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Introduction

Thermodynamics of QCD

Phase diagram of nuclear matter

Understanding thermodynamics of nuclear matter, or how matter in atomic nuclei behaves under extreme
conditions like in the early Universe <> studying the phase diagram of nuclear matter.
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Introductio
o
Lattice QCD

Determining thermodynamics of nuclear matter from Taylor expansion

Among the different ways to calculate the EoS of nuclear matter, lattice QCD is the most accurate way
to get thermodynamics directly from QCD first principles.

1D’Elia et al., PRD 95, 094503 (2017) / Bazavov et al., PRD 101, 074502 (2020) / Borsanyi et al., arXiv:2312.07528
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Determining thermodynamics of nuclear matter from Taylor expansion

Among the different ways to calculate the EoS of nuclear matter, lattice QCD is the most accurate way
to get thermodynamics directly from QCD first principles.

To reach finite density, one can expand using Taylor series
to circumvent the fermion sign problem:

P(T, fip, fis, fip) L BSO o ni nj ak o
74 7Zi!j!klxijk (D iighs  (wimin=7)
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with Taylor coefficients Xijk (susceptibilities),
computed on the lattice at zero chemical potentials:
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Determining thermodynamics of nuclear matter from Taylor expansion

Among the different ways to calculate the EoS of nuclear matter, lattice QCD is the most accurate way
to get thermodynamics directly from QCD first principles.
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to circumvent the fermion sign problem: o still limited to i;/T < 2.5 for i = B,0,S
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@ 7'-Expansion Scheme
@ 2D EoS from TExS
@ Limitat T — oo
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2D EoS from TExS

A novel expansion scheme for lattice QCD EoS at finite up
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Simulations at Im({ip): T-dependence of normalised

baryon density (x¥ =np/7") at finite fiz appears to be
shifted from the value at fip = 0.

Borsanyi et al., PRL 126 (2021) 23, 232001
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2D EoS from TExS

A novel expansion scheme for lattice QCD EoS at finite up
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Simulations at Im({ip): T-dependence of normalised

baryon density (x¥ =np/7") at finite fiz appears to be
shifted from the value at fip = 0.

For the 0/0 limit, we have: Lﬁ% — gﬁé =x5

Borsanyi et al., PRL 126 (2021) 23, 232001
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Simulations at Im({ip): T-dependence of normalised

baryon density (xlf =ng /T}) at finite fip appears to be Main identity:
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2D EoS from TExS

A novel expansion scheme for lattice QCD EoS at finite up
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2D EoS from TExS

2D equation of state from 7”-Expansion Scheme

New TExS EoS based on coefficients Kgﬁ(T) evaluated
directly from lattice QCD simulations at up =0

T'(,ug) = T (14 K581+ W58 (T + .. )

Borsanyi et al., PRL 126 (2021) 23, 232001
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T’-Expansion Scheme

2D EoS from TExS

2D equation of state from 7”-Expansion Scheme

Borsanyi et al., PRL 126 (2021) 23, 232001
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2D EoS from TExS

2D equation of state from 7”-Expansion Scheme
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T’-Expansion Scheme

Limit at 7 — oo

Applying Stefan-Boltzmann limit normalisation

T T T 3 T T T T T T T %
N .« 2t
02 TS AN A T JURER AR ST 1
PSR I ot
etz -
LT -
sitat rd
0.15 | el 1 P |
3 *iee 4
?E e 4stout, 48% x 12 ¢
£ . . .
Sorf . e —— iy =0 + i 1
) S fip =i37/8 Fd
s . . ——i fip = id7/8 .
. .1t fis = i5m/8 5
0051 . =6 T ]
oo &
ts’e -~
et e N
b T rescaled using x = 0.0165
0 1

140 160 180 200 220 240 260 280 300 140 160 180 200 220 240 260 280 300
T [MeV] T(1+ rj?) [MeV]

To ensure that our main identity holds when 7" — oo,
needs to normalise by Stefan-Boltzmann limits

X7 (i) and X3(0):
X?(T7ﬁ3) _ Xg(T/(TJQB)vO)
X (@) % (0)

Borsdnyi et al., PRD 105 (2022) 11, 114504
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o Extending TExS to multiple conserved charges B, Q and §
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Motivation

Why do we need a 4D EoS with extended coverage?

o Hydrodynamics simulation for HIC becomes more accurate and realistic:
need to go beyond usual criteria of strangeness neutrality ((ng) = 0) and
global charge conservation (ng = 0.4np)

— offer an EoS with 3 independent (up,ug,us) which goes beyond the limit of Taylor (g;
and is better suited for simulations at lower collision energies

<2.5)
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Almaalol, talk at QM 2023
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Extending TExS to multiple conserved charges B, Q and §

Construction of the new scheme - Basics

One can chose to project the (fip, f1p, f1s) Cartesian coordinate system into a
spherical one using (f,0,9), following the relations:

fip = 1. cos(8) o=\ )i+ + B

fig = 1. sin(B)cos(¢) <= @ =arccos Fo
fig + 5
fis = 1. sin(8) sin() 6 = arccos ('UTB>
i
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Extending TExS to multiple conserved charges B, Q and §

Construction of the new scheme - Basics

One can chose to project the (fip, f1p, f1s) Cartesian coordinate system into a
spherical one using (f,0,9), following the relations: Hp

fip = 1. cos(0)

fig =p.sin(0)cos(p) <= @=arccos | ————
A~ +l:l§
. s
= [1.sin(0) sin 0 = arccos | — ~
fis = 1. sin(8) sin(¢) ( 7 ) do

Simple way to reduce the problem from 4D to 2D: a single {1 projected along a given direction
in the 3D (i1, 1, fls) space.

— All previous equations from the 2D-TExS can be used as is!
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Extending TExS to multiple conserved charges B, Q and §

Redefinition of the lattice-based Taylor coefficient

We introduce then X5, a “generalised 2" order susceptibility” at fi = 0:

9*P/T*
X3 -2

A=0
= § 18 (1) + sgcg - 15 (T) + 555 %3(T)
B S
+2co59Ce - A ]Q(T) +2cpspSg x?IS(T) + 2s%c<psq, -X1Q1 (T)

as a combination of the usual susceptibilities x??/;(T) at
fip = fis = fig = 0 computed from HRG (at low T) + lattice QCD.
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Redefinition of the lattice-based Taylor coefficient

We introduce then X5, a “generalised 2" order susceptibility” at fi = 0:

2 4
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as a combination of the usual susceptibilities x??/;(T) at
fip = fis = fig = 0 computed from HRG (at low T) + lattice QCD.
Examples:
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Extending TExS to multiple conserved charges B, Q and §

Redefinition of the lattice-based Taylor coefficient

X2(T) for 6=90°, ¢ =90° (us direction)

We introduce then X5, a “generalised 2" order susceptibility” at fi = 0: 1 HrG
08 | jattice QcD
2 4 -0
0,0 _ d P/T 0.6 .
XZ (T)_ aﬁZ S
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as a combination of the usual susceptibilities x??/;(T) at
fip = fis = fig = 0 computed from HRG (at low T) + lattice QCD.

X»(T) for 6 =135°, ¢ =90°

(—upg = us direction)
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Examples: I fattice QcD -
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Extending TExS to multiple conserved charges B, Q and §

The expansion coefficient kg‘(p(T)

From there, we can build the generalised 2nd order
expansion coefficient Ay:

oy L1 o) X% 1o
A1) = 6T X,99(7) x <X§ (1)~ X}@(O) X3 (p(T)>
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Extending TExS to multiple conserved charges B, Q and §

The expansion coefficient kg‘(p(T)

From there, we can build the generalised 2nd order
expansion coefficient Ay:

oy L1 o) X% 1o
A1) = 6T X,99(7) x <X§ (1)~ X}@(O) X3 (p(T)>

embedding the S.B. limit correction (Xz =limroe(Ay) = 0),
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From there, we can build the generalised 2nd order
expansion coefficient Ay:

797(‘)
A0(T) L_1 <x§=“’(r)-§‘$y(p$§x§v“’(r)>
2

= 6T ¥/ 0
6T Xé ,LP(T)

embedding the S.B. limit correction (Xz =limroe(Ay) = 0),

with Y%’:‘:(O) being the S.B. limits for Xg}(z(T) at i = 0. We employ
here the latest xf/Qf data from the WB collaboration.
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Extending TExS to multiple conserved charges B, Q and §

From shifted temperature 7’ to generalised charge density X,

Using the previously obtained expansion coefficient kg’w(T), one can
build the shifted temperature expansion 7" % (T’ i):

00T, f) = T (1423°(T)73 )
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Extending TExS to multiple conserved charges B, Q and §

From shifted temperature 7’ to generalised charge density X,

Using the previously obtained expansion coefficient kg’w(T), one can X1(T) for 6=90°, p=90° (us direction)

build the shifted temperature expansion 7" % (T’ i): o t =00
i=0.5
) 0,0 7 2 o
00T, f) = T (1423°(T)73 ) ="
S fA=25
b A=30
Then, using the 7ExS main identity, one can express the 2f
generalised charge density X?‘(p at finite [&: /‘/
0
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0 Ye(p (,[l) 0 T (MeV)
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XZA (0) 6 { 4=00
[1=05
t A=10
4 ;?:1.5
where we compute Xg ®(1,0) using ngS data from s |
the Wuppertal-Budapest collaboration. %> 2> ¢ }oa=30
2 i=35 r
“Borsdnyi et al., JHEP 01 (2012) 138 /
bBellwied et al., PRD 101 (2020) 3, 034506 O—
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@00

Preliminary results for thermodynamics

Pressure
We integrate X?"(p (T, 1) to compute the pressure: 6=90°, p=90° (us direction)
10 !
0,0 N a 0,0 N Y g !
PP(T, 1) = P(T,0) + AR (T, /)dp ,
s 6
a
p( Iy Iy Iy 4
= P(T,[g, o, fis) ,
using lattice results for P(T',0) with recent precision improvement 050 75 100 135 150 175 200 225
from the Wuppertal-Budapest collaboration.® T (MeV)
6=135° ¢=90° (—up=ps direction)
101 ¢ ;?:o.o
Examples: ol 1 ﬂ:’;
-for (8 =90°,0=90°), f=pg o =1s
— e
-for (8 =135°,0=90°), = v"a}r,ag &,
2
0
4P. Parotto, talk at QM 2023 50 75 100 125 150 175 200 225

T (MeV)
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Preliminary results for thermodynamics

Entropy density

The expression for entropy density s is given as:

oP o [ r#
97¢ A — o _ - 9.¢ A~ /
50T, ) BT‘# 3T {/0 X (TW)dFL
/ 0,0,
- # 9 X (1) 0,0 /v /
,s(r,o)+/0 = [Q‘P(o)] x X29(T' 0)dy
u
4 X () T axg’(p(TQO)d
+ 0 x%¢ T oT’ H
X,7(0)
Examples:
- for (8=90°,¢ = 90°), fi=fi

-for (8=135°,0=90°), fr= /i -+

4D-TExS

/

(o] lo}

6=90°, ¢=90° (us direction)

t pa=o0.0
=05
toA=10
A=15
toa=20
=25

75 100 125 150 175 200 225

T (MeV)
6=135° ¢=90° (—ug=Ws direction)

20

15

T (MeV)

75 100 125 150 175 200 225
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Preliminary results for thermodynamics

Charge densities & entropy density

6=90°, ¢=90° (us direction)

0l
One can then compute energy density € as: 15 L
t A=20
(T 0)=5s.T—P+ Z i X n; ST I
i=B,0.8
5
=5.T —P+ug xXng+ug Xng+us X ng
, 0
=s5.T—P+ux(co .x{’ +59Co .X(]J +.s'9.v(p.xf) 50 75 100 1%5(Melvs)o 175 200 225
T 9,0
=sT=PtuxX, 6=135° ¢ =90° (—uz=ps direction)
20
Examples: . 15
-for (6=90°,0 =90°), &(T,up,us)=s.T—P+usng %10
-for (6 =135°,0=90°), &(T,up,us)=sT—P+ % ng — % ng 5
0
50 75 100 125 150 175 200 225
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We present a new 4D lattice-based EoS construction using the 7’-Expansion Scheme

to extend the coverage from the 4D Taylor expansion (i < 2.5) up to fi ~ 3.5.

4D-TExS EoS

o We have generalized the T’-Expansion Scheme to 4D by computing Xg}(z(T,,u) from
lattice data at 1 =0
(projecting a generalised u = | /1 +,L12Q + ,u§ onto spherical coordinates)
e We have shown extension from the (7, up) plane to (T,up,us) and computed thermodynamics

(pressure P, charge densities np/q /s, entropy density s, energy density €)

Currently: we are working on extending to full 4D space (T, ug, s, o)

Disclaimer: error shown in the preliminary results of this talk are underestimated
— need to complete the analysis of error consistently
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Backup slides

Complete formula for XE"P(T, Q)

X307, = 545 (T,0) + 53¢ 1§ (T,0) + stsg x(T,0)
+4cesec(p.x3lQ(T 0) +4dcgsese - x5 (T, O)+4sec Sp - X31 5(T,0)
,0) +4cosgsy - X1 (T,0) +4s3cesy X% (T,0)
+6C%sgc2 Xzz( )+6c§s§s2 x5 (T, O)+6sgc<2p (2p Xzz )(T,0)

+ 12¢3s5C050 - X211 S(T,0) + IZCesec(psq, X?%S(T 0)+ 12cesec(ps xf%S(T, 0)

33
+4CeSeC(p X13
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Backup slides

Lattice QCD datasets

To compute Xg’(p(T): continuum extrapolated xg/Qf from the latest LT=2 (small volume) 4HEX WB data.

To compute Xle"(p(T, f1): continuum extrapolated XI;/%S from the LT=4 (= o volume) 4stout WB data.

Why do we mix 2 datasets? (~ lattice phenomenology)

— 4HEX data don’t have a sufficient coverage in T yet
— 4stout has too big errors in the transition region

BUT because of the small volume used for 4HEX (LT=2), more configurations simulated

— smaller errors
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Backup slides

Checking the convergence of the 2D-TExS

Computed thermodynamics quantities in the 2D-TExS adding «%?(7) (NLO in 7’ expansion).

— adding K4 only increases the errors but we see no change in the result overall

1-2 T T T T T T T T T T T
—— g T=05 20 | b—— pyT=0 1
—— pgT=15 —+— pg/T=05
1 L —— pgT=25 . —— pgT=15
ugT=35 ——i 1gT=25
ug/T=3.5
08 | i 15 | 1
£ gasse T ] £ :
IS i T 1o} gzzITi
- 5 I
c III
] III
g I
| 5 —/III 4
e 0 , . , , ‘ ,
160 180 200 220 240 120 140 160 180 200 220 240
T [MeV] T [MeV]
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