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Introduction
(1) Coalescence sum rule relations for Δv1
(2) Extracting the Δq, ΔS, or ΔB dependences
(3) Demonstration with the STAR data
Summary

(1) and (2) are based on work with Kishora Nayak and Shusu Shi:
Phys. Lett. B 849 (2024) 138479 & Universe 10 (2024) 3, 112
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Introduction

• Directed flow 𝑣1 depends on properties of 
the created matter in heavy ion collisions 
such as the equation of state and electromagnetic fields.

• Directed flow 𝑣1, like elliptic flow 𝑣2,
are expected to follow the coalescence sum rule (CSR) or NCQ scaling 
when initial matter is in parton degrees of freedom
and hadronizes via quark coalescence.

• CSR relates the primordial hadron 𝑣n to 
the sum of 𝑣n of its constituent quarks.

• If 2 combination of hadrons have the same constituent quarks, 
we expect their 𝑣1 to be the same.

Sorge, Phys. Rev. Lett. 78 (1997) 2309;
Herrmann, Wessels, Wienold, Annu. Rev. 
Nucl. Part. Sci. 49 (1999) 581;
Das, Plumari, Chatterjee, Alam, Scardina, 
Greco, Phys. Lett. B 768 (2017) 260;
STAR, Phys. Rev. X 14 (2024) 1, 011028

Greco, Ko, Levai, Phys. Rev. Lett. 90 (2003) 202302;
Fries, Muller, Nonaka, Bass, Phys. Rev. Lett. 90 (2003) 202303;
Molnár, Voloshin, Phys. Rev. Lett. 91 (2003) 092301
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Introduction

Non-zero 𝑣1 difference of the two sides in these hadron sets, 
especially if Δ𝑣1 depends on Δq from the data, 
was proposed to be a consequence of electromagnetic fields.

To avoid complications from transported u/d quarks, 
combinations consisting of 7 produced hadrons (𝐾!, 𝜙, �̅�, 'Λ, )Ξ", 'Ω, Ω) were constructed:
two sides in each combination have the same 𝑁#$ + 𝑁 %& and the same 𝑁' + 𝑁'̅ .

Sheikh, Keane, Tribedy, Phys. Rev. C 105 (2022) 014912

STAR, arXiv:2304.02831
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There are only 5 independent hadron sets
for such hadron combinations.

For example, our default choice = Sets 1, 2, 3, 4, 5A.

Sheikh, Keane, Tribedy, Phys. Rev. C 105 (2022) 014912

Nayak, Shi & ZWL, Phys. Lett. B 849 (2024) 138479 

Introduction

• One can choose other 5 independent hadron sets, e.g., Sets 1, 2, 3, 4, 5B, 

• Any other hadron set will not be independent, 
including a hadron set with the hadron weights scaled by a constant.
 For example, Set5B = Set1+Set5A and is not independent of Choice 1;
 hadron set (3𝜙 − 2Ω) is equivalent to Set4 (𝜙/2 − Ω/3)     (scaled by 1/6) 
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Introduction

STAR, arXiv:2304.02831

Relations between our 5 hadron sets and those used by STAR:
 Index1= -Set1,  Index2 = Set1+Set4+Set5A, Index3 = Set1+2*Set5A, 
 Index4 = 3*Set3+6*Set4, Index5 = 2*Set1-2*Set2+Set4+3*Set5A.
So they are equivalent.

Nayak, Shi & ZWL, Phys. Lett. B 849 (2024) 138479 

(1)
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Coalescence sum rule relations for Δv1

Hadrons formed via quark coalescence are expected to follow CSR: 

𝑣!" 𝑝#" =$
$

𝑣!
$ 𝑝#

$

We neglect the mass difference of u, d and s constituent quarks,
then every constituent quark in a hadron has the same pT :

Molnár, Voloshin, Phys. Rev. Lett. 91 (2003) 092301
ZWL, Molnár, Phys. Rev. C 68 (2003) 044901

𝑣!" 𝑝#" =$
$

𝑣!
$ 𝑝#

When 𝑣n of different quark species are the same, 
Eq(2) reduces to the NCQ scaling relation: 

𝑣%" 𝑝#" = 𝑁&'𝑣! 𝑝#
with 𝑝#" = 𝑁&'𝑝#

(2)
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∆𝑣!≡ 𝑣!" − 𝑣!# = &
$%&', )*,+, ̅+

∆𝑁$ 𝑣!,$

= 𝑣!, )* − 𝑣!,&' ∆𝑞 + -!,#$	/-!,$	
0

−
-!,&'	/-!,&(

1
∆𝑆 (3)

CSR of Eq(2) then gives

For every such hadron set, 
the two sides have the same 𝑁#$ + 𝑁 %& and the same 𝑁' + 𝑁'̅.
So the differences between the two sides 
in electric charge and strangeness are given by

∆𝑞 = ∆𝑁 %& +
)
*
∆𝑁'̅ , ∆𝑆 = 2∆𝑁'̅

Coalescence sum rule relations for Δv1
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∆𝑞$& ≡ 𝑞$&+ − 𝑞$&, = ∆𝑞 −
1
3
∆𝑆

∆𝑣!= 𝑣!, )* − 𝑣!,&' ∆𝑞'* +
-!,#$	/-!,$	

0
∆𝑆  (4)

The relation gets simpler 
when we use the electric charge difference from )𝑢 and �̅�:

Then Eq(3) becomes 

So CSR predicts:
• ∆𝑣! depends linearly on both ∆𝑞 and ∆𝑆
• the coefficients reflect quark-level 𝑣1  differences 
 for quarks of different electric charges, 
 so they should be affected by electromagnetic fields 

• ∆𝑣!= 0   if ∆𝑞 = ∆𝑆 = 0, while ∆𝑣!≠ 0    if ∆𝑞 or ∆𝑆 ≠ 0

Coalescence sum rule relations for Δv1
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Extracting the Δq, ΔS, or ΔB dependences

∆𝑣-. = 𝑣-, %&
. − 𝑣-,#$. ∆𝑞$& +

0!,#$
% 	!0!,$	%

)
∆𝑆 

= 𝑣-, %&
. − 𝑣-,#$. ∆𝑞 + 0!,#$

% 	!0!,$%

)
−
0!,'(
% 	!0!,')

%

*
∆𝑆
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To extract the dependences, 
a 2-variable linear function (a plane over ∆𝑞 and ∆𝑆) should be used
to fit the five independent data points  (we call this the 5-set method):
 ∆𝑣-. = 𝑐2 + 𝑐3∆𝑞$& + 𝑐4∆𝑆 or 𝑐2∗ + 𝑐3∗∆𝑞 + 𝑐4∗∆𝑆

The same applies to the 𝑣1  slope differences:

Nayak, Shi & ZWL, Phys. Lett. B 849 (2024) 138479 

• Although CSR expects 𝑐2 = 0 and 𝑐2∗ = 0 ,
we add them in the fit function, 
because a non-zero 𝑐2 or 𝑐2∗	value extracted 
from data indicates the breaking of CSR.
• A linear combination or scaling of hadron 
sets changes the value of non-zero 𝑐2 or 𝑐2∗,
so dependence of coefficients on the choice of 
hadron sets also indicates the breaking of CSR.
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Since our Sets 1, 2, 3 all have ∆𝑞$& = ∆𝑆 = ∆𝑞 = 0,
we can combine their data into one.
Then we will have 3 data points: ∆𝑣-,-!*. , ∆𝑣-,6.  & ∆𝑣-,7. .

𝑐2 = ∆𝑣-,-!*.

𝑐3 = −3(∆𝑣-,6. − ∆𝑣-,7. )
𝑐4 =  − ∆𝑣-,-!*. + ∆𝑣-,6.

Nayak, Shi & ZWL, Phys. Lett. B 849 (2024) 138479 

We call this the 3-set method.

For ∆𝑣-. = 𝑐2 + 𝑐3∆𝑞$& + 𝑐4∆𝑆	 we can analytically extract

Extracting the Δq, ΔS, or ΔB dependences
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For these hadron combinations, ∆𝐵 = −∆𝑆/3,
so ∆𝑣-.  can also be written as 

∆𝑣!2 = 𝑐3 + 𝑐4∆𝑞'* + 𝑐5∆𝑆

with   𝑐3 = 0, 	 𝑐4 = 𝑣!, )*
2 − 𝑣!,&'2 , 	 𝑐5 =

!
0
(𝑣!, ̅+2 − 𝑣!,+	2 )

∆𝑣!2 = 𝑐3 + 𝑐4∆𝑞'* + 𝑐6∆𝐵

with 𝑐6 = −3𝑐5 =
1
0
(𝑣!,+	2 − 𝑣!, ̅+2 )

Nayak, Shi & ZWL, Universe 10 (2024) 3, 112

CSR gives

Extracting the Δq, ΔS, or ΔB dependences
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Demonstration with the STAR data

Demo1)  Using the 5-set method, 
we perform 2-D fit of the five data points (after *104) 
with ∆𝑣-. = 𝑐2∗ + 𝑐3∗∆𝑞 + 𝑐4∗∆𝑆

We get ∆𝑣-. = 6.66 + 8.66	∆𝑞 + 9.93	∆𝑆
   or 12.8	∆𝑞 + 9.67 ∆𝑆 (without intercept 𝑐2∗)

We now demonstrate a correct way of extracting the Δq and ΔS dependences
 by using the STAR 10-40% Au+Au data at 27A GeV as example 
 (central values only for demonstration, without considering the error bars).

STAR, arXiv:2304.02831

= ∆𝑣-. ∗ 106
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Demonstration with the STAR data
When we follow the STAR method in STAR arXiv:2304.02831  and perform 1-D fits 
   with ∆𝑣-. = 𝐾83	∆𝑞 &  ∆𝑣-. = 𝐾84	∆𝑆  (without intercept),
we get ∆𝑣-. = 33.4	∆𝑞 &  ∆𝑣-. = 15.2	∆𝑆 

They are close to the STAR values in STAR arXiv:2304.02831 : 
K∆q(x104)= 29 ± 4.2 ± 3.7, K∆S(x104)= 19 ± 2.8 ± 2.5.

However, some of them are far from values from the 2-D fit:
 ∆𝑣-. = 6.66 + 8.66	∆𝑞 + 9.93	∆𝑆
   or 12.8	∆𝑞 + 9.67 ∆𝑆 (without intercept 𝑐2∗)

Since ∆𝑣-.  is a linear function of both Δq and ΔS, one should use 2-D fit. 
 One cannot use 1-D fit, e.g., simply fit data as a 1-D function of ∆𝑞 
without correcting for the different ∆𝑆 values of the data points.
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Demonstration with the STAR data

Demo2) We can convert the STAR hadron sets into our hadron sets:

They are very different from values from the 2-D fit
of the STAR hadron sets:
 ∆𝑣-. = 6.66 + 8.66	∆𝑞 + 9.93	∆𝑆
   or 12.8	∆𝑞 + 9.67 ∆𝑆 (without intercept 𝑐2∗)

This difference is due to the nonzero value at ∆𝑞 = ∆𝑆 = 0 (or nonzero 𝑐2∗), 
which indicates the breaking of CSR.

Eq(1)

From 2-D fit of our five data points     
   with ∆𝑣-. = 𝑐2∗ + 𝑐3∗∆𝑞 + 𝑐4∗∆𝑆,
we get ∆𝑣-. = −4.44 − 6.00	∆𝑞 + 29.4	∆𝑆
   or -6.00	∆𝑞 + 25.0 ∆𝑆 (without intercept 𝑐2∗)

-3
   8
-55/3
  23
  21
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Demonstration with the STAR data
To further demonstrate this, we set ∆𝑣-. 	data=0  at ∆𝑞 = ∆𝑆 = 0  (to test the ideal CSR case)
and then convert to the STAR hadron sets:

0
   0
   0
  23
  21

0
  44
  42
 138
  86

Eq(1)

• From 2-D fit of the STAR sets test data,
we get ∆𝑣-. = 0.00 − 𝟔. 𝟎𝟎	∆𝑞 + 25.0	∆𝑆
same as fit w/o intercept on previous slide (as expected).
• 2-D fit of our hadron sets gives 
 exactly the same result (as expected).
• So STAR and our hadron sets are equivalent
(for the ideal case where CSR is satisfied).

When we follow STAR arXiv:2304.02831, 1-D fits of the STAR sets test data give
 ∆𝑣-. = −3.33 + 49.0	∆𝑞 or    47.2 ∆𝑞 (without intercept)
& ∆𝑣-. = −2.08 + 22.9	∆𝑆 or    22.4 ∆𝑆 (without intercept)
Some of them can be far from values of the 2-D fit and are thus incorrect.
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Demonstration with the STAR data
Demo3) we scale the STAR Index4 set by ½ (still the same ideal case 𝑣1  test data): 

0
  44
  42
 138
  86

0
  44
  42
  69
  86

/2   /2 (                             )/2

2-D fits of unscaled & scaled test data give exactly same result (as expected):
 ∆𝑣-. = 0.00 − 6.00∆𝑞 + 25.0∆𝑆.

From 1-D fits of the scaled test data, we get 
    ∆𝑣-. = 9.13 + 34.5	∆𝑞    or    40.1 ∆𝑞 (w/o intercept)
& ∆𝑣-. = 21.9	∆𝑆    (with or w/o intercept).
 They are different from 1-D fits of the unscaled test data:
    ∆𝑣-. = −3.33 + 𝟒𝟗. 𝟎	∆𝑞   or    47.2 ∆𝑞 (w/o intercept)
& ∆𝑣-. = −2.08 + 22.9	∆𝑆.  or    22.4 ∆𝑆 (w/o intercept).
→ 1-D slope parameters depend on the arbitrary scaling factor of hadron sets,
     this is unphysical.
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Demonstration with the STAR data

Slope parameters K∆q & K∆S from 1-D fits depend 
on the arbitrary scaling factor of hadron sets in 
the ideal CSR case and are thus ill-defined; 
so one cannot do simple 1-D fit of the data points.

Demo3) we scale the STAR Index4 set by ½ (still the same ideal case 𝑣1  test data): 

0
  44
  42
 138
  86

0
  44
  42
  69
  86

/2   /2 (                             )/2

STAR, arXiv:2304.02831

Note: the numerical differences between 1-D and 2-D coefficients
 depend on uncertainties of the actual data; 
 the difference could be small when data error bars are large.
Our purpose here is to show the 1-D fit method to be mathematically incorrect.
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Relations for 𝑣- differences of combinations of produced hadrons 
are derived from the quark coalescence sum rule (CSR).

∆𝑣- or ∆𝑣-.  is a linear function of both ∆𝑞 and ∆𝑆, or of both ∆𝑞 and ∆𝐵, 
and the coefficients reflect quark-level 𝑣- differences.

To extract the dependences from the five independent data points, 
one cannot do simple 1-D fit because those coefficients are ill-defined.
One should do 2-D fit with ∆𝑣-. = 𝑐2∗ + 𝑐3∗∆𝑞 + 𝑐4∗∆𝑆  or 𝑐2 + 𝑐3∆𝑞$& + 𝑐4∆𝑆;
nonzero 𝑐2 or 𝑐2∗ (or dependence of coefficients on choice of hadron sets) 
indicates the breaking or CSR.

The coefficients can be obtained analytically 
after we combine the five independent data points into three.

Electromagnetic fields do not affect these CSR relations, 
but they should affect the value of the coefficients.

Thanks for your attention!

Summary


