

Prospects for strangeness and heavy flavor physics at FAIR

Yvonne Leifels GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt / FAIR Facility for Antiproton and Ion Research

Overview

- Introduction to FAIR
- Physics perspectives at FAIR
- Strangeness at FAIR
- Charm at FAIR
- Summary

FAIR Facility for Antiproton and Ion Research Mission: Advancing our understanding in fundamental physics through experiments with heavy ions FAIR Facility for Antiproton and Ion Research Mission: Advancing our understanding in fundamental physics through experiments with heavy-ions

- 9 shareholders:
- + 1 associated partner:
- + 1 aspirant partner:
- Over 3000 scientists and engineers from 200 institutions out of 53 countries

FAIR Accelerator Facilities

<u>Timeline</u>

2018 start of FAIR Phase-0 at upgraded GSI facilties
2023 concrete construction completed
2024 start of accelerator installation
2027 first experiments with S18 beam
2028 start of operation with SIS100

GSI facilities continue operation

FAIR GmbH | GSI GmbH

FAIR Start of installations

FAIR GmbH | GSI GmbH

Strange Quark Matter 2024 - Yvonne Leifels

- Precision tests of QED
- Cosmic ray simulator for irradiation studies
- Materials under high pressure

density

- QCD matter at high baryon densities
- Phase transition and critical point
- Particles in dense medium

- Nucleosynthesis
 of heavy elements
- Structure of exotic nuclei (e.g. hyper nuclei)
- Neutron rich matter equation of state

 Gluonic excitations: Hybrids, glueballs

p a n)d a

- Precision spectroscopy of charmonium states
- Time-like form factors, nucleon structure

- Precision tests of QED
- Cosmic ray simulator for irradiation studies
- Materials under high pressure

density

- QCD matter at high baryon densities
- Phase transition and critical point

emperature

Particles in dense medium

Gluonic excitations:

ंश को में झ

Neutron Number

- Nucleosynthesis
 of heavy elements
- Structure of exotic nuclei (e.g. hyper nuclei)
- Neutron matter equation of state

- Hybrids, glueballs Precision spectroscopy of charmonium states
- Time-like form factors, nucleon structure

CBM/HADES @ FAIR

CBM

- Fixed target experiment tracking acceptance
 1.5° < Q < 25°
 - $1.5^{\circ} < \Theta_{\text{lab}} < 25^{\circ}$
- 2 interchangeable setups for electron and muon detection
- Peak interaction rate : 10 MHz (Au+Au) (300 kHz with MVD)
- Free-streaming, self-triggered DAQ system
- Online event reconstruction and selection
- Fast and radiation hard detectors
 HADES
- complementary acceptance

CBM Day-1 configuration (2028): rate capability 100 kHz Au+Au reactions with streaming (triggerless) readout of MVD, STS, RICH, MUCH, TRD, TOF, and PSD; HADES continues at SIS18

CBM – Scientific goal

Location of chiral cross over

Mission:

Systematically explore QCD matter at large baryon densities with high accuracy and rare probes.

FAIR GmbH | GSI GmbH

Strangeness production at FAIR

Strange and charmed particle production thresholds in pp - collisions

reaction	√ <i>s</i> (GeV)	T _{lab} (GeV)
$pp \to K^+ \Lambda p$	2.548	1.6
$pp \rightarrow K^+ K^- pp$	2.864	2.5
$pp \rightarrow K^+ K^+ \Xi^- p$	3.247	3.7
$pp \to K^+ K^+ K^+ \Omega^- n$	4.092	7.0
$pp \rightarrow \Lambda \bar{\Lambda} pp$	4.108	7.1
$pp \rightarrow \Xi^- \bar{\Xi}^+ pp$	4.520	9.0
$pp \rightarrow \Omega^- \bar{\Omega}^+ pp$	5.222	12.7
$pp \rightarrow J/\Psi pp$	4.973	12.2

FAIR GmbH | GSI GmbH

Equation of state of nuclear matter Measurements at SIS18

FAIR GmbH | GSI GmbH

Strange Quark Matter 2024 - Yvonne Leifels

Equation of state of nuclear matter Observables at high density

- precise measurement of
 collective flows of bulk observables
- Clusterizsation (cf. talk of E. Bratkovskaya)
- subthreshold particle production
 - transport model calculations using a hadron cascade version of AMPT
 - particles like K⁺, Λ+Σ⁰ and Ξ⁻ are mainly produced in the high density region
 - however, one needs also to pin down the symmetry energy => K⁰/K⁺ ratio?

Kaons in dense medium

- NK⁺ interaction
 - slightly repulsive in dense nuclear medium
 - no broadening of spectral function predicted
- NK⁻ interaction
 - complicated due to presence of resonances
 - need coupled channels treatment (e.g. chiral effective field theory)
 - many experimental studies using K⁻ beams
 - NK⁻ interaction attractive at finite (ground state) densities, but strength of the potential is unclear at high densities
 - shift and broadening of spectral function as a function of momentum
 - strong absorption in medium
- Depth of NK⁻ potential of importance
 - neutron stars

Kaons in dense medium

- NK⁺ interaction
 - slightly repulsive in dense nuclear medium
 - no broadening of spectral function predicted
- NK⁻ interaction
 - complicated due to presence of resonances
 - need coupled channels treatment (e.g. chiral effective field theory)
 - many experimental studies using K⁻ beams
 - NK⁻ interaction attractive at finite (ground state) densities, but strength of the potential is unclear at high densities
 - shift and broadening of spectral function as a function of momentum
 - strong absorption in medium
- Depth of NK⁻ potential of importance
 - neutron stars

FAIR GmbH | GSI GmbH

HADES, Kaon flow, Talk Jan Orlinski

Strange Quark Matter 2024 - Yvonne Leifels

Production yields of strange hadrons

FAIR GmbH | GSI GmbH

Ξ^{-} production in Ag+Ag @ \sqrt{s} = 2.55 GeV

- Over four weeks, HADES collected
 14 billion central Ag+Ag events @ √s = 2.55 GeV
- Ξ⁻ hyperons detected
 via the decay chain:
 Ξ⁻→Λπ⁻→p π⁻ π⁻
 - excellent background suppression by using artificial neural networks
- significance slightly below 5σ, yet clear signal above background

- first measurement of double strangeness at this energy
- Canonically extended SHM model predicts strong dependence of canonical radius R_C and Φ/Ξ⁻ ratio

Talk of Simon Spies Poster by Marvin Kohls "Systematics of Hidden and Open Strangeness Production in Few GeV HICs"

Global spin polarization / alignment / vorticity

Hypernuclei production in Heavy Ion Collisions

At SIS/FAIR energies

- production of hyperons observed
- multiple production mechanisms
- coalescence hyperons with projectile/target fragments may lead to creation of heavy/exotic hypernuclei
- thermal models predict maximum of hypernuclei production at FAIR energies

Hypernuclei at FAIR

- Λ as a probe for nuclear structure
- Neutron stars: hyperon puzzle Y energetically favorable at 2-3 ρ₀, but softening of EOS leads to M_{allowed}< M_{observed}
- Hyperon interactions relevant for EOS at high densities ΛΝ, ΛΛ, ΛΝΝ
- Hypernuclei known
 - ~40 Λ-nuclei (ΛN attractive)
 - few ΛΛ-nuclei (weak attraction)
 - few Ξ-nuclei (ΞN attractive)

Hypernuclei at FAIR

- Λ as a probe for nuclear structure
- Neutron stars: hyperon puzzle Y energetically favorable at 2-3 ρ₀, but softening of EOS leads to M_{allowed}< M_{observed}
- Hyperon interactions relevant for EOS at high densities ΛΝ, ΛΛ, ΛΝΝ
- Hypernuclei known
 - ~40 Λ-nuclei (ΛN attractive)
 - few ΛΛ-nuclei (weak attraction)
 - few Ξ-nuclei (ΞN attractive)

```
HADES Ag+Ag@\sqrt{s} = 2.55 GeV:
```


Strange Quark Matter 2024 - Yvonne Leifels

Hypernuclei at FAIR

- lifetimes and binding energies
- characteristics
 - size and deformation
 - clustering
 - excitations
 - super-halos
- production mechanisms
 - understanding clustering phenomena
 - hypernuclei produced in interactions of hyperons with target/projectile like spectators
 - pion induced reactions

HADES Ag+Ag@ \sqrt{s} = 2.55 GeV:

multi-differential analysis

Hypertriton lifetime

- lifetimes and binding energies
- characteristics
- production mechanisms

Hypertriton lifetime

 is expected to have lifetime within few % of the free Λ lifetime τ_Λ

Talk of Simon Spies

HADES Ag+Ag@ \sqrt{s} = 2.55 GeV:

- Lifetime of (249 ± 21 ± 30) ps compatible with free Λ lifetime measured
- Extensive uncertainty evaluation performed

FAIR GmbH | GSI GmbH

Exotic hypernuclei at FAIR

- high precision spectroscopy of heavy decay remenant
- stable and radioactive beams possible (proton- and neutron rich)

Exotic hypernuclei at R3B (Reactions with Relativistic Radioactive Beams)

Radioactive nuclei produced and identified in (Super) Fragment Separator

π^- tracker for R3B

- high resolution
- neutron detection

Challenge

non-homogenity of the dipole field

1st experiment @ FAIR

 measurement of hypertriton's interaction cross section

FAIR GmbH | GSI GmbH

ΛΛ hypernuclei in CBM

Strangeness in pp/pA collisions

AN interaction

Scattering data with hyperon beam $\Lambda N < 50$ data points (poor beam quality, short lifetime, extrapolation down to low momenta)

NN > 5000 data points below 350 MeV

Strangeness in pp/pA collisions at SIS100

Proton beams at SIS100

10¹¹ to 10¹² protons per (10s) spill upto 30 GeV/c

Study ΛN interaction

- Femtoscopy
 - less feed down than at LHC
- Dalitz plot analysis of exclusive final states

- Interesting perspective for Σ⁺Σ⁺ interaction
 - via pp $\rightarrow \overline{K^0}\overline{K^0} \Sigma^+\Sigma^+$

Charm production in pp/pA collisions at SIS100

- SIS100 energies allow for charm production channels
- SU(4) estimates for exclusive charm
 hyperon production up to 1 µb @ SIS100
- all final state particles reconstructed
 - good phase space acceptance of the primary particles with CBM
- detailed studies D-p and Λ_c -p interactions possible with femtoscopy

Charm production in pp/pA collisions at SIS100

J/ψ production

- Cross section \approx 1 nb at 30 GeV/c (\sqrt{s} =7.5 GeV)
- Large and uniform reco eff. 5-30%
- Strong background suppression (Kinematic-fit)

Scientific questions

- Influence of internal charm of proton on cross section close to threshold?
- J/ψ-N interaction with multiple gluon exchange with proton
 - Forward (t=0) J/ψ dσ/dt related to J/ψ–N scattering amplitude, and nucleon mass via trace anomaly
 - J/ψ-N interaction related to pentaquark searches (LHCb pentaquark states not observed by GLUEX)
 - J/ψ in-medium characteristics
- pp-reactions to explain effects in pA/AA-reactions

Signal	Cross Section [µb]	
$pp \rightarrow ppJ/\psi(\rightarrow ee)$	10 ⁻³ (×0.06 BR)	

Summary and outlook

High intensity and high data rate capabilities of CBM opens up a wealth of different physics opportunities for strangeness and charm research

- equation of state of dense matter
- in-medium characteristics of strangeness
- interactions in particular multi-body interactions
- hypernuclei
- strangeness and charm in pp and pA collisions
- strangeness in pion induced reactions@SIS18

Support from Theory is indispensable

- 2027 Start of experiments at Super-FRS with SIS18 beams
- 2028 Start of experiments with SIS100

Summary and outlook

High intensity and high data rate capabilities of CBM opens up a wealth of different physics opportunities for strangeness and charm research

- equation of state of dense matter
- in-medium characteristics of strangeness
- interactions in particular multi-body interactions
- hypernuclei
- strangeness and charm in pp and pA collisions
- strangeness in pion induced reactions@SIS18

Support from Theory is indispensable

- 2027 Start of experiments at Super-FRS with SIS18 beams
- 2028 Start of experiments with SIS100

FAIR GmbH | GSI GmbH

Exploring Strangeness and Heavy Quarks at FAIR Yvonne Leifels

Equation of state of nuclear matter Observables at high density

- precise measurement of
 collective flows of bulk observables
- Clusterizsation (cf. talk of E. Bratkovskaya)
- subthreshold particle production
 - transport model calculations using a hadron cascade version of AMPT
 - particles like K⁺, Λ+Σ⁰ and Ξ⁻ are mainly produced in the high density region
 - ratio of Ξ⁻ from heavy and light systems show strongest sensitivity
 - observable easily accessible by CBM
 - transition to neutron rich matter

FAIR ESS i

Light halo nuclei

Strange Quark Matter 2024 - Yvonne Leifels

S. Acharya et al, Measurement of the Lifetime and Λ Separation Energy of $_{3}^{\Lambda}H$, Physical Review Letters (2023).

DOI: 10.1103/PhysRevLett.131.102302.

