

Antihelium Identification and Antihypertriton Observation with LHCb

Gediminas Sarpis

On behalf of the LHCb Collaboration

SQM 2024, Strasbourg

June 5, 2024

Cosmic Motivation: AMS-02 Result

- Observation of $\mathcal{O}(10)$ He candidates by AMS-02 [COSPAR 2022]
- $\bullet~$ Observe 1 $\overline{\rm He}$ for every $10^8~{\rm He}$
- Origin of antihelium events unclear
- $\bullet~$ No $\overline{\mathrm{d}}$ events reported at conferences
- New Source for helium required

[CERN Seminar by Prof. Samuel Ting]

Recent ALICE Results on ${}^{3}\overline{\mathrm{He}}$

Measurement of anti- ${}^{3}\mathrm{He}$ nuclei absorption in matter and impact on their propagation in the Galaxy

Theory Proposal: ³He from $\overline{\Lambda}_b$ Decays

- Estimated ${}^{3}\overline{\mathrm{He}}$ production via $\overline{\Lambda}_{b}$: $\mathcal{B}(\overline{\Lambda}_{b} \rightarrow {}^{3}\overline{\mathrm{He}} + X) \simeq 3 \times 10^{-6}$
- **Coalescence** enhanced by small $\overline{\Lambda}_b$ phase-space
- A special tuning of Pythia gives ³He rate consistent with AMS observation (Λ_b-tune)
- Large uncertainties in non-perturb. QCD

[Phys. Rev. Lett. 126, 101101]

The LHCb Detector (2015-2018) [JINST 3 (2008) S08005]

[IJMPA 30 (2015) 1530022]

Gediminas Sarpis

PID at LHCb: RICH

p/K misID < 5%

[Eur. Phys. J. C 73, 2431 (2013)]

Gediminas Sarpis

 ${}^{3}\overline{\mathrm{He}}$ and ${}^{3}_{\Lambda}\overline{\mathrm{H}}$ with LHCb

LHCb is Not Designed for Helium Identification

New PID Strategy: Exploit Z=2 of Helium [R. Aaij et al 2024 JINST 19 P02010]

- Ionisation losses in Silicon Trackers
- Proportional to Z^2 by Bethe formula

Dataset:

- proton-proton collisions
- Run 2 (2016-2018, $\sqrt{s} = 13$ TeV)
- $\mathcal{L}_{int} = 5.5 \text{ fb}^{-1}$

• Preselection:

- Combined output of all trigger lines
- Loose track-quality requirements
- Prompt tracks from PV

LHCb Silicon Trackers [JINST 9 (2014) P09007] [Phys.Procedia 37 (2012) 851-858] [2014 JINST 9 P01002]

 $\Delta p/p = 0.5\%$, VTX Res. 8 (45) μ m x and y (z) axis, IP Res. (15 +29/pT[GeV]) μ m, τ Res. ~ 45fs

Gediminas Sarpis

 ${}^{3}\overline{\text{He}}$ and ${}^{3}_{\Lambda}\overline{\text{H}}$ with LHCb

LHCb Silicon Trackers [JINST 9 (2014) P09007] [Phys.Procedia 37 (2012) 851-858] [2014 JINST 9 P01002]

 $\Delta p/p = 0.5\%$, VTX Res. 8 (45) μ m x and y (z) axis, IP Res. (15 +29/pT[GeV]) μ m, τ Res.

VELO Summary

- Charge is digitised as **7-bit** ADC
- $\bullet\,$ Two types of sensors R and $\Phi\,$
- Average of 13 VELO hits per track
- Clusters formed from up to 4 strips

VELO Response for Z=1 Particles

- 4 different cluster sizes (CLS)
- Visible saturation peaks (digitisation)
- $\bullet\,$ Amplitude peaks at \sim 40 ADC
- Z=1 data from D^{+*} and Λ decays
- Separate for R and Φ sensors

Helium Simulation VELO Response

[R. Aaij et al 2024 JINST 19 P02010]

- Helium induces higher ADC counts
- Helium tends to have larger size clusters
- Helium has more saturated strips
- Can be used for discrimination

Constructing Likelihood Discriminator

[R. Aaij et al 2024 JINST 19 P02010]

- Use ADC distributions as PDDs
- 2 Derive a $bkg/^{3}He$ probability for each cluster
- Ombine the probabilities to likelihoods
- Define a likelihood discriminator for the whole track

$$\mathcal{L}^{X} = (\prod_{i=1}^{n} \text{PDD}_{i}^{X}(\text{CLS}, \text{ADC}))^{\frac{1}{n}}$$

with $X = \{bkg, He\}$

$$\Lambda_{LD} = log \mathcal{L}^{He} - log \mathcal{L}^{bkg}$$

Combining the Full Power of LHCb Tracking System [JINST 9 (2014) P09007] [Phys.Procedia 37 (2012) 851-858] [2014 JINST 9 P01002]

 $\varepsilon_{\textit{LongTrack}} \sim 96\%$

The First Observation of Prompt Helium at LHCb [R. Aaij et al 2024 JINST 19 P02010]

Separation Power

Separation Power: $\mathcal{O}(10^{-12})$ with Signal Efficiency $\sim 50\%$

Sources of Helium

[R. Aaij et al 2024 JINST 19 P02010]

A Brief History of Hypermatter

- First hyperfragments discovered in 1952
- Can access hyperon-nucleon interaction
 ⇒ Relevant for neutron stars
- Hypertriton $^{3}_{\Lambda}\mathrm{H}$ is the lightest hypernucleus
- Hypertriton "Lifetime Puzzle"

[1953 Philos. Mag., 44:348]

Hypertriton Reconstruction with LHCb

- $\bullet~$ Unambiguous $^{3}\mathrm{He}$ Signature
- $\bullet\,$ 2-body decay into helium: ${}^3_\Lambda {\rm H} \to {}^3{\rm He}\pi^-$
- Secondary helium candidates: $\ln\chi^2_{I\!P}(^3{
 m He})>2$
- Form 2-body vertex with charged pion
- Apply vertex quality requirements

Antihypertriton Candidate in VELO

Observation of Hypertriton at LHCb

Observation of (Anti)hypertriton at LHCb

• Preliminary fit results:

- $N(^{3}_{\Lambda}\text{H} = 61 \pm 8)$ • $N(^{3}_{\overline{\Lambda}}\overline{\text{H}} = 46 \pm 7)$
- Statistical mass precision: 0.16 MeV

• Under investigation:

- Charge-sign dependent energy-loss corrections
- Tracking corrections for Z=2
- Efficiency and acceptance corrections

Summary

- First observation of helium in LHCb
- Using **dE/dx**, **timing**, **RICH** information on Run 2 data
- $1.1 imes 10^5$ prompt (anti)helium
- Negligible background
- 107 ± 11 (anti)hypertriton reconstructed

Outlook:

- More physics to come from light nuclei
- Determine properties of hypertriton
- Measure helium production from Λ_b^0

BACKUP

[LHCB-FIGURE-2023-017]

Refinements: Photon Conversions

- e^- and e^+ pair from photon conversion flies almost co-linearly
- Energy deposited on the same clusters
- Can be rejected by applying RICH cut
- Rejection up to $\mathcal{O}(10^2)$

Refinements: Photon Conversions

- e^- and e^+ pair from photon conversion flies almost co-linearly
- Energy deposited on the same clusters
- Can be rejected by applying RICH cut
- Rejection up to $\mathcal{O}(10^2)$

- Outer Tracker (OT) -Straw Drift Tube detector
- OT has constant threshold (no dE/dx information)
- Helium crosses the threshold earlier
- PID power via "OT track time"

Gediminas Sarpis

Backup: ALICE Results on Hypertriton

Measurement of the Lifetime and Λ Separation Energy of ${}^{3}_{\Lambda}H$

Backup: No Strong Λ_{LD}^{VELO} Dependence on Kinematics [R. Aaij et al 2024 JINST **19** P02010]

Backup: Prompt Helium Split by Charge

[R. Aaij et al 2024 JINST 19 P02010]

Backup: Prompt Helium in Minbias

[R. Aaij et al 2024 JINST 19 P02010]

Backup: Data and Simulation Comparison

Backup: Different Preselections

[R. Aaij et al 2024 JINST 19 P02010]

Backup: Different Preselections

[R. Aaij et al 2024 JINST 19 P02010]

Backup: Hypertriton Selection

[CERN-LHCb-CONF-2023-002]

