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Thermodynamics of QCD

Phase diagram of nuclear matter

Understanding thermodynamics of nuclear matter, or how matter in atomic nuclei behaves under extreme
conditions like in the early Universe ⇔ studying the phase diagram of nuclear matter.

- crossover between hadronic gas and
QGP predicted by lattice QCD at low
baryonic density
(Tc ∼ 160 MeV)

- 1st order phase transition
+ critical endpoint (CEP) predicted by
by extrapolation from the chiral limit
and several models (PNJL, fRG,
holography...)

- colour superconductivity expected at
low-T / high-µB
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Lattice QCD

Determining thermodynamics of nuclear matter from Taylor expansion

Among the different ways to calculate the EoS of nuclear matter, lattice QCD is the most accurate way
to get thermodynamics directly from QCD first principles.

To reach finite density, one can expand using Taylor series
to circumvent the fermion sign problem:

P(T, µ̂B, µ̂S, µ̂Q)

T4 = ∑
i,j,k

1
i! j!k!

χ
BSQ
ijk (T) µ̂ i

B µ̂ j
Q µ̂k

S
(

with µ̂i =
µ
T

)
with Taylor coefficients χ

BQS
ijk (susceptibilities),

computed on the lattice at zero chemical potentials:

χ
BQS
ijk (T) =

∂i+j+k(P/T4)

∂µ̂ i
B µ̂ j

S µ̂k
Q

∣∣∣∣∣
µ̂B,µ̂S,µ̂Q=0

4D-Taylor EoS built from continuum extrapolated
diagonal + off-diagonal χ

BQS
2/4 (T)

Despite recent results for χ6 and χ8
1:

still limited to µi/T ≲ 2.5 for i = B,Q,S
lack of convergence due to large errors on
high order terms which dominate at high µ̂
expansion achieved at T =const, missing out
the curved behaviour of pseudo-critical line

Borsányi et al., PRL 126 (2021) 23, 232001

1D’Elia et al., PRD 95, 094503 (2017) / Bazavov et al., PRD 101, 074502 (2020) / Borsányi et al., arXiv:2312.07528
2 / 14

https://inspirehep.net/literature/1846542
https://inspirehep.net/literature/1500207
https://inspirehep.net/literature/1776953
https://inspirehep.net/literature/2735790
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Borsányi et al., PRL 126 (2021) 23, 232001

1D’Elia et al., PRD 95, 094503 (2017) / Bazavov et al., PRD 101, 074502 (2020) / Borsányi et al., arXiv:2312.07528
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2D EoS from TExS

A novel expansion scheme for lattice QCD EoS at finite µB

Simulations at Im(µ̂B): T-dependence of normalised
baryon density

(
χB

1 = nB/T3) at finite µ̂B appears to be
shifted from the value at µ̂B = 0.

For the 0/0 limit, we have: χB
1 (T,µ̂B)→0

µ̂B→0 → ∂χB
1

∂µ̂B
= χB

2

Borsányi et al., PRL 126 (2021) 23, 232001

Main identity:
χB

1 (T, µ̂B)

µ̂B
= χ

B
2 (T

′,0)

with T′(T, µ̂B) = T
(

1+κ2 . µ̂
2
B +κ4 . µ̂

4
B + . . .

)
captures the finite µ̂B dependence of the expansion

3 / 14
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2D EoS from TExS

2D equation of state from T ′-Expansion Scheme

New TExS EoS based on coefficients κBB
2/4(T) evaluated

directly from lattice QCD simulations at µB = 0

T ′(T,µB) = T
(

1+κ
BB
2 (T)µ̂2

B +κ
BB
4 (T)µ̂4

B + . . .
)

with coefficients κBB
i (T) connected to Taylor coefficients χB

i (T):

• κ
BB
2 (T,0) =

1
6T

χB
4 (T)

χ′B
2 (T)

with χ
′(T) =

∂χ(T)
∂T

• κ
BB
4 (T,0) =

1

360T ×χ′B
2 (T)3

(
3χ

′B
2 (T)×χ

B
6 (T)−5χ

′′B
2 (T)×χ

B
4 (T)

2
)

⇒ Clear separation of scales between κ2(T) and κ4(T)

⇒ κ4(T) is almost 0 → faster convergence

⇒ κ2/4(T) has a smooth T-dependence

Borsányi et al., PRL 126 (2021) 23, 232001
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Limit at T → ∞

Applying Stefan-Boltzmann limit normalisation

To ensure that our main identity holds when T → ∞,
needs to normalise by Stefan-Boltzmann limits

χ
B
1 (µ̂B) and χ

B
2 (0):

χB
1 (T, µ̂B)

χ
B
1 (µ̂B)

=
χB

2 (T
′(T, µ̂B),0)

χ
B
2 (0)

This leads to redefine:

T ′(T,µB) = T
(

1+λ
BB
2 (T)µ̂2

B + . . .
)

with the new expansion coef. embedding the S.B. limit:

λ
BB
2 (T) =

1
6T χB

2 (T)
′ ×χ

B
4 (T) = κ

BB
B (T)

Borsányi et al., PRD 105 (2022) 11, 114504
5 / 14
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Motivation

Why do we need a 4D EoS with extended coverage?

Hydrodynamics simulation for HIC becomes more accurate and realistic:
need to go beyond usual criteria of strangeness neutrality (⟨nS⟩= 0) and
global charge conservation (nQ = 0.4nB)

→ offer an EoS with 3 independent (µB,µQ,µS) which goes beyond the limit of Taylor (µ̂i ≲ 2.5)
and is better suited for simulations at lower collision energies

Almaalol, talk at QM 2023

Entering a new era for astrophysics with the
observation of NS mergers:
merger simulations also employs hydrodynamics
which need an EoS going to finite µB
and finite µI (related to µQ)

⇒ Why not generalising the T ′-Expansion Scheme
to several conserved charges..?

6 / 14

https://indico.cern.ch/event/1139644/contributions/5453463/
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Extending TExS to multiple conserved charges B, Q and S

Construction of the new scheme - Basics

One can chose to project the (µ̂B, µ̂Q, µ̂S) Cartesian coordinate system into a
spherical one using (µ̂,θ,ϕ), following the relations:

µ̂B = µ̂ . cos(θ) µ̂ =
√

µ̂2
B + µ̂2

Q + µ̂2
S

µ̂Q = µ̂ . sin(θ)cos(ϕ) ⇐⇒ ϕ = arccos

 µ̂Q√
µ̂2

Q + µ̂2
S


µ̂S = µ̂ . sin(θ)sin(ϕ) θ = arccos

(
µ̂B

µ̂

)

Simple way to reduce the problem from 4D to 2D: a single µ̂ projected along a given direction
in the 3D (µ̂B, µ̂Q, µ̂S) space.

→ All previous equations from the 2D-TExS can be used as is!
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Extending TExS to multiple conserved charges B, Q and S

Redefinition of the lattice-based Taylor coefficient

We introduce then X2, a ”generalised 2nd order susceptibility” at µ̂ = 0:

Xθ,ϕ
2 (T) =

∂2P/T4

∂µ̂2

∣∣∣∣∣
µ̂=0

= c2
θ .χ

B
2 (T)+ s2

θc2
ϕ .χ

Q
2 (T)+ s2

θs2
ϕ .χ

S
2(T)

+2cθsθcϕ .χ
BQ
11 (T)+2cθsθsϕ .χ

BS
11 (T)+2s2

θcϕsϕ .χ
QS
11 (T)

as a combination of the usual susceptibilities χ
BQS
11/2(T) at

µ̂B = µ̂S = µ̂Q = 0 computed from HRG (at low T) + lattice QCD.

Examples:

- for (θ = 90◦,ϕ = 90◦), µ̂ = µ̂S ↔ X2 = χS
2

- for (θ = 135◦,ϕ = 90◦), µ̂ =
√

µ̂2
B + µ̂2

S ↔ X2 =
χB

2
2 +

χS
2

2 +χBS
11

The same way, one obtains:
Xθ,ϕ

4 (T) = c4
θ
.χB

4 (T)+ s4
θ
c4

ϕ .χ
Q
4 (T)+ s4

θ
s4
ϕ .χ

S
4(T)+ . . .
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Extending TExS to multiple conserved charges B, Q and S

The expansion coefficient λ
θ,ϕ
2 (T)

From there, we can build the generalised 2nd order
expansion coefficient λ2:

λ
θ,ϕ
2 (T) =

1
6T

1

X′
2

θ,ϕ(T)
×

(
Xθ,ϕ

4 (T)−
X θ,ϕ

4 (0)

X θ,ϕ
2 (0)

Xθ,ϕ
2 (T)

)

embedding the S.B. limit correction
(

λ2 = limT→∞(λ2) = 0
)

,

with X θ,ϕ
2/4(0) being the S.B. limits for Xθ,ϕ

2/4(T) at µ̂ = 0. We employ

here the latest χ
BQS
2/4 data from the WB collaboration.

Examples:
- for (θ = 90◦,ϕ = 90◦), µ̂ = µ̂S

- for (θ = 135◦,ϕ = 90◦), µ̂ =
√

µ̂2
B + µ̂2

S
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Extending TExS to multiple conserved charges B, Q and S

From shifted temperature T ′ to generalised charge density X1

Using the previously obtained expansion coefficient λ
θ,ϕ
2 (T), one can

build the shifted temperature expansion T ′θ,ϕ(T, µ̂):

T ′θ,ϕ(T, µ̂) = T
(

1+λ
θ,ϕ
2 (T)µ̂2

B

)

Then, using the TExS main identity, one can express the
generalised charge density Xθ,ϕ

1 at finite µ̂:

Xθ,ϕ
1 (T, µ̂) =

X θ,ϕ
1 (µ̂)

X θ,ϕ
2 (0)

×Xθ,ϕ
2

(
T ′θ,ϕ(T, µ̂),0

)

where we compute Xθ,ϕ
2 (T ′,0) using χ

BQS
2 data from

the Wuppertal-Budapest collaboration. a, b, c

aBorsányi et al., JHEP 01 (2012) 138
bBellwied et al., PRD 101 (2020) 3, 034506
cBorsányi et al., PRL 126 (2021) 23, 232001
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Preliminary results for thermodynamics

Pressure

We integrate Xθ,ϕ
1 (T, µ̂) to compute the pressure:

Pθ,ϕ(T, µ̂) = P(T,0)+
∫ µ̂

0
Xθ,ϕ

1 (T, µ̂′)dµ̂′

= P(T, µ̂B, µ̂Q, µ̂S)

using lattice results for P(T,0) with recent precision improvement
from the Wuppertal-Budapest collaboration.a

Examples:
- for (θ = 90◦,ϕ = 90◦), µ̂ = µ̂S

- for (θ = 135◦,ϕ = 90◦), µ̂ =
√

µ̂2
B + µ̂2

S

aP. Parotto, talk at QM 2023
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Preliminary results for thermodynamics

Entropy density

The expression for entropy density s is given as:

sθ,ϕ(T, µ̂) =
∂P
∂T

∣∣∣∣
µ
=

∂

∂T

[∫ µ′

0
Xθ,ϕ

1 (T, µ̂)dµ′
]

µ

= s(T,0)+
∫ µ′

0

∂

∂T

[
X θ,ϕ

1 (µ̂)

X θ,ϕ
2 (0)

]
µ

×Xθ,ϕ
2 (T ′,0)dµ′

+
∫ µ′

0

X θ,ϕ
1 (µ̂)

X θ,ϕ
2 (0)

× ∂T ′

∂T
×

∂Xθ,ϕ
2 (T ′,0)

∂T ′ dµ′

Examples:
- for (θ = 90◦,ϕ = 90◦), µ̂ = µ̂S

- for (θ = 135◦,ϕ = 90◦), µ̂ =
√

µ̂2
B + µ̂2

S
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Preliminary results for thermodynamics

Charge densities & entropy density

One can then compute energy density ε as:

ε
θ,ϕ(T, µ̂) = s.T −P+ ∑

i=B,Q,S
µi ×ni

= s.T −P+µB ×nB +µQ ×nQ +µS ×nS

= s.T −P+µ× (cθ .χ
B
1 + sθcϕ .χ

Q
1 + sθsϕ .χ

S
1)

= s.T −P+µ×Xθ,ϕ
1

Examples:
- for (θ = 90◦,ϕ = 90◦), ε(T,µB,µS) = s.T −P+µS nS

- for (θ = 135◦,ϕ = 90◦), ε(T,µB,µS) = s.T −P+ µS√
2

nS − µB√
2

nB
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Summary

We present a new 4D lattice-based EoS construction using the T ′-Expansion Scheme
to extend the coverage from the 4D Taylor expansion (µ̂ ≲ 2.5) up to µ̂ ∼ 3.5.

4D-TExS EoS

We have generalized the T ′-Expansion Scheme to 4D by computing Xθ,ϕ
2/4(T,µ) from

lattice data at µ̂ = 0
(projecting a generalised µ =

√
µ2

B +µ2
Q +µ2

S onto spherical coordinates)

We have shown extension from the (T,µB) plane to (T,µB,µS) and computed thermodynamics
(pressure P, charge densities nB/Q/S , entropy density s, energy density ε)

Currently: we are working on extending to full 4D space (T,µB,µS,µQ)

Disclaimer: error shown in the preliminary results of this talk are underestimated
→ need to complete the analysis of error consistently
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Additional material



Backup slides

Complete formula for Xθ,ϕ
4 (T, µ̂)

Xθ,ϕ
4 (T, µ̂) = c4

θ .χ
B
4 (T,0)+ s4

θc4
ϕ .χ

Q
4 (T,0)+ s4

θs4
ϕ .χ

S
4(T,0)

+4c3
θsθcϕ .χ

BQ
31 (T,0)+4c3

θsθsϕ .χ
BS
31 (T,0)+4s3

θc3
ϕsϕ .χ

QS
31 (T,0)

+4cθs3
θc3

ϕ .χ
BQ
13 (T,0)+4cθs3

θs3
ϕ .χ

BS
13 (T,0)+4s3

θcϕs3
ϕ .χ

QS
13 (T,0)

+6c2
θs2

θc2
ϕ .χ

BQ
22 (T,0)+6c2

θs2
θs2

ϕ .χ
BS
22 (T,0)+6s4

θc2
ϕs2

ϕ .χ
QS
22 (T,0)

+12c2
θs2

θcϕsϕ .χ
BQS
211 (T,0)+12cθs3

θc2
ϕsϕ .χ

BQS
121 (T,0)+12cθs3

θcϕs2
ϕ .χ

BQS
112 (T,0)
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Backup slides

Lattice QCD datasets

To compute λ
θ,ϕ
2 (T): continuum extrapolated χ

BQS
2/4 from the latest LT=2 (small volume) 4HEX WB data.

To compute Xθ,ϕ
1 (T, µ̂): continuum extrapolated χ

BQS
2/4 from the LT=4 (≈ ∞ volume) 4stout WB data.

Why do we mix 2 datasets? (≈ lattice phenomenology)

→ 4HEX data don’t have a sufficient coverage in T yet
→ 4stout has too big errors in the transition region

BUT because of the small volume used for 4HEX (LT=2), more configurations simulated

→ smaller errors
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Backup slides

Checking the convergence of the 2D-TExS

Computed thermodynamics quantities in the 2D-TExS adding κBB
4 (T) (NLO in T ′ expansion).

→ adding κ4 only increases the errors but we see no change in the result overall
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