Observation of hydrodynamic behavior with few strongly-interacting fermions: A zero-temperature small system puzzle

Lars Heyen, Giuliano Giacalone

Institut für Theoretische Physik (ITP) Universität Heidelberg

June 4, 2024

Effective fluid description: $T^{\mu\nu} = (\epsilon + P)u^{\mu}u^{\nu} - Pg^{\mu\nu}_{\text{[Romatschke & Romatschke, arXiv:1712.05815]}}$

Equation of state from lattice QCD. [HoTQCD collaboration, PRD 90 (2014) 094503]

[HoTQCD collaboration, PRD **90** (2014) 094503] [Gardim, Giacalone, Luzum, Ollitrault, Nature Phys. **16** (2020) 6, 615-619]

Fluid is viscous (η/s , ζ/s , ...). [Bernhard, Moreland, Bass, Nature Phys. **15** (2019) 11, 1113-1117]

[CMS collaboration, PLB **724** (2013) 213-240] [CMS collaboration, PLB **765** (2017) 193-220]

Collective flow in small-system collisions

1) How does collectivity emerge out of equilibrium? [e.g. Soloviev, EPJC 82 (2022) 4, 319]

 2) Can systems made of only tens of particles even develop collective behavior driven by interactions?
 Absence of a separation of scales?

> We address this question by means of experiments on ultra-cold atomic gases.

> > 3

Key probe of hydrodynamic behavior – Elliptic flow

[Ollitrault, PRD 46 (1992) 229-245]

Why ultracold atoms?

Exquisite experimental control

Interactions are tunable via Feshbach resonance, particle number via spilling technique [Serwane et al. arXiv:1101.2124]

We can probe transition from non-interacting to strongly-interacting systems, from few to many particles with known initial geometry

Precise imaging techniques

Method to image atoms in "free space".

[Bergschneider et al., PRA 97, 063613 (2018)]

The measurement can be carried out in either real or momentum space.

[Holten et al., Nature 606, 287-291 (2022)]

Emergence of "hydrodynamic response" as the system becomes more dense/macroscopic.

 v_2

 $\boldsymbol{\mathcal{E}}_2$

initial state anisotropy (real space)

"Background" elliptic flow from position-momentum relation

(.)

One atom in a harmonic potential:

$$\begin{aligned} \left\langle \cos(2\phi_p) \right\rangle_{\psi_{0,0}} &= \left\langle \frac{p_x^2 - p_y^2}{p_x^2 + p_y^2} \right\rangle_{\psi_{0,0}} \\ &= \int \mathrm{d}p_x \mathrm{d}p_y \frac{p_x^2 - p_y^2}{p_x^2 + p_y^2} |\psi_{0,0}(p_x, p_y)|^2 \\ &= \frac{1 - \sqrt{\lambda}}{1 + \sqrt{\lambda}} = v_2 \end{aligned}$$

Shape inversion with only a single particle \rightarrow definitely not hydrodynamics

Dependence of background elliptic flow on particle number

Qualitative expectations

Combining the curves...

We predict non-monotonic behavior.

Flörchinger, Giacalone, Heyen, Tharwat, PRC 105 (2022) 4, 044908

A zero-temperature small system puzzle

Numerical and Experimental Results

Brandstetter, Lunt, Heintze, Giacalone, Heyen, Gałka, Subramanian, Holten, Preiss, Floerchinger, Jochim **arXiv:2308.09699**, accepted for publication in Nature Physics (2024)

Few-body experiments run at the Physics Institute of Heidelberg University.

http://ultracold.physi.uni-heidelberg.de/

Main collaborators:

Selim Jochim (PI) Sandra Brandstetter (PhD student) Carl Heintze (PhD student) Philipp Lunt (PhD student)

No separation of scales in the initial system System size = interparticle spacing = scattering length

Fluid behavior of 10 particles!

Predicted non-monotonic behavior is observed!

Beyond Natoms=6, elliptic flow is determined by inter-atom interactions.

Collective behavior

Hydrodynamic model – ideal fluid in 2D

Fit experimental results for pressure:

$$P_{\text{ideal}} = \frac{\pi \hbar^2}{2M^3} \rho^2 , \quad P_{\text{fit}} = g \rho^{\kappa}$$

Solve continuity and Euler equations:

$$\partial_t \rho + \nabla \cdot (\rho \mathbf{v}) = 0$$
$$\rho (\partial_t + \mathbf{v} \cdot \nabla) \mathbf{v} = -\nabla P$$

Direct comparison in real space – Ideal hydrodynamic simulations

Hydro solver from Stony Brook:

https://python-hydro.github.io/pyro2/index.html

17

evolution of aspect ratio well-described, absolute magnitudes of sizes are a bit off

Momentum space prediction

Absolute magnitude of momenta affected by interaction quench. Hard to predict in theory.

Difference of momenta should mitigate experimental effects.

Conclusions

A system of 10 strongly interacting ⁶Li atoms at T=0 behaves qualitatively like a fluid \rightarrow "small systems question in cold atoms"

The fluidlike behavior emerges only if there are enough particles (and the interaction is sufficiently strong)

Ideal hydrodynamics does not capture all relevant features

Outlook

Add second order corrections

- Investigate pairing \rightarrow Freeze-out to bound states?
- Hydrodynamic attractor in ultracold atoms [Fujii, Enss, arXiv:2404.12921]

Theory postdoc position opening soon. Send inquires to a.mazeliauskas@thphys.uni-heidelberg.de Thank you!

Conservation laws for mass, momentum and energy

mass density fluid velocity

$$\partial_t \overset{\mathbf{I}}{\rho} + \partial_j (\overset{\mathbf{I}}{\rho v_j}) = 0$$

 $\partial_t (\rho v_i) + \partial_j T_{ji} = 0$
 $\partial_t \varepsilon + \partial_j (\varepsilon v_j + q_j) + (T_{jk} - \rho v_j v_k) (\partial_j v_k) = 0$
energy density

with the stress tensor

$$T_{jk} = \rho v_j v_j + (P + \Pi) \delta_{jk} + \pi_{jk}$$

But now we have only 5 equations for 14 unknowns

Solution: derivative expansion

Zeroth order: ideal fluid (
$$\rightarrow$$
 Euler equation)
 $\Pi = 0, \pi_{jk} = 0, q_j = 0$
Pressure from thermodynamic equation of state

First order: viscous fluid (\rightarrow Navier-Stokes equations)

$$\Pi = -\zeta \partial_j v_j, \pi_{jk} = -\eta \sigma_{jk}, q_j = -\kappa \partial_i T$$

Transport coefficients from e.g. linear response

Guidelines for mesoscopic samples

- 1 Statistical description, repeat the experiment many times like in heavy-ion collisions.
- **2** Unlike heavy-ion collisions, orientation and ellipticity, ϵ_2 , can be chosen.
- **3** Measure elliptic flow as $\langle \cos 2\Phi_p \rangle$ with respect to the fixed axis.

Inversion of shape in the many-body limit

[O'Hara et al., Science **298** (2002) 2179-2182] [Menotti, Pedri, Stringari, PRL **89**, 250402 (2002)]

Control over particle number

[Serwane et al., Science 332 (2011) 6027]

⁶Li atoms in reservoir and microtrap

only microtrap

apply magnetic field gradient spill atoms

http://ultracold.physi.uni-heidelberg.de/

Exquisite experimental control – Feshbach resonance

$$\mathcal{H} = -\sum_{i=1}^{N} \frac{\hbar^2}{2m} \boldsymbol{\nabla}_i^2 + \sum_{i < j} \frac{\hbar^2}{2m} g_0 \,\delta^{(d)} \left(\boldsymbol{r}_i - \boldsymbol{r}_j \right) + \sum_{i=1}^{N} \mathcal{V}_{\text{ext}} \left(\boldsymbol{r}_i \right)$$

[e.g. Marvin Holten, PhD thesis, Heidelberg University (2022)]

Low-energy scattering characterized by s-wave scattering length parameter, \boldsymbol{a} .

Tune it with an external B field.

lithium-6

 $a_{3D} = a_{bg} \left(1 + \frac{\Delta}{B - B_0} \right) \qquad \begin{array}{l} a_{bg} = -2100 \, a_{\mathrm{Bohr}} \\ B_0 = 690 \, \mathrm{G} \\ \Delta = 200 \, \mathrm{G} \end{array}$

Transition from non-interacting to strongly-interacting systems.

28

Superfluidity in interacting 2d fermion gases

[Levinsen, Parish, arXiv:1408.2737]

The system we consider is at very low temperatures and interaction parameter $\sim 1 \rightarrow$ macroscopic limit is a superfluid

Matching to mass density at t=0 to the measured initial condition

Elliptic flow requires sufficiently strong interactions

