Dependences of Directed Flow on Net Conserved Charges from Quark Coalescence

Zi-Wei Lin
East Carolina University

The 21st International Conference on Strangeness in Quark Matter Strasbourg, France, June 3-7, 2024

Outline

Introduction

(1) Coalescence sum rule relations for Δv_{1}
(2) Extracting the $\Delta q, \Delta S$, or ΔB dependences
(3) Demonstration with the STAR data

Summary
(1) and (2) are based on work with Kishora Nayak and Shusu Shi:

Phys. Lett. B 849 (2024) 138479 \& Universe 10 (2024) 3, 112

National

Introduction

- Directed flow v_{1} depends on properties of the created matter in heavy ion collisions such as the equation of state and electromagnetic fields.

Sorge, Phys. Rev. Lett. 78 (1997) 2309;
Herrmann, Wessels, Wienold, Annu. Rev.
Nucl. Part. Sci. 49 (1999) 581;
Das, Plumari, Chatterjee, Alam, Scardina,
Greco, Phys. Lett. B 768 (2017) 260;
STAR, Phys. Rev. X 14 (2024) 1, 011028

- Directed flow v_{1}, like elliptic flow v_{2}, are expected to follow the coalescence sum rule (CSR) or NCQ scaling when initial matter is in parton degrees of freedom and hadronizes via quark coalescence.

Greco, Ko, Levai, Phys. Rev. Lett. 90 (2003) 202302;
Fries, Muller, Nonaka, Bass, Phys. Rev. Lett. 90 (2003) 202303;
Molnár, Voloshin, Phys. Rev. Lett. 91 (2003) 092301

- CSR relates the primordial hadron v_{n} to the sum of v_{n} of its constituent quarks.
- If 2 combination of hadrons have the same constituent quarks, we expect their v_{1} to be the same.

Introduction

To avoid complications from transported u / d quarks, combinations consisting of 7 produced hadrons ($K^{-}, \phi, \bar{p}, \bar{\Lambda}, \bar{\Xi}^{+}, \bar{\Omega}, \Omega$) were constructed: two sides in each combination have the same $N_{\bar{u}}+N_{\bar{d}}$ and the same $N_{s}+N_{\bar{s}}$.

Sheikh, Keane, Tribedy, Phys. Rev. C 105 (2022) 014912

Index	Quark mass	Charge	Strangeness	Δv_{1} combination
1	$\Delta m=0$	$\Delta q=0$	$\Delta S=0$	$\Delta S=0$
2	$\Delta m=0$	$\Delta q=0$	$\Delta S=0$	$[\bar{p}(\bar{u} \bar{u} \bar{d})+\phi(s \bar{s})]-\left[K^{-}(\bar{u} s)+\bar{\Lambda}(\bar{u} \bar{d} \bar{s})\right]$
3	$\Delta m \approx 0$	$\Delta q=\frac{1}{3}$	$\Delta S=1$	$\left[\bar{\Xi}^{+}(\bar{d} \bar{s} \bar{s})+K^{\prime}(\bar{u} s)\right]-[\bar{\Lambda}(\bar{u} \bar{d} \bar{s})+\phi(s \bar{s})]$
4	$\Delta m \approx 0$	$\Delta q=\frac{2}{3}$	$\frac{1}{3}\left[\Omega^{-}(s s s)+\bar{p}(\bar{u} \bar{u} \bar{d})\right]-\left[K^{-}(\bar{u} s)\right]$	
5	$\Delta m \approx 0$	$\Delta q=1$	$[\bar{\Lambda}(\bar{u} \bar{d} \bar{s})]-\left[\frac{1}{2} \phi(s \bar{s})+\frac{2}{3} \bar{p}(\bar{u} \bar{u} \bar{d})\right]$	
6	$\Delta m \approx 0$	$\Delta q=\frac{4}{3}$	$\Delta S=2$	$[\bar{\Lambda}(\bar{u} \bar{d} \bar{s})]-\left[\frac{1}{3} \Omega^{-}(s s s)+\frac{2}{3} \bar{p}(\bar{u} \bar{u} \bar{d})\right]$
7	$\Delta m \approx 0$	$\Delta q=\frac{4}{3}$	$\Delta \bar{\Lambda}(\bar{u} \bar{d} \bar{s})]-\left[K^{(}(\bar{u} s)+\frac{1}{3} \bar{p}(\bar{u} \bar{u} \bar{d})\right]$	
8	$\Delta m \approx 0$	$\Delta q=\frac{5}{3}$	$\left[\bar{\Xi}^{+}(\bar{d} \bar{s} \bar{s})\right]-\left[\phi(s \bar{s})+\frac{1}{3} \bar{p}(\bar{u} \bar{u} \bar{d})\right]$	
9	$\Delta m=0$	$\Delta q=2$	$\left[\bar{\Xi}^{+}(\bar{d} \bar{s} \bar{s})\right]-\left[K^{-}(\bar{u} s)+\frac{1}{3} \bar{\Omega}^{+}(\bar{s} s \bar{s})\right]$	
10	$\Delta m \approx 0$	$\Delta q=\frac{7}{3}$	$\left[\bar{\Omega}^{+}(\bar{s} \bar{s} \bar{s})\right]-\left[\Omega^{-}(s s s)\right]$	

Non-zero v_{1} difference of the two sides in these hadron sets, especially if Δv_{1} depends on $\Delta \mathrm{q}$ from the data, was proposed to be a consequence of electromagnetic fields.

Introduction

There are only 5 independent hadron sets for such hadron combinations.

Sheikh, Keane, Tribedy, Phys. Rev. C 105 (2022) 014912
Nayak, Shi \& ZWL, Phys. Lett. B 849 (2024) 138479

For example, our default choice $=$ Sets 1, 2, 3, 4, 5A.

Set \#	$\Delta q_{u d}$	ΔS	Δq	L (left side)	R (right side)
1	0	0	0	$v_{1}\left[K^{-}(\bar{u} s)\right]+v_{1}[\bar{\Lambda}(\bar{u} \bar{d} \bar{s})]$	$v_{1}[\bar{p}(\bar{u} \bar{u} \bar{d})]+v_{1}[\phi(s \bar{s})]$
2	0	0	0	$v_{1}[\Lambda(\bar{u} \bar{d} \bar{s})]$	$\frac{1}{2} v_{1}[\bar{p}(\bar{u} \bar{u} \bar{d})]+\frac{1}{2} v_{1}\left[\bar{\Xi}^{+}(\bar{d} \bar{s} \bar{s})\right]$
3	0	0	0	$\frac{1}{3} v_{1}\left[\Omega^{-}(s s s)\right]+\frac{1}{3} v_{1}\left[\bar{\Omega}^{+}\left({ }_{s} \bar{s} \bar{s}\right)\right]$	$v_{1}[\phi(s \bar{s})]$
4	0	1	$1 / 3$	$\frac{1}{2} v_{1}[\phi(s \bar{s})]$	$\frac{1}{3} v_{1}\left[\Omega^{-}(s s s)\right]$
5A	$1 / 3$	1	$2 / 3$	$\frac{1}{2} v_{1}[\phi(s \bar{s})]+\frac{1}{3} v_{1}[\bar{p}(\bar{u} \bar{u} \bar{d})]$	$v_{1}\left[K^{-}(\bar{u} s)\right]$
5B	$1 / 3$	1	$2 / 3$	$\left.v_{1}[\Lambda \bar{u} \bar{u} \bar{d})\right]$	$\frac{1}{2} v_{1}[\phi(s \bar{s})]+\frac{2}{3} v_{1}[\bar{p}(\bar{u} \bar{u} \bar{d})]$

- One can choose other 5 independent hadron sets, e.g., Sets 1, 2, 3, 4, 5B,
- Any other hadron set will not be independent, including a hadron set with the hadron weights scaled by a constant.

For example, $\operatorname{Set} 5 \mathrm{~B}=\operatorname{Set} 1+\operatorname{Set} 5 \mathrm{~A}$ and is not independent of Choice 1 ; hadron set $(3 \phi-2 \Omega)$ is equivalent to $\operatorname{Set} 4(\phi / 2-\Omega / 3) \quad($ scaled by $1 / 6)$

Introduction

Relations between our 5 hadron sets and those used by STAR:
Index $1=-\operatorname{Set} 1$, Index $2=\operatorname{Set} 1+\operatorname{Set} 4+\operatorname{Set} 5 A, \operatorname{Index} 3=\operatorname{Set} 1+2 * \operatorname{Set} 5 A$,
Index $4=3 * \operatorname{Set} 3+6 * \operatorname{Set} 4$, Index $5=2 * \operatorname{Set} 1-2 * \operatorname{Set} 2+\operatorname{Set} 4+3 * \operatorname{Set} 5 A$.
So they are equivalent.
Nayak, Shi \& ZWL, Phys. Lett. B 849 (2024) 138479

Set \#	$\Delta q_{u d}$	ΔS	Δq	L (left side)	R (right side)
1	0	0	0	$v_{1}\left[K^{-}(\bar{u} s)\right]+v_{1}[\bar{\Lambda}(\bar{u} \bar{d} \bar{s})]$	$v_{1}[\bar{p}(\bar{u} \bar{u} \bar{d})]+v_{1}[\phi(s \bar{s})]$
2	0	0	0	$v_{1}[\Lambda(\bar{u} \bar{d} \bar{s})]$	$\frac{1}{2} v_{1}[\bar{p}(\bar{u} \bar{u} \bar{d})]+\frac{1}{2} v_{1}\left[\bar{\Xi}^{+}(\bar{d} \bar{s} \bar{s})\right]$
3	0	0	0	$\frac{1}{3} v_{1}\left[\Omega^{-}(s s s)\right]+\frac{1}{3} v_{1}\left[\bar{\Omega}^{+}(\bar{s} \bar{s} \bar{s})\right]$	$v_{1}[\phi(s \bar{s})]$
4	0	1	$1 / 3$	$\frac{1}{2} v_{1}[\phi(s \bar{s})]$	$\frac{1}{3} v_{1}\left[\Omega^{-}(s s s)\right]$
5A	$1 / 3$	1	$2 / 3$	$\frac{1}{2} v_{1}[\phi(s \bar{s})]+\frac{1}{3} v_{1}[\bar{p}(\bar{u} \bar{u} \bar{d})]$	$v_{1}\left[K^{-}(\bar{u} s)\right]$
5B	$1 / 3$	1	$2 / 3$	$v_{1}[\bar{\Lambda}(\bar{u} \bar{d} \bar{s})]$	$\frac{1}{2} v_{1}[\phi(s \bar{s})]+\frac{2}{3} v_{1}[\bar{p}(\bar{u} \bar{u} \bar{d})]$

Index Quark mass		Δq	ΔS	Δv_{1} combination
1	$\Delta m=0$	0	0	$[\bar{p}(\bar{u} \bar{u} \bar{d})+\phi(s \bar{s})]-\left[K^{-}(\bar{u} s)+\bar{\Lambda}(\bar{u} \bar{d} \bar{s})\right]$
2	$\Delta m \approx 0$	1	2	$[\bar{\Lambda}(\bar{u} \bar{d} \bar{s})]-\left[\frac{1}{3} \Omega^{-}(s s s)+\frac{2}{3} \bar{p}(\bar{u} \bar{u} \bar{d})\right]$
3	$\Delta m \approx 0$	$\frac{4}{3}$	2	$[\bar{\Lambda}(\bar{u} \bar{d} \bar{s})]-\left[K^{-}(\bar{u} s)+\frac{1}{3} \bar{p}(\bar{u} \bar{u} \bar{d})\right]$
4	$\Delta m=0$	2	6	$\left[\bar{\Omega}^{+}(\bar{s} \bar{s} \bar{s})\right]-\left[\Omega^{-}(s s s)\right]$
5	$\Delta m \approx 0$	$\frac{7}{3}$	4	$\left[\bar{\Xi}^{+}(\bar{d} \bar{s} \bar{s})\right]-\left[K^{-}(\bar{u} s)+\frac{1}{3} \Omega^{-}(s s s)\right]$

Coalescence sum rule relations for $\Delta \mathrm{v}_{1}$

Hadrons formed via quark coalescence are expected to follow CSR:

$$
v_{n}^{H}\left(p_{T}^{H}\right)=\sum_{j} v_{n}^{j}\left(p_{T}^{j}\right)
$$

We neglect the mass difference of u, d and s constituent quarks, then every constituent quark in a hadron has the same p_{T} :

$$
\begin{equation*}
v_{n}^{H}\left(p_{T}^{H}\right)=\sum_{j} v_{n}^{j}\left(p_{T}\right) \tag{2}
\end{equation*}
$$

When v_{n} of different quark species are the same, $\mathrm{Eq}(2)$ reduces to the NCQ scaling relation:

$$
\begin{gathered}
v_{2}^{H}\left(p_{T}^{H}\right)=N_{c q} v_{n}\left(p_{T}\right) \\
\text { with } \quad p_{T}^{H}=N_{c q} p_{T}
\end{gathered}
$$

Coalescence sum rule relations for $\Delta \mathrm{v}_{1}$

Index	Quark mass	Charge	Strangeness	Δv_{1} combination
1	$\Delta m=0$	$\Delta q=0$	$\Delta S=0$	$[\bar{p}(\bar{u} \bar{u} \bar{d})+\phi(s \bar{s})]-[K(\bar{u} s)+\bar{\Lambda}(\bar{u} \bar{d} \bar{s})]$
2	$\Delta m=0$	$\Delta q=0$	$\Delta S=0$	$\left[\bar{\Xi}^{+}(\bar{d} \bar{s} \bar{s})+K(\bar{u} s)\right]-[\bar{\Lambda}(\bar{u} \bar{d} \bar{s})+\phi(s \bar{s})]$
3	$\Delta m \approx 0$	$\Delta q=\frac{1}{3}$	$\Delta S=0$	$\frac{1}{3}\left[\Omega^{-}(s s s)+\bar{p}(\bar{u} \bar{u} \bar{d})\right]-[K(\bar{u} s)]$
4	$\Delta m \approx 0$	$\Delta q=\frac{2}{3}$	$\Delta S=1$	$[\bar{\Lambda}(\bar{u} \bar{d} \bar{s})]-\left[\frac{1}{2} \phi(s \bar{s})+\frac{2}{3} \bar{p}(\bar{u} \bar{u} \bar{d})\right]$
5	$\Delta m \approx 0$	$\Delta q=1$	$\Delta S=2$	$[\bar{\Lambda}(\bar{u} \bar{d} \bar{s})]-\left[\frac{1}{3} \Omega^{-}(s s s)+\frac{2}{3} \bar{p}(\bar{u} \bar{u} \bar{d})\right]$
6	$\Delta m \approx 0$	$\Delta q=\frac{4}{3}$	$\Delta S=2$	$[\bar{\Lambda}(\bar{u} \bar{d} \bar{s})]-\left[K^{(}(\bar{u} s)+\frac{1}{3} \bar{p}(\bar{u} \bar{u} \bar{d})\right]$
7	$\Delta m \approx 0$	$\Delta q=\frac{4}{3}$	$\Delta S=2$	$\left[\bar{E}^{+}(\bar{d} \bar{s} \bar{s})\right]-\left[\phi(s \bar{s})+\frac{1}{3} \bar{p}(\bar{u} \bar{u} \bar{d})\right]$
8	$\Delta m \approx 0$	$\Delta q=\frac{5}{3}$	$\Delta S=2$	$\left[\bar{\Xi}^{+}(\bar{d} \bar{s} \bar{s})\right]-\left[K(\bar{u} s)+\frac{1}{3} \bar{\Omega}^{+}(\bar{s} \bar{s} \bar{s})\right]$
9	$\Delta m=0$	$\Delta q=2$	$\Delta S=6$	$\left[\bar{\Omega}^{+}(\overline{s s} \bar{s})\right]-\left[\Omega^{-}(s s s)\right]$
10	$\Delta m \approx 0$	$\Delta q=\frac{7}{3}$	$\Delta S=4$	$\left[\bar{\Xi}^{+}(\bar{d} \bar{s} \bar{s})\right]-\left[K^{-}(\bar{u} s)+\frac{1}{3} \Omega^{-}(s s s)\right]$

	Index	Qua	rk mass	s Δq	ΔS	Δv_{1} comb	nation
	1	$\Delta m=0$		0	0	$[\bar{p}(\bar{u} \bar{u} \bar{d})+\phi($	$)]-\left[\overline{K^{(}(\bar{u} s)+\bar{\Lambda}(\bar{u} \bar{d} \bar{s})}\right]$
	2	$\Delta m \approx 0$		1	2	$[\bar{\Lambda}(\bar{u} \bar{d} \bar{s})]-[$	$\left.{ }^{-}(s s s)+\frac{2}{3} \bar{p}(\bar{u} \bar{u} \bar{d})\right]$
	3	$\Delta m \approx 0$		$\frac{4}{3}$	2	$[\bar{\Lambda}(\bar{u} \bar{d} \bar{s})]-[K$	$\left.(\bar{u} s)+\frac{1}{3} \bar{p}(\bar{u} \bar{u} \bar{d})\right]$
	4	$\Delta m=0$		2	6	$\left[\bar{\Omega}^{+}(\bar{s} \bar{s} \bar{s})\right]-[$	- (sss)]
	5	$\Delta m \approx 0$		$\frac{7}{3}$	4	$\left[\bar{\Xi}^{+}(\bar{d} \bar{s} \bar{s})\right]-[$	$\left.{ }^{-}(\bar{u} s)+\frac{1}{3} \Omega^{-}(s s s)\right]$
Set \#	$\Delta q_{u d}$	ΔS	Δq		L (le	ft side)	R (right side)
1	0	0	0		$\left.K^{-}(\bar{u} s)\right]$	$+v_{1}[\bar{\Lambda}(\bar{u} \bar{d} \bar{s})]$	$v_{1}[\bar{p}(\bar{u} \bar{u} \bar{d})]+v_{1}[\phi(s \bar{s})]$
2	0	0	0		v_{1} [($\bar{u} \bar{d} \bar{s})]$	$\frac{1}{2} v_{1}[\bar{p}(\bar{u} \bar{u} \bar{d})]+\frac{1}{2} v_{1}\left[\left[^{+}(\bar{d} \bar{s} \bar{s})\right]\right.$
3	0	0	$0 \quad \frac{1}{3}$	$\frac{1}{3} v_{1}\left[\Omega^{-}\right.$	(sss)]	$+\frac{1}{3} v_{1}\left[\bar{\Omega}^{+}(\bar{s} \bar{s} \bar{s})\right]$	$v_{1}[\phi(s \bar{s})]$
4	0	1	1/3			[$\phi(s \bar{s})$]	$\frac{1}{3} v_{1}\left[\Omega^{-}(s s s)\right]$
5A	1/3		2/3	$\frac{1}{2} v_{1}[$	$\phi(s \bar{s})]$	$+\frac{1}{3} v_{1}[\bar{p}(\bar{u} \bar{u} \bar{d})]$	$v_{1}\left[K^{-}(\bar{u} s)\right]$
5B	1/3		$2 / 3$		v_{1} [($\bar{u} \bar{d} \bar{s})]$	$\frac{1}{2} v_{1}[\phi(s \bar{s})]+\frac{2}{3} v_{1}[\bar{p}(\bar{u} \bar{u} \bar{d})]$

For every such hadron set, the two sides have the same $N_{\bar{u}}+N_{\bar{d}}$ and the same $N_{s}+N_{\bar{s}}$.
So the differences between the two sides in electric charge and strangeness are given by

$$
\Delta q=\Delta N_{\bar{d}}+\frac{2}{3} \Delta N_{\bar{s}}, \quad \Delta S=2 \Delta N_{\bar{s}}
$$

CSR of $\mathrm{Eq}(2)$ then gives $\Delta v_{1} \equiv v_{1}^{L}-v_{1}^{R}=\sum_{i=\bar{u}, \bar{d}, s, \bar{s}} \Delta N_{i} v_{1, i}$

$$
\begin{equation*}
=\left(v_{1, \bar{d}}-v_{1, \bar{u}}\right) \Delta q+\left(\frac{v_{1, \bar{s}}-v_{1, s}}{2}-\frac{v_{1, \bar{d}}-v_{1, \bar{u}}}{3}\right) \Delta S \tag{3}
\end{equation*}
$$

Coalescence sum rule relations for $\Delta \mathrm{v}_{1}$

The relation gets simpler
when we use the electric charge difference from \bar{u} and \bar{d} :

$$
\Delta q_{u d} \equiv q_{u d}^{L}-q_{u d}^{R}=\Delta q-\frac{1}{3} \Delta S
$$

Then $\mathrm{Eq}(3)$ becomes

$$
\begin{equation*}
\Delta v_{1}=\left(v_{1, \bar{d}}-v_{1, \bar{u}}\right) \Delta q_{u d}+\left(\frac{v_{1, \bar{s}}-v_{1, s}}{2}\right) \Delta S \tag{4}
\end{equation*}
$$

So CSR predicts:

- Δv_{1} depends linearly on both Δq and ΔS
- the coefficients reflect quark-level v_{1} differences for quarks of different electric charges, so they should be affected by electromagnetic fields
- $\Delta v_{1}=0 \quad$ if $\Delta q=\Delta S=0, \quad$ while $\Delta v_{1} \neq 0 \quad$ if Δq or $\Delta S \neq 0$

Extracting the $\Delta \mathrm{q}, \Delta \mathrm{S}$, or $\Delta \mathrm{B}$ dependences

The same applies to the v_{1} slope differences:

$$
\begin{aligned}
& \Delta v_{1}^{\prime}=\left(v_{1, \bar{d}}^{\prime}-v_{1, \bar{u}}^{\prime}\right) \Delta q_{u d}+\left(\frac{v_{1, \bar{s}}^{\prime}-v_{1, s}^{\prime}}{2}\right) \Delta S \\
& =\left(v_{1, \bar{d}}^{\prime}-v_{1, \bar{u}}^{\prime}\right) \Delta q+\left(\frac{v_{1, \bar{s}}^{\prime}-v_{1, s}^{\prime}}{2}-\frac{v_{1, \bar{d}}^{\prime}-v_{1, \bar{u}}^{\prime}}{3}\right) \Delta S
\end{aligned}
$$

To extract the dependences, a 2-variable linear function (a plane over Δq and ΔS) should be used
to fit the five independent data points

$$
\Delta v_{1}^{\prime}=c_{0}+c_{q} \Delta q_{u d}+c_{S} \Delta S
$$

$$
\text { or } \quad c_{0}^{*}+c_{q}^{*} \Delta q+c_{S}^{*} \Delta S
$$

Nayak, Shi \& ZWL, Phys. Lett. B 849 (2024) 138479

- Although CSR expects $c_{0}=0$ and $c_{0}^{*}=0$, we add them in the fit function, because a non-zero c_{0} or c_{0}^{*} value extracted from data indicates the breaking of CSR.
- A linear combination or scaling of hadron sets changes the value of non-zero c_{0} or c_{0}^{*}, so dependence of coefficients on the choice of hadron sets also indicates the breaking of CSR.

Extracting the $\Delta \mathrm{q}, \Delta \mathrm{S}$, or $\Delta \mathrm{B}$ dependences

Set \#	$\Delta q_{u d}$	ΔS	Δq	L (left side)	R (right side)
1	0	0	0	$v_{1}\left[K^{-}(\bar{u} s)\right]+v_{1}[\bar{\Lambda}(\bar{u} \bar{d} \bar{s})]$	$v_{1}[\bar{p}(\bar{u} \bar{u} \bar{d})]+v_{1}[\phi(s \bar{s})]$
2	0	0	0	$v_{1}[\Lambda(\bar{u} \bar{d} \bar{s})]$	$\frac{1}{2} v_{1}[\bar{p}(\bar{u} \bar{u} \bar{d})]+\frac{1}{2} v_{1}\left[\bar{\Xi}^{+}(\bar{d} \bar{s} \bar{s})\right]$
3	0	0	0	$\frac{1}{3} v_{1}\left[\Omega^{-}(s s s)\right]+\frac{1}{3} v_{1}\left[\bar{\Omega}^{+}\left({ }_{s} \bar{s} \bar{s}\right)\right]$	$v_{1}[\phi(s \bar{s})]$
4	0	1	$1 / 3$	$\frac{1}{2} v_{1}[\phi(s \bar{s})]$	$\frac{1}{3} v_{1}\left[\Omega^{-}(s s s)\right]$
5A	$1 / 3$	1	$2 / 3$	$\frac{1}{2} v_{1}[\phi(s \bar{s})]+\frac{1}{3} v_{1}[\bar{p}(\bar{u} \bar{u} \bar{d})]$	$v_{1}\left[K^{-}(\bar{u} s)\right]$
5B	$1 / 3$	1	$2 / 3$	$v_{1}[\Lambda(\bar{u} \bar{d} \bar{s})]$	$\frac{1}{2} v_{1}[\phi(s \bar{s})]+\frac{2}{3} v_{1}[\bar{p}(\bar{u} \bar{u} \bar{d})]$

Nayak, Shi \& ZWL, Phys. Lett. B 849 (2024) 138479
Since our Sets 1, 2, 3 all have $\Delta q_{u d}=\Delta S=\Delta q=0$, we can combine their data into one.
Then we will have 3 data points: $\Delta v_{1,1-3}^{\prime}, \Delta v_{1,4}^{\prime} \& \Delta v_{1,5}^{\prime}$.

For $\Delta v_{1}^{\prime}=c_{0}+c_{q} \Delta q_{u d}+c_{S} \Delta S$ we can analytically extract

$$
\begin{aligned}
& c_{0}=\Delta v_{1,1-3}^{\prime} \\
& c_{q}=-3\left(\Delta v_{1,4}^{\prime}-\Delta v_{1,5}^{\prime}\right) \\
& c_{S}=-\Delta v_{1,1-3}^{\prime}+\Delta v_{1,4}^{\prime}
\end{aligned}
$$

We call this the 3-set method.

Extracting the $\Delta \mathrm{q}, \Delta \mathrm{S}$, or $\Delta \mathrm{B}$ dependences

CSR gives

$$
\begin{gathered}
\Delta v_{1}^{\prime}=c_{0}+c_{q} \Delta q_{u d}+c_{S} \Delta S \\
\text { with } c_{0}=0, \quad c_{q}=v_{1, \bar{d}}^{\prime}-v_{1, \bar{u}}^{\prime}, \quad c_{S}=\frac{1}{2}\left(v_{1, \bar{s}}^{\prime}-v_{1, S}^{\prime}\right)
\end{gathered}
$$

For these hadron combinations, $\Delta B=-\Delta S / 3$,
so Δv_{1}^{\prime} can also be written as

$$
\begin{gathered}
\Delta v_{1}^{\prime}=c_{0}+c_{q} \Delta q_{u d}+c_{B} \Delta B \\
\text { with } c_{B}=-3 c_{S}=\frac{3}{2}\left(v_{1, s}^{\prime}-v_{1, \bar{s}}^{\prime}\right)
\end{gathered}
$$

Nayak, Shi \& ZWL, Universe 10 (2024) 3, 112

Demonstration with the STAR data

We now demonstrate a correct way of extracting the Δq and ΔS dependences by using the STAR $10-40 \% \mathrm{Au}+\mathrm{Au}$ data at 27 A GeV as example (central values only for demonstration, without considering the error bars).

| Index Quark mass | Δq | ΔS | Δv_{1} combination | | $F_{\Delta} \times 10^{4}(27 \mathrm{GeV})$ | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |$=\Delta v_{1}^{\prime} * 10^{4}$

Demo1) Using the 5 -set method, we perform 2-D fit of the five data points (after * 10^{4}) with $\quad \Delta v_{1}^{\prime}=c_{0}^{*}+c_{q}^{*} \Delta q+c_{S}^{*} \Delta S$

We get $\quad \Delta v_{1}^{\prime}=6.66+8.66 \Delta q+9.93 \Delta S$
or $\quad 12.8 \Delta q+9.67 \Delta S$ (without intercept c_{0}^{*})

Demonstration with the STAR data

When we follow the STAR method in STAR arXiv:2304.02831 and perform 1-D fits with $\quad \Delta v_{1}^{\prime}=K_{\Delta q} \Delta q \quad \& \quad \Delta v_{1}^{\prime}=K_{\Delta S} \Delta S$ (without intercept),
we get $\quad \Delta v_{1}^{\prime}=33.4 \Delta q \quad \& \quad \Delta v_{1}^{\prime}=15.2 \Delta S$

They are close to the STAR values in STAR arXiv:2304.02831:
$\mathrm{K}_{\Delta \mathrm{q}}\left(\mathrm{x} 10^{4}\right)=29 \pm 4.2 \pm 3.7, \mathrm{~K}_{\Delta \mathrm{S}}\left(\mathrm{x} 10^{4}\right)=19 \pm 2.8 \pm 2.5$.
However, some of them are far from values from the 2-D fit:
$\Delta v_{1}^{\prime}=6.66+8.66 \Delta q+9.93 \Delta S$
or $\quad \mathbf{1 2 . 8} \Delta q+9.67 \Delta S$ (without intercept c_{0}^{*})
Since Δv_{1}^{\prime} is a linear function of both Δq and ΔS, one should use 2-D fit.
One cannot use 1-D fit, e.g., simply fit data as a 1-D function of Δq without correcting for the different ΔS values of the data points.

Demonstration with the STAR data

Demo2) We can convert the STAR hadron sets into our hadron sets:

Index	Quark mass	Δq	ΔS	Δv_{1} combination	$F_{\Delta} \times 10^{4}(27 \mathrm{GeV})$		Set \#	$\Delta q_{u d}$	ΔS	Δq	L (left side)	R (right side)
1	$\Delta m=0$	0	0	$[\bar{p}(\bar{u} \bar{u} \bar{d})+\phi(s \bar{s})]-\left[K^{-}(\bar{u} s)+\bar{\Lambda}(\bar{u} \bar{d} \bar{s})\right]$	$03 \pm 43 \pm 13$	-3	1	0	0	0	$v_{1}\left[K^{-}(\bar{u} s)\right]+v_{1}[\bar{\Lambda}(\bar{u} \bar{d} \bar{s})]$	$v_{1}[\bar{p}(\bar{u} \bar{u} \bar{d})]+v_{1}[\phi(s \bar{s})]$
2	$\Delta m \approx 0$	1	2	$[\bar{\Lambda}(\bar{u} \bar{d} \bar{s})]-\left[\frac{1}{3} \Omega^{-}(s s s)+\frac{2}{3} \bar{p}(\bar{u} \bar{u} \bar{d})\right]$	$41 \pm 25 \pm 16 \mathrm{Eq}(1)$	8	2	0	0	0	$v_{1}[\bar{\Lambda}(\bar{u} \bar{d} \bar{s})]$	$\frac{1}{2} v_{1}[\bar{p}(\bar{u} \bar{u} \bar{d})]+\frac{1}{2} v_{1}\left[\bar{\Xi}^{+}(\bar{d} \bar{s} \bar{s})\right]$
3	$\Delta m \approx 0$	$\frac{4}{3}$	2	$[\bar{\Lambda}(\bar{u} \bar{d} \bar{s})]-\left[K^{\prime}(\bar{u} s)+\frac{1}{3} \bar{p}(\bar{u} \bar{u} \bar{d})\right]$	$39 \pm 07 \pm 03$	-55/3	3	0	0	0	$\frac{1}{3} v_{1}\left[\Omega^{-}(s s s)\right]+\frac{1}{3} v_{1}\left[\bar{\Omega}^{+}(\bar{s} \bar{s} \bar{s})\right]$	$v_{1}[\phi(s \bar{s})]$
4	$\Delta m=0$	2	6	$\left[\bar{\Omega}^{+}(\bar{s} \bar{s} \bar{s})\right]-\left[\Omega^{-}(s s s)\right]$	$83 \pm 130 \pm 25$	23	4	0	1	$1 / 3$	$\frac{1}{2} v_{1}[\phi(s \bar{s})]$	$\frac{1}{3} v_{1}\left[\Omega^{-}(s s s)\right]$
5	$\Delta m \approx 0$	$\frac{7}{3}$	4	$\left[\bar{\Xi}^{+}(\bar{d} \bar{s} \bar{s})\right]-\left[K^{-}(\bar{u} s)+\frac{1}{3} \Omega^{-}(s s s)\right]$	$64+36 \pm 19$	21	5 A	1/3	1	$2 / 3$	$\frac{1}{2} v_{1}[\phi(s \bar{s})]+\frac{1}{3} v_{1}[\bar{p}(\bar{u} \bar{u} \bar{d})]$	$v_{1}\left[K^{-}(\bar{u} s)\right]$

From 2-D fit of our five data points
with $\Delta v_{1}^{\prime}=c_{0}^{*}+c_{q}^{*} \Delta q+c_{S}^{*} \Delta S$,
we get $\Delta v_{1}^{\prime}=-4.44-6.00 \Delta q+29.4 \Delta S$
or $\quad-6.00 \Delta q+25.0 \Delta S$ (without intercept c_{0}^{*})

They are very different from values from the 2-D fit of the STAR hadron sets:

$$
\Delta v_{1}^{\prime}=6.66+8.66 \Delta q+9.93 \Delta \backslash
$$

or

This difference is due to the nonzero value at $\Delta q=\Delta S=0$ (or nonzero c_{0}^{*}), which indicates the breaking of CSR.

Demonstration with the STAR data

To further demonstrate this, we set Δv_{1}^{\prime} data $=0$ at $\Delta q=\Delta S=0$ (to test the ideal CSR case) and then convert to the STAR hadron sets:

Index	Quark mass	Δq	ΔS	Δv_{1} combination		
1	$\Delta m=0$	0	0	$[\bar{p}(\bar{u} \bar{u} \bar{d})+\phi(s \bar{s})]-\left[K^{(}(\bar{u} s)+\bar{\Lambda}(\bar{u} \bar{d} \bar{s})\right]$	0	$\mathrm{Eq}(1)$
2	$\Delta m \approx 0$	1	2	$[\bar{\Lambda}(\bar{u} \bar{d} \bar{s})]-\left[\frac{1}{3} \Omega^{-}(s s s)+\frac{2}{3} \bar{p}(\bar{u} \bar{u} \bar{d})\right]$	44	
3	$\Delta m \approx 0$	$\frac{4}{3}$	2	$[\bar{\Lambda}(\bar{u} \bar{d} \bar{s})]-\left[K^{-}(\bar{u} s)+\frac{1}{3} \bar{p}(\bar{u} \bar{u} \bar{d})\right]$	42	
4	$\Delta m=0$	2	6	$\left[\bar{\Omega}^{+}\left({ }_{s} \bar{s} \bar{s}\right)\right]-\left[\Omega^{-}(s s s)\right]$	138	
5	$\Delta m \approx 0$	$\frac{7}{3}$	4	$\left[\bar{\Xi}^{+}(\bar{d} \bar{s} \bar{s})\right]-\left[K^{-}(\bar{u} s)+\frac{1}{3} \Omega^{-}(s s s)\right]$	86	

	Set \#	$\Delta q_{u d}$	ΔS	Δq	L (left side)	R (right side)
$\mathbf{0}$	1	0	0	0	$v_{1}\left[K^{-}(\bar{u} s)\right]+v_{1}[\bar{\Lambda}(\bar{u} \bar{d} \bar{s})]$	$v_{1}[\bar{p}(\bar{u} \bar{u} \bar{d})]+v_{1}[\phi(s \bar{s})]$
$\mathbf{0}$	2	0	0	0	$v_{1}[\Lambda(\bar{u} \bar{d} \bar{s})]$	$\frac{1}{2} v_{1}[\bar{p}(\bar{u} \bar{u} \bar{d})]+\frac{1}{2} v_{1}\left[\bar{\Xi}^{+}(\bar{d} \bar{s} \bar{s})\right]$
$\mathbf{0}$	3	0	0	0	$\frac{1}{3} v_{1}\left[\Omega^{-}(s s s)\right]+\frac{1}{3} v_{1}\left[\bar{\Omega}^{+}(\bar{s} \bar{s} \bar{s})\right]$	$v_{1}[\phi(s \bar{s})]$
23						
21	4	0	1	$1 / 3$	$\frac{1}{2} v_{1}[\phi(s \bar{s})]$	$\frac{1}{3} v_{1}\left[\Omega^{-}(s s s)\right]$

- From 2-D fit of the STAR sets test data, we get $\Delta v_{1}^{\prime}=0.00-6.00 \Delta q+25.0 \Delta S$ same as fit w/o intercept on previous slide/(as expected).
- 2-D fit of our hadron sets gives exactly the same result (as expected).
- So STAR and our hadron sets are equivalent (for the ideal case where CSR is satisfied).

When we follow STAR arXiv:2304.02831, 1-D fits of the STAR sets test data give

$$
\left.\Delta v_{1}^{\prime}=-3.33+49.0 \Delta q \quad \text { or } \quad 47.2 \Delta q \text { (without intercept }\right)
$$

\& $\quad \Delta v_{1}^{\prime}=-2.08+22.9 \Delta S$ or $22.4 \Delta S$ (without intercept)
Some of them can be far from values of the 2-D fit and are thus incorrect.

Demonstration with the STAR data

Demo3) we scale the STAR Index4 set by $1 / 2$ (still the same ideal case v_{1} test data):

Index Quark mass		Δq	ΔS	Δv_{1} combination
1	$\Delta m=0$	0	0	$[\bar{p}(\bar{u} \bar{u} \bar{d})+\phi(s \bar{s})]-\left[K^{-}(\bar{u} s)+\bar{\Lambda}(\bar{u} \bar{d} \bar{s})\right]$
2	$\Delta m \approx 0$	1	2	$[\bar{\Lambda}(\bar{u} \bar{d} \bar{s})]-\left[\frac{1}{3} \Omega^{-}(s s s)+\frac{2}{3} \bar{p}(\bar{u} \bar{u} \bar{d})\right]$
3	$\Delta m \approx 0$	$\frac{4}{3}$	2	$[\bar{\Lambda}(\bar{u} \bar{d} \bar{s})]-\left[K^{-}(\bar{u} s)+\frac{1}{3} \bar{p}(\bar{u} \bar{u} \bar{d})\right]$
4	$\Delta m=0$	$2 / 2$	$6 / 2$	$\left(\left[\bar{\Omega}^{+}(\bar{s} \bar{s} \bar{s})\right]-\left[\Omega^{-}(s s s)\right]\right) / 2$
5	$\Delta m \approx 0$	$\frac{7}{3}$	4	$\left[\bar{\Xi}^{+}(\bar{d} \bar{s} \bar{s})\right]-\left[K^{-}(\bar{u} s)+\frac{1}{3} \Omega^{-}(s s s)\right]$

2-D fits of unscaled \& scaled test data give exactly same result (as expected):

$$
\Delta v_{1}^{\prime}=0.00-6.00 \Delta q+25.0 \Delta S
$$

From 1-D fits of the scaled test data, we get

$$
\Delta v_{1}^{\prime}=9.13+34.5 \Delta q \quad \text { or } \quad 40.1 \Delta q(\text { w/o intercept })
$$

$\& \Delta v_{1}^{\prime}=21.9 \Delta S \quad$ (with or w/o intercept).
They are different from 1-D fits of the unscaled test data:
$\Delta v_{1}^{\prime}=-3.33+49.0 \Delta q$ or $47.2 \Delta q$ (w/o intercept)
$\& \Delta v_{1}^{\prime}=-2.08+22.9 \Delta S$. or $22.4 \Delta S$ (w/o intercept).
$\rightarrow 1$-D slope parameters depend on the arbitrary scaling factor of hadron sets, this is unphysical.

Demonstration with the STAR data

Demo3) we scale the STAR Index4 set by $1 / 2$ (still the same ideal case ν_{1} test data):

Index Quark mass			Δq	ΔS	Δv_{1} combination
1	$\Delta m=0$	0	0	$[\bar{p}(\bar{u} \bar{u} \bar{d})+\phi(s \bar{s})]-\left[K^{-}(\bar{u} s)+\bar{\Lambda}(\bar{u} \bar{d} \bar{s})\right]$	0
2	$\Delta m \approx 0$	1	2	$[\bar{\Lambda}(\bar{u} \bar{d} \bar{s})]-\left[\frac{1}{3} \Omega^{-}(s s s)+\frac{2}{3} \bar{p}(\bar{u} \bar{u} \bar{d})\right]$	44
3	$\Delta m \approx 0$	$\frac{4}{3}$	2	$[\bar{\Lambda}(\bar{u} \bar{d} \bar{s})]-\left[K^{-}(\bar{u} s)+\frac{1}{3} \bar{p}(\bar{u} \bar{u} \bar{d})\right]$	42
4	$\Delta m=0$	2	6	$\left[\bar{\Omega}^{+}(\bar{s} \bar{s} \bar{s})\right]-\left[\Omega^{-}(s s s)\right]$	138
5	$\Delta m \approx 0$	$\frac{7}{3}$	4	$\left[\bar{\Xi}^{+}(\bar{d} \bar{s} \bar{s})\right]-\left[K^{-}(\bar{u} s)+\frac{1}{3} \Omega^{-}(s s s)\right]$	86

\longrightarrow| 0 |
| :---: |
| 44 |
| 42 |
| 69 |
| 86 |

Index Quark mass			Δq	ΔS
1	$\Delta m=0$	0	0	Δv_{1} combination
2	$\Delta m \approx 0$	1	2	$\left.\left[\overline{p^{\prime}}(\bar{u} \bar{u} \bar{d} \bar{u} \bar{d} \bar{s})\right]-\phi(s \bar{s})\right]-\left[K^{-} \Omega^{-}(s s s)+\frac{2}{3} \bar{p}(\bar{u})+\bar{\Lambda}(\bar{u} \bar{d} \bar{d} \bar{d} \bar{s})\right]$
3	$\Delta m \approx 0$	$\frac{4}{3}$	2	$[\bar{\Lambda}(\bar{u} \bar{d} \bar{s})]-\left[K^{-}(\bar{u} s)+\frac{1}{3} \bar{p}(\bar{u} \bar{u} \bar{d})\right]$
4	$\Delta m=0$	$2 / 2$	$6 / 2$	$\left(\left[\bar{\Omega}^{+}(\bar{s} \bar{s} \bar{s})\right]-\left[\Omega^{-}(s s s)\right]\right) / 2$
5	$\Delta m \approx 0$	$\frac{7}{3}$	4	$\left[\bar{\Xi}^{+}(\bar{d} \bar{s} \bar{s})\right]-\left[K^{-}(\bar{u} s)+\frac{1}{3} \Omega^{-}(s s s)\right]$

Slope parameters $K_{\Delta q} \& K_{\Delta S}$ from 1-D fits depend on the arbitrary scaling factor of hadron sets in the ideal CSR case and are thus ill-defined; so one cannot do simple 1-D fit of the data points.

Note: the numerical differences between 1-D and 2-D coefficients
depend on uncertainties of the actual data;
the difference could be small when data error bars are large.
Our purpose here is to show the 1-D fit method to be mathematically incorrect.

Summary

Relations for v_{1} differences of combinations of produced hadrons are derived from the quark coalescence sum rule (CSR).
Δv_{1} or Δv_{1}^{\prime} is a linear function of both Δq and ΔS, or of both Δq and ΔB, and the coefficients reflect quark-level v_{1} differences.

To extract the dependences from the five independent data points, one cannot do simple 1-D fit because those coefficients are ill-defined. One should do 2-D fit with $\Delta v_{1}^{\prime}=c_{0}^{*}+c_{q}^{*} \Delta q+c_{S}^{*} \Delta S$ or $c_{0}+c_{q} \Delta q_{u d}+c_{S} \Delta S$; nonzero c_{0} or c_{0}^{*} (or dependence of coefficients on choice of hadron sets) indicates the breaking or CSR.

The coefficients can be obtained analytically after we combine the five independent data points into three.

Electromagnetic fields do not affect these CSR relations, but they should affect the value of the coefficients.

> Thanks for your attention!

