

Experimental summary SQM 2024, Strasbourg

Javier Castillo Castellanos

The 21st International Conference on Strangeness in Quark Matter 3-7 June 2024, Strasbourg, France

Acknowledgment and disclaimer

Acknowledgment and disclaimer

SOM2024

This is SQM, Strangeness in Quark Matter

So let's start with the famous strangeness enhancement

The famous strangeness enhancement

The original idea is simple

- Strangeness enhancement
- Stronger enhancement for larger s content

Observed at SPS, RHIC, LHC energies

The (in)famous strangeness enhancement

The original idea is simple

- Strangeness enhancement
- Stronger enhancement for larger s content

Observed at SPS, RHIC, LHC energies

But the interpretation still challenging

- Strange-to-non strange particle ratio increase with multiplicity
- Independently from collision system and energy

The (in) famous strangeness enhancement

The original idea is simple

- Strangeness enhancement
- Stronger enhancement for larger s content

Observed at SPS, RHIC, LHC energies

But the interpretation still challenging

- Strange-to-non strange particle ratio increase with multiplicity
- Independently from collision system and energy

Strangeness enhancement phenomenon

Nature Phys 13, 535–539 (2017)

The (in) famous strangeness enhancement

The original idea is simple

- Strangeness enhancement
- Stronger enhancement for larger s content

Observed at SPS, RHIC, LHC energies

But the interpretation still challenging

- Strange-to-non strange particle ratio increase with multiplicity
- Independently from collision system and energy

Has triggered a rich set of studies in small collision systems

Strangeness enhancement phenomenon

Nature Phys 13, 535–539 (2017)

12

Angular correlations in and out of jets

The relative production of strange hadrons is larger in the underlying event than in hard scattering processes

$h - \phi / h - h$ yield ratios vs multiplicity in p—Pb collisions

Angular correlations in and out of jets

The relative production of strange hadrons is larger in the underlying event than in hard scattering processes

As a function of Spherocity

- Large Spherocity selects isotropic events driven by multiple softer collisions
- Strangeness enhancement: seemingly property of UE/ soft physics

 $h - \phi / h - h$ yield ratios vs multiplicity

Angular correlations in and out of jets

The relative production of strange hadrons is larger in the underlying event than in hard scattering processes

As a function of Spherocity

- Large Spherocity selects isotropic events driven by multiple softer collisions
- Strangeness enhancement: seemingly property of UE/ soft physics
- As a function of R_T, R_{T,min}, R_{T,max}
- Activity (min, max) in the region transverse to the jet
- Enhancement with increasing R_{T,min}?
- Most sensitive to n_{MPI}?

Angular correlations in and out of jets

The relative production of strange hadrons is larger in the underlying event than in hard scattering processes

As a function of Spherocity

- Large Spherocity selects isotropic events driven by multiple softer collisions
- Strangeness enhancement: seemingly property of UE/soft physics
- As a function of R_T, R_{T,min}, R_{T,max}
- Activity (min, max) in the region transverse to the jet
- Enhancement with increasing R_{T,min}?
 - Most sensitive to n_{MPI}?

Rather a baryon enhancement

- At least part of the enhancement seen in HM pp is due to a baryon-related effect
- Baryon-related effect well-reproduced by Pythia 8 QCD-CR Ropes

Roman Nepeivoda

The (in) famous strangeness enhancement

Also when hadronizing with heavy flavors?

Strange-to-nonstrange B meson ratio increases with multiplicity (measured in the same eta region) in p-Pb

B_s^0/B^0 ratio with multiplicity pp collisions at $\sqrt{s} = 13$ TeV Phys. Rev. Lett. 131 (2023) 061901

- Ratio enhancement observed with VELO tracks.
- No significant enhancement with backward tracks. This hints that the mechanism responsible for the increase in the ratio is related to the local particle density.
- Results coherent with e^+e^- measurements at low multiplicity.

SQM 2024

C. Landesa Gómez for the LHCb Collaboration

 $\sigma_{B_s^0}/\sigma_{B^0}$

The (in) famous strangeness enhancement

Also when hadronizing with heavy flavors?

- Strange-to-nonstrange B meson ratio increases with multiplicity (measured in the same eta region) in p-Pb
- Strange-to-nonstrange D meson ratio ... will come to that

B_s^0/B^0 ratio with multiplicity pp collisions at $\sqrt{s} = 13$ TeV Phys. Rev. Lett. 131 (2023) 061901

- Ratio enhancement observed with VELO tracks.
- No significant enhancement with backward tracks. This hints that the mechanism responsible for the increase in the ratio is related to the local particle density.
- Results coherent with e^+e^- measurements at low multiplicity.

SQM 2024

C. Landesa Gómez for the LHCb Collaboration

 $\sigma_{B_s^0}/\sigma_{B^0}$

This is also SQM, sharm in Quark Matter

So let's now focus on charm (and beauty) hadronization

Charm fragmentation function

Factorisation approach

Open heavy-flavour hadron production cross section calculated by factorisation approach:

Charm fragmentation function fraction

Factorisation approach

Open heavy-flavour hadron production cross section calculated by factorisation approach:

Factorisation approach

Open heavy-flavour hadron production cross section calculated by factorisation approach:

	Parton distribution functions	Hard scattering cross section	Fragmentation functions (hadronisation)	
O		(pQCD)	Assumed universal across collision systems (ee,, AA)	

Probability of charm quark to hadronize into a given charm hadron

- Charm mesons: reduced in hadronic collisions compared to ee
- Charm baryons: increased in hadronic collisions compared to ee
- But, no to little change for strange D meson
- No energy or hadronic collision system dependence

Charm baryon-to-meson ratio

- Charm baryon enhancement in pp collisions
 - Similar to enhancement in strange sector
 - Reminiscent of Pb–Pb
 - Reproduced by PYTHIA8 with color reconnection or by models including some sort of quark recombination

Charm baryon-to-meson ratio

- Charm baryon enhancement in pp collisions
 - Similar to enhancement in strange sector
 - Reminiscent of Pb-Pb
 - Reproduced by PYTHIA8 with color reconnection or by models including some sort of quark recombination
- Enhancement increases with multiplicity

Charm baryon-to-meson ratio

- Charm baryon enhancement in pp collisions
 - Similar to enhancement in strange sector
 - Reminiscent of Pb-Pb
 - Reproduced by PYTHIA8 with color reconnection or by models including some sort of quark recombination
- Enhancement increases with multiplicity
- Enhancement is also there in p-Pb
- Rapidity dependence of enhancement in p-Pb?
- No significant p_T dependence at forward rapidity

 \bigcirc

Charm baryon-to-meson ratio

- Charm baryon enhancement in pp collisions
 - Similar to enhancement in strange sector
 - Reminiscent of Pb-Pb
 - Reproduced by PYTHIA8 with color reconnection or by models including some sort of quark recombination
- Enhancement increases with multiplicity
- Enhancement is also there in p-Pb
- Rapidity dependence of enhancement in p-Pb?
- No significant p_T dependence at forward rapidity
- But no multiplicity dependence seen by CMS in p-Pb
 - Due to restricted p_T range?
 - Earlier coalescence?

Prompt Λ_c^+/D^0 in pp

pp 252 nb⁻¹ (5.02 TeV)

_ \[

Prompt Λ_c^+/D^0 ratio in pPb

0.8

No significant multiplicity dependence Differs from strange quark trend

- $Pb 1 < N_{trk} < 35$ □ *pPb* 185 < N_{trk} < 250 CMS PAS HIN-21-016 JHEP 01 (2024) 128 0.2 20 10 30 p_⊤ (GeV/c) Λ_c^+/D^0 ratio decreases with increasing p_T
- Coalescence process saturates early for charm quark with multiplicity

Consistent with pp and PbPb results

Soumik Chandra, SQM 2024

Charm baryon-to-meson ratio

- Charm baryon enhancement in pp collisions
 - Similar to enhancement in strange sector
 - Reminiscent of Pb-Pb
 - Reproduced by PYTHIA8 with color reconnection or by models including some sort of quark recombination
- Enhancement increases with multiplicity
- Enhancement is also there in p-Pb
- Rapidity dependence of enhancement in p-Pb?
 - No significant pT dependence at forward rapidity
- But no multiplicity dependence seen by CMS in p-Pb
 - Due to restricted p_T range?
 - Earlier coalescence?
- However, p_T-integrated ratio does not depend on multiplicity or system size in hadronic collisions
- Different p_T redistribution for baryons and mesons rather than a multiplicity dependence in hadronization process itself?

Prompt Λ_c^+/D^0 in pp

pp 252 nb⁻¹ (5.02 TeV)

Prompt Λ_c^+/D^0 ratio in pPb

Beauty baryon-to-meson ratio

- Beauty baryon enhancement in pp collisions
 - Similar to enhancement in strange and charm sector
 - Statistical hadronisation model (SHM) with relativistic quark model (RQM) gives better description than with PDG data by considering Λ^{0}_{b} feed-down from excited baryons
 - EPOS4HQ reproduces the enhancement at low p_T by incorporating coalescence
- Enhancement increases with multiplicity
 - When multiplicity measured in the same eta region
 - Suggestive of coalescence induced by interactions with particles around b quarks (what does that exactly mean?)
- Would like to see beauty baryon-to-meson ratio in p-Pb, its multiplicity dependence and its comparison to charm baryon-to-meson ratio

A_b^0/B^0 ratio versus p_T in different multiplicity intervals

• $R_{\Lambda_{h}^{0}/B^{0}}$ shows a stronger dependence on normalised $N_{\text{tracks}}^{\text{VELO}}$ (forward tracks dominant) than $N_{\text{tracks}}^{\text{back}}$ (backward tracks only), which indicates that coalescence may be induced by interactions with particles around b quarks

- $R_{A_{L}^{0}/B^{0}}$ enhancement at low p_{T} observed
- Pronounced ordering of $R_{\Lambda_{h}^{0}/B^{0}}$ with multiplicity at intermediate p_{T}
- $R_{\Lambda^0_L/B^0}$ at high $p_T \to e^+ e^-$

Charm with strangeness hadronization

Fragmentation fraction of charm to strange D meson is unmodified from ee to hadronic collisions

Strange-to-nonstrange D meson ratio

- No p_T dependence
- No multiplicity dependence
- Described by PYTHIA8 with or without CR
- Not described by CE-SH
- Compensation of reduction of meson hadronization probability by strangeness enhancement?

Xic baryon to D meson ratio

- Shows some pT dependence
- Shows some multiplicity dependence
- Not described by PYTHIA8

PYTHIA 8 (J. R. Christiansen, P. Z. Skands): <u>IHEP 08 (2015) 003</u> CE-SH (] Y. Chen, M. He): <u>Phys. Lett. B 815 (2021) 136144</u>

- D_{s}^{+}/D^{0} ratio in pp collisions at midrapidity does not show any significant dependence vs. $p_{\rm T}$ and event multiplicity
- D_{c}^{+}/D^{0} ratio described by PYTHIA 8 predictions at both low and high multiplicity
- D_{s}^{+}/D^{0} ratio not described by canonical-ensemble statistical hadronization model (CE-SH) at high event multiplicity
- Ξ_{c}^{0}/D^{0} ratio significantly underestimated by PYTHIA 8 predictions

This is turning into SQM, small Quark Matter

So let's look for the onset of collectivity in small systems

Onset of collectivity in small systems

Flow of identified particle in small systems

- Two particle correlations with large eta gap
- Baryon-meson grouping and splitting typically interpreted as sign of partonic collectivity
- Baryon-meson grouping and splitting breaks for N_{ch} < 25</p>
 - Both in pp and p-Pb
- Models need quark coalescence to reproduce grouping and splitting
 - Case in point: W. Zhao et al., PRL 125 (2020) 072301
- Onset of parton collectivity around N_{ch} ~ 25?
 - What is baryon-meson grouping and splitting if not N_{CQ} scaling?
 - But N_{CQ} scaling only approximate even in Pb–Pb at LHC!

	Where is the onset of collectivity? Will get back to this in	a moment	
June 4, 2024	SQM 2024, Strasbourg	Debojit Sarka	ar (NBI)

Onset of collectivity in small systems

Flow of identified particle in small systems

- Two particle correlations with large eta gap
- Baryon-meson grouping and splitting typically interpreted as sign of partonic collectivity
- Baryon–meson grouping and splitting breaks for N_{ch} < 25
- Both in pp and p-Pb
- Models need quark coalescence to reproduce grouping and splitting
 - Case in point: W. Zhao et al., PRL 125 (2020) 072301
- Onset of parton collectivity around N_{ch} ~ 25?
 - What is baryon-meson grouping and splitting if not N_{CQ} scaling?
- But N_{CQ} scaling only approximate even in Pb–Pb at LHC

Ultra-long delta eta particle correlation

- Non-flow subtracted
- Ultra-long range particle correlation down to low multiplicity (about MB multiplicity)
- Available models fail to reproduce the data
- Further theoretical studies needed

- Hydrodynamics (3DGlauber + Music + UrQMD) underestimates the data. AMPT overestimates.
- Proper understanding of the initial state is missing.

Unprecedented constraint for hydrodynamic and alternative models. Need more theory/model input.

June 4, 2024 SQM 2024, Strasbourg

Debojit Sarkar (NBI)

Onset of collectivity in small systems

Flow of identified particle in small systems

- Two particle correlations with extra large eta gap
- Baryon-meson grouping and splitting typically interpreted as sign of partonic collectivity
- Baryon–meson grouping and splitting breaks for N_{ch} < 25
- Both in pp and p-Pb
- Models need quark coalescence to reproduce grouping and splitting
 - Case in point: W. Zhao et al., PRL 125 (2020) 072301
- Onset of parton collectivity around N_{ch} ~ 25?
 - But N_{CQ} scaling only approximate even in Pb-Pb at LHC

Ultra-long delta eta particle correlation

- Non-flow subtracted
- Ultra-long range particle correlation down to low multiplicity (about MB multiplicity)
- Available models fail to reproduce the data
- Further theoretical studies needed

Collectivity in gamma-p collisions

- Lower v₂ compared to p-Pb
- Due to flow decorrelation and strong rapidity boost

There is also SQM, suppression in Quark Matter

So let's briefly dive into quarkonium production

psi(2S) suppression in high-multiplicity pp and p-Pb

Normalized psi(2S)-to-J/psi ratio

- psi(2S) suppression in pp collisions at high multiplicity
 - Suppression increases with multiplicity
 - No dependence with multiplicity in disconnected eta region
 - Bias due to counting of decay muons?
 - Stronger dependence at low pT
 - Little rapidity dependence (forward)
 - Comover model reproduces the measurements

$\psi(2S)$ -to-J/ ψ production ratio at $\sqrt{s} = 13$ TeV

- > Initial-state effects canceled
- \succ Prompt ratio decrease with multiplicity, highly dependent on forward multiplicity, consistent with co-mover model[PLB749m 98(2015)]
- > Non-prompt ratio independent of any multiplicity variables, consistent with comover model

psi(2S) suppression in high-multiplicity pp and p-Pb

Normalized psi(2S)-to-J/psi ratio

- psi(2S) suppression in pp collisions at high multiplicity
 - Suppression increases with multiplicity
 - No dependence with multiplicity in disconnected eta region
 - Bias due to counting of decay muons?
 - Stronger dependence at low p_T
 - Little rapidity dependence (forward)
 - Comover model reproduces the measurements
- psi(2S) suppression in p-Pb collisions at high multiplicity
 - Suppression increases with multiplicity
 - Little rapidity dependence
 - Comover model reproduces the measurements

$\psi(2S)$ -to-J/ ψ production ratio at $\sqrt{s} = 13$ TeV

N Initial atota offacta conceled

Summary of high-p_T results

First measurement of Chic at LHC energies

Chic production in p-Pb collisions

- Important missing piece to complete the picture
- Chic-to-J/psi double ratio is above unity
 - No final state dissociation?

Caution

- The denominator may contain feed down from higher mass states, which in turn might be suppressed
- Since this is a double ratio plotted as a function of the binding energy of the numerator, the comparison between ratios with different denominators is not meaningful
- Thermometer picture is misleading

χ_c -to-J/ ψ double ratio

- Initial-state effects canceled
- > No dissociation due to final-state effects for χ_c observed
- The medium temperature formed in *p*Pb collisions cannot inhibit the formation of charmonium states with binding energy larger than 180 MeV
- Y(3S) dissociate, with similar size and binding energy, can due to its heavier and slower, more easily interact with co-mover

Quarkonium regeneration

J/psi v₂ at RHIC

- Compatible with zero
- Lower than non-zero J/psi v₂ at LHC
- Consistent with increase of regeneration contribution from RHIC to LHC energies
- J/psi R_{AA} excitation function
- Constant below top RHIC energy
- Strong increase from top RHIC to LHC energies
- Consistent with increase of regeneration contribution from RHIC to LHC energies

PHENIX J/ ψ v₂ Measurement

- PHENIX J/ ψ v₂ at forward rapidity is consistent with 0.
- Forward and mid-rapidity results at RHIC are consistent, but the uncertainties are large
- The ALICE nonzero result is different from our measurement.

- lacksquare Strong rise of the J/ $\overline{\psi}$ R_{AA} from RHIC to LHC energies \rightarrow evidence for charmonium regeneration at LHC
- No significant energy dependence of $J/\psi R_{AA}$ below $\sqrt{s_{NN}} = 200 \text{ GeV}$ at a given N_{part}

M, Strasbourg, 07/06/2024

This sounds like SQM, speed of sound in Quark Matter

So let's study some basic thermodynamical properties of the QGP

.

Speed of sound in the QGP

Measure speed of sound from p_T and N_{ch}

Ultra-central collisions

doi:10.1016/j.physletb.2020.135749, arXiv:1909.11609.

Speed of sound in the QGP

Measure speed of sound from p_T and N_{ch}

Ultra-central collisions

CMS measurement compatible with LQCD calculations

Speed of sound in the QGP

Measure speed of sound from <pT> and Nch

Ultra-central collisions

- CMS measurement compatible with LQCD calculations
- But multiplicity estimator is key
 - Eta gap with particles used for <p_>
 - N_{ch} versus E_T based
- Important to carry out systematic studies

38

Emil Gorm Nielsen [NBI] | SQM2024

There is search in SQM, search of the CEP in Quark Matter

So let's continue with the search for the critical point

Search for critical end point

Net-proton cumulants

Full EPD has been installed

Search for critical end point

But several caveats and homework discussed yesterday ...

- 2. Peripheral (70-80%): qualitatively described by UrQMD
- 3. At around 20 GeV, the deviation of central data reaches a maximum
- 4. More investigation are needed on the deviation

Yu Zhang, SQM 2024, Strasbourg, France

This could also be SQM, space Quark Matter

So let's finish with heavy ion physics for astrophysics

From heavy ions to astrophysics

Heavy-ion collisions can provide important input for astrophysics, e.g.

- Cosmic ray fluxes of antinuclei for dark matter searches
- Particle interactions for neutron stars and equation of state

Rich light (anti)(hyper) nucleus programme

- Many new results showed (see C. Pinto summary)
- A glimpse of future results
 - High precision with ALICE

Flow measurement in Run 3

- More precise flow measurement of ${}^{3}\text{He}$ in Run 3
- Can we measure the flow of ${}^3_{\Lambda}$ H?

05/06/2024

Yuanzhe Wang || SQM 2024 || Strasbourg

From heavy ions to astrophysics

Heavy-ion collisions can provide important input for astrophysics, e.g.

- Cosmic ray fluxes of antinuclei for dark matter searches
- Particle interactions for neutron stars and equation of state

Rich light (anti)(hyper) nucleus programme

- Many new results showed (see C. Pinto summary)
- A glimpse of future results
 - High precision with ALICE
- LHCb as a new player

Flow measurement in Run 3

Observation of (Anti)hypertriton at LHCb

• Preliminary fit results:

- $N(^{3}_{\Lambda}\text{H} = 61 \pm 8)$
- $\blacktriangleright N(\frac{3}{4}\overline{\mathrm{H}} = 46 \pm 7)$
- Statistical mass precision: 0.16 MeV

• Under investigation:

- Charge-sign dependent energy-loss corrections
- ► Tracking corrections for Z=2
- Efficiency and acceptance corrections

Gediminas Sarpis

 ${}^{3}\overline{\mathrm{He}}$ and ${}^{3}_{\Lambda}\overline{\mathrm{H}}$ with LHCb

25 / 26 June 4, 2024

From heavy ions to astrophysics

Heavy-ion collisions can provide important input for astrophysics, e.g.

- Cosmic ray fluxes of antinuclei for dark matter searches
- Particle interactions for neutron stars and equation of state
- Rich light (anti)(hyper) nucleus programme
- Many new results showed (see C Pinto summary)
- A glimpse of future results
 - High precision with ALICE
 - LHC as a new player

Comprehensive studies of two and three body hadron interactions using femtoscopy

- Access to genuine three-body correlations
- First ever full three-body correlation function calculations
- A. Kievsky, LS, et al., Phys.Rev.C 109 (2024) 3, 034006

laura.serksnyte@tum.de

There is also a SQM, a "suite" to Quark Matter

So let's see what comes next

A bright future at FAIR

CBM at FAIR

Outlook: Year 1 – 3 scenario as of September 20				ptember 2023		
Year	Setup	Reaction	Τ _{Lab} (AGeV)	Days on Target	Number of events	Rem
0 (2028*)	ELEHAD	C+C, Ag+Ag, Au+Au	2,4,6,8,10, max	60		Com
1	ELEHAD	Au+Au	2,4,6,8,10, max	30 (5 each)	2.10 ¹⁰ each	EB m
1	ELEHAD	C+C	2,4,6,8,10, max	18 (3 each)	4.10 ¹⁰ each	mBic
1	ELEHAD	p+Be	3,4,8,29	12 (3 each)	2.10 ¹¹ each	mBic
2	MUON	Au+Au	2,4,6,8,10, max	30 (5 each)	2·10 ¹¹ each	mBic
2	MUON	C+C	2,4,6,8,10, max	18 (3 each)	4·10 ¹¹ each	mBic
2	MUON	p+Be	3,4,8,29	12 (3 each)	2.10 ¹² each	mBic
3	HADR	Au+Au	2,4,6,8,10, max	12 (2 each)	$4 \cdot 10^{11}$ each	EB+
3	HADR	C+C	2,4,6,8,10, max	6 (1 each)	8·10 ¹¹ each	
3	HADES	Ag+Ag	2,4	28 (14 each)	10 ¹⁰ each	
3	ELEHAD	Ag+Ag	2,4	8 (4 each)	2·10 ¹⁰ each	mBic

Focus on beam energy scan:

- 60 days / year beam on target
- factor 100 more statistics w.r.t. STAR FXT

17

I. VASSILIEV SQM 2024 STRASBOURG

A bright future at RHIC

sphenix and Star at RHIC

Run Plan to Achieve Physics Goals

- Run-2024: transversely polarized *p*+*p* running, with a few options for short Au+Au running:
 - \rightarrow finish commissioning, ColdQCD *p*+*p* program, crucial reference data for AA program
- Run-2025: high-luminosity Au+Au running measurements of jets and heavy flavor observables with unprecedented statistical precision

Go	Species	Cryo-weeks	Year
Start of con	Au+Au	11.5	2023
Finish com reference dat	<i>p+p</i> (at least 19 weeks) Au+Au	25	2024
High-statistics flavor QG	Au+Au	28	2025
Small s	p+Au, p+p O+O, Ar+Ar	28	2026
Additional uni opport		28	2027

Rachid Nouicer

SQM 2024

oal

nmissioning

missioning, ta & ColdQCD

jet and heavy-P probes

systems

ique sPHENIX unities!

Future physics opportunities

Projections as plans for 2023-2025

√s _{NN} (GeV) Species		Sampled Luminosity	Year	
200	Au+Au&p+Au	AuAu 32.7 nb ⁻¹ / pAu 0.69 pb ⁻¹	2023+2025	
200	p+p	142 pb ⁻¹	2024	

Hot QCD physics: Explore the microstructure of QGP

- What is the Nature of the 3D Initial State?
- What is the Temperature of QGP and the Temperature Dependence of Viscosity?
- What can Charmonium Tell Us About Deconfinement?
- What are the Electrical, Magnetic, and Chiral Properties of the Medium?
- What are the Underlying Mechanisms of Jet Quenching?
- What is the Nature of the Phase Transition Near $\mu_B = 0$?
- What Can We Learn About the Strong Interaction?

Cold QCD physics: Establish the validity and limits of factorization and universality to understanding of QCD

- Forward Transverse-Spin Asymmetries
- Sivers and Efremov-Teryaev-Qiu-Sterman Functions
- Transversely, Collins Function and Interference Fragmentation Function
- Ultra-Peripheral Collisions

2024/06/03

Qian Yang @ SQM 2024, Jun. 3rd - Jun. 7th 2024

A bright future at SPS

NA61/SHINE and NA60+ at the SPS

NA61/SHINE and NA60+: timeline

Future *Phase I*: Detector

S

29/3

Significantly upgraded during LS2, the detector was successfully used in 2022 & 2023 data taking. No additional upgrades are needed for post-LS3 light-ion measurements

NA60+ setup

S. Siddhanta, SOM 2024, Strasbourg

former NA60 detector (2002 - 2004)

A bright future at LHC

ALICE, ATLAS, CMS, and LHCb upgrades at the LHC, not to forget SMOG 2

Upgrades @ LHC | SQM, June 2024 | jkl

intermediate upgrade

major upgrade

ATLAS phase II ITk, HGTD, HL-ZDC, TDAQ, muon chambers

CMS phase II tracker, MTD, HL-ZDC, DAQ, trigger, μ chambers Upgrades @ LHC | SQM, June 2024 | jkl

LHCb phase lb preparation for phase II, possibly magnet stations

ALICE 2.1 FoCal, ITS3

The SMOG2 system

Concurrently collect collider and fixed-target data using a gas injection system

LHCb-FIGURE-2024-005

14 / 16

Summary of summary?

Thank you for your attention!

And have a safe trip back, but hold on a bit more

CEA SACLAY

91191 Gif-sur-Yvette Cedex

France

javier.castillo@cea.fr

Tel. + 33169087255