1 = -3.33 + 49.0 \,\Delta q \quad \text{or} \quad 47.2 \,\Delta q \text{ (without intercept)}$ & $\Delta v'_1 = -2.08 + 22.9 \,\Delta S \text{ or} \quad 22.4 \,\Delta S \text{ (without intercept)}$ Some of them can be **far** from values of the 2-D fit and are thus incorrect.

Demo3) we scale the STAR Index4 set by $\frac{1}{2}$ (*still the same ideal case* v_1 *test data*):

From 1-D fits of the scaled test data, we get $\Delta v'_1 = 9.13 + 34.5 \,\Delta q$ or $40.1 \,\Delta q$ (w/o intercept) & $\Delta v'_1 = 21.9 \,\Delta S$ (with or w/o intercept). They are different from 1-D fits of the unscaled test data: $\Delta v'_1 = -3.33 + 49.0 \,\Delta q$ or $47.2 \,\Delta q$ (w/o intercept) & $\Delta v'_1 = -2.08 + 22.9 \,\Delta S$. or $22.4 \,\Delta S$ (w/o intercept). \rightarrow 1-D slope parameters depend on the **arbitrary** scaling factor of hadron sets, this is unphysical.

Demo3) we scale the STAR Index4 set by $\frac{1}{2}$ (*still the same ideal case* v_1 *test data*):

Index	Quark mass	Δq	ΔS	Δv_1 combination	
1	$\Delta m = 0$	0	0	$[\bar{p}(\bar{u}\bar{u}\bar{d}) + \phi(s\bar{s})] - [\bar{K}(\bar{u}s) + \bar{\Lambda}(\bar{u}\bar{d}\bar{s})]$	0
2	$\Delta m \approx 0$	1	2	$[\bar{\Lambda}(\bar{u}\bar{d}\bar{s})] - [\frac{1}{3}\Omega^{-}(sss) + \frac{2}{3}\bar{p}(\bar{u}\bar{u}\bar{d})]$	44
3	$\Delta m \approx 0$	$\frac{4}{3}$	2	$[ar{\Lambda}(ar{u}ar{d}ar{s})] - [K^{-}(ar{u}s) + rac{1}{3}ar{p}(ar{u}ar{u}ar{d})]$	42
4	$\Delta m = 0$	2	6	$[\overline{\Omega}^+(ar{s}ar{s}ar{s})]-[\Omega^-(sss)]$	138
5	$\Delta m \approx 0$	$\frac{7}{3}$	4	$[\overline{\Xi}^+(\bar{d}\bar{s}\bar{s})] - [\bar{K}(\bar{u}s) + \frac{1}{3}\Omega^-(sss)]$	86

	0
	44
	42
	69
•	80

Index	Quark mass	Δq	ΔS	Δv_1 combination
1	$\Delta m = 0$	0	0	$ar{[ar{p}(ar{u}ar{u}ar{d})+\phi(sar{s})]-[K^{-}(ar{u}s)+ar{\Lambda}(ar{u}ar{d}ar{s})]}$
2	$\Delta m \approx 0$	1	2	$[\bar{\Lambda}(\bar{u}\bar{d}\bar{s})] - [\frac{1}{3}\Omega^{-}(sss) + \frac{2}{3}\bar{p}(\bar{u}\bar{u}\bar{d})]$
3	$\Delta m \approx 0$	$\frac{4}{3}$	2	$[ar{\Lambda}(ar{u}ar{d}ar{s})] - [K^{-}(ar{u}s) + rac{1}{3}ar{p}(ar{u}ar{u}ar{d})]$
4	$\Delta m = 0$	2 /2	6 /2	$\left([\overline{\Omega}^+(\bar{s}\bar{s}\bar{s})]-[\Omega^-(sss)] ight)/2$
5	$\Delta m \approx 0$	$\frac{7}{3}$	4	$[\overline{\Xi}^+(\bar{d}\bar{s}\bar{s})] - [\bar{K}(\bar{u}s) + \frac{1}{3}\Omega^-(sss)]$

Slope parameters $K_{\Delta q}$ & $K_{\Delta S}$ from 1-D fits depend on the **arbitrary** scaling factor of hadron sets in the ideal CSR case and are thus ill-defined; so one cannot do simple 1-D fit of the data points.

Note: the numerical differences between 1-D and 2-D coefficients depend on uncertainties of the actual data; the difference could be small when data error bars are large. Our purpose here is to show the 1-D fit method to be mathematically incorrect.

Summary

Relations for v_1 differences of combinations of produced hadrons are derived from the quark coalescence sum rule (CSR).

 Δv_1 or $\Delta v'_1$ is a linear function of both Δq and ΔS , or of both Δq and ΔB , and the coefficients reflect quark-level v_1 differences.

To extract the dependences from the five independent data points, one cannot do simple 1-D fit because those coefficients are ill-defined. One should do 2-D fit with $\Delta v'_1 = c_0^* + c_q^* \Delta q + c_s^* \Delta S$ or $c_0 + c_q \Delta q_{ud} + c_s \Delta S$; nonzero c_0 or c_0^* (or dependence of coefficients on choice of hadron sets) indicates the breaking or CSR.

The coefficients can be obtained analytically after we combine the five independent data points into three.

Electromagnetic fields do not affect these CSR relations, but they should affect the value of the coefficients.

Thanks for your attention!