

PROGRESS TOWARDS UNDERSTANDING FLOWINSMALLSYSTEMS

BJÖRN SCHENKE, BROOKHAVEN NATIONAL LABORATORY

STRANGE QUARK MATTER 2024 STRASBOURG, FRANCE

FLOW IN SMALL SYSTEMS

B. Schenke, C. Shen, P. Tribedy, Phys.Rev.C 102 (2020) 044905 ALICE Collaboration, Phys.Rev.Lett. 123 (2019) 142301

BJÖRN SCHENKE

Anisotropic flow in heavy ion collisions is driven by final state response to the initial geometry

There is evidence that the same is true in high multiplicity small systems

INITIAL STATE EFFECTS?

PHENIX Collaboration, Nature Phys. 15, no.3, 214-220 (2019) B. Schenke, S. Schlichting, R. Venugopalan, Phys.Lett.B 747 (2015) 76-82, 1502.01331 M. Mace, V. V. Skokov, P. Tribedy, R. Venugopalan, Phys. Rev. Lett. 121, 052301 (2018), PRL123, 039901(E) (2019)

Initial state momentum anisotropy, for example from the Color Glass Condensate: Cannot get all systematics right:

RAPIDITY DEPENDENCE OF INITIAL ANISOTROPY

B.Schenke, S. Schlichting, and Pragya Singh, Phys.Rev.D 105 (2022) 9, 094023

CGC based IP-Glasma + rapidity evolution (JIMWLK)

$$C_{\mathcal{O}}^{N}(\eta_{1},\eta_{2}) = \frac{\left\langle \operatorname{Re}\left(\mathcal{O}(\eta_{1})\mathcal{O}^{*}(\eta_{2})\right)\right\rangle}{\sqrt{\left\langle \left|\mathcal{O}(\eta_{1})\right|^{2}\right\rangle \left\langle \left|\mathcal{O}(\eta_{2})\right|^{2}\right\rangle}}$$

C_v2(∆y)

Initial momentum anisotropy decorrelates quickly with rapidity difference

further evidence: Observed Baryon/meson v_2 grouping and splitting (see You Zhou's talk) Strong final state interactions needed to describe data

BJÖRN SCHENKE

INSIGHTS FROM COLD ATOMS

K. Li, H.-F. Song, Y.-L. Sun, H.-J. Xu, F. Wang, arXiv:2405.02847 Bandstetter, Lunt, Heintze, Giacalone, Heyen, Gałka, Subramanian, Holten, Preiss, Floerchinger, Jochim arXiv:2308.09699

Heavy ions vs. cold 6 Li ions with varying interaction strength: v_2/ε_2 agree

RAPIDITY DEPENDENCE OF GEOMETRY

B.Schenke, S. Schlichting, and Pragya Singh, Phys.Rev.D 105 (2022) 9, 094023

The geometry, quantified here with ε_2 and ε_3 , decorrelates slowly

BJÖRN SCHENKE

- Simulate small systems dynamically in 3+1D
- Initialize using MC-Glauber + string deceleration model with source terms in hydro
- Provides fluctuating transverse+longitudinal geometry

BJÖRN SCHENKE

MULTIPLICITY VS. RAPIDITY

W. Zhao, S. Ryu, C. Shen and B. Schenke, Phys.Rev.C 107 (2023) 1, 014904

The (3+1)D hybrid model captures the rapidity and centrality dependence of $dN^{\rm ch}/d\eta$ for all asymmetric systems

BJÖRN SCHENKE Data: PHENIX Collaboration, Phys. Rev. Lett. 121, 222301 (2018)

ANISOTROPIC FLOW VS RAPIDITY W. Zhao, S. Ryu, C. Shen and B. Schenke, Phys.Rev.C 107 (2023) 1, 014904

0.08 3DGlauber+MUSIC+UrQMD PHENIX data -3.9<nRef.<-3.1 0.06 p-Au@ 200 GeV <pre 0-5% 翈 0.02 (a) 2

- Pseudo-rapidity dependence of $v_2\{EP\}$ reproduced for d+Au and ³He+Au
- The elliptic flow in $\eta < 1$ in p+Au collisions is underestimated because of the strong longitudinal flow decorrelation in our model + potential non-flow

BJÖRN SCHENKE Data: PHENIX Collaboration, Phys. Rev. Lett. 121, 222301 (2018)

FLOW VECTOR DECORRELATION

W. Zhao, S. Ryu, C. Shen and B. Schenke, Phys.Rev.C 107 (2023) 1, 014904

- Decorrelation is much stronger in the smaller p+Au system lacksquare
- Decorrelations of v_3 flow vectors are much stronger than v_2
- Hierarchy between v_n and systems driven by decorrelation in this model

BJÖRN SCHENKE

see talk by B. Seidlitz on measurement of decorrelation in p+p and Xe+Xe with ATLAS

COMPARING PHENIX WITH STAR DATA

PHENIX Collaboration, Nature Phys. 15, no.3, 214-220 (2019) STAR Collaboration, Phys.Rev.Lett. 130 (2023) 24, 242301

DIFFERENT RAPIDITY BINS, DIFFERENT RESULTS

W. Zhao, S. Ryu, C. Shen and B. Schenke, Phys.Rev.C 107 (2023) 1, 014904

Longitudinal flow decorrelations lead to smaller $v_3(p_T)$ for PHENIX, explaining ~50% of the difference between the two measurements

PHENIX: (p, d)+Au: $\eta_1 \in [-3.9, -3.1]$, $\eta_2 \in [-0.35, 0.35]$ ³He+Au: $\eta_1 \in [-3, -1]$, $\eta_2 \in [-0.35, 0.35]$ STAR: $\eta \in [-0.9, 0.9]$ with $|\Delta \eta| > 1$

> Tune to ³He+Au PHENIX $v_n(p_T)$ in (d, ³He)+Au collisions well described

COMPARISON WITH BOOST INVARIANT MODELS W. Zhao, S. Ryu, C. Shen and B. Schenke, Phys.Rev.C 107 (2023) 1, 014904

VERY LONG RANGE CORRELATIONS ALICE Collaboration, ALI-PREL-573662, talk by Debojit Sarkar

- p+p collisions at 13 TeV
- $5 < |\Delta \eta| < 6$
- Models do not describe the data
- Need better description of 3D geometry
- Applicability of hydrodynamics?

APPLICABILITY OF HYDRODYNAMICS

- Reynolds numbers (ratio of viscous forces to inertial forces)
- Could lead to inaccurate results
- theory, or core-corona models
- BDNK, can be shown to be causal

 Far from equilibrium, causality could be violated Alternative to Israel-Stewart like theories, 0-5% p+Au n_1 @ 200 GeV n_2 10^{1} n_3 G. Inghirami, H. Elfner, Eur.Phys.J.C 82 (2022) 9, 796 n_A (b) A. Kurkela, A. Mazeliauskas, J.-F. Paquet, S. Schlichting, and D. Teaney n_5 $P(n_i)$ Phys. Rev. Lett. 122(12), 122302 n_6 **BDNK:** 10^{-1} F. S. Bemfica, M. M. Disconzi, and J. Noronha, Phys. Rev. X. 12(2), 021044 (2022) P. Kovtun, JHEP 10 (2019) 034 Causality Violated **Causality:** C. Plumberg, D. Almaalol, T. Dore, J. Noronha, J. Noronha-Hostler, Phys. Rev. C. 105(6), L061901 (2022) 10^{-3} C. Chiu and C. Shen, Phys. Rev. C. 103(6), 064901 (2021) -0.250.250.500.75-0.500.001.00ExTrEMe Collaboration, R. Krupczak et al., Phys.Rev.C 109 (2024) 3, 034908 n_i

BJÖRN SCHENKE

• Initial transverse volume in small systems 50 \times smaller than in central Pb+Pb Locally large Knudsen (macroscopic scale / microscopic scale) and inverse

• Use non-equilibrium component: Early time free streaming, effective kinetic

values of 6 causality conditions

APPLICABILITY OF HYDRODYNAMICS

- Initial transv
- Locally lar Reynolds
- Could lear
- Use non-e theory, or
- Far from e
- Alternativ BDNK, cal

G. Inghirami, H. Elfnei A. Kurkela, A. Mazelia Phys. Rev. Lett. 122(12

BDNK:

F. S. Bemfica, M. M. Di P. Kovtun, JHEP 10 (2019

Causality: C. Plumberg, D. Almaalol, T. Dore, J. Noronha, J. Noronha-Hostler, Phys. Rev. C. 105(6), L061901 (2022)

C. Chiu and C. Shen, Phys. Rev. C. 103(6), 064901 (2021) ExTrEMe Collaboration, R. Krupczak et al., Phys.Rev.C 109 (2024) 3, 034908

BJÖRN SCHENKE

- See contribution to Quark-Gluon Plasma 6 (World Scientific):
- Progress and Challenges in Small Systems
- Jorge Noronha, Björn Schenke, Chun Shen, Wenbin Zhao
- e-Print: 2401.09208 [nucl-th]

violated

-0.25

0.00

 10^{-3}

-0.50

- atral Pb+Pb nverse
 - kinetic

values of 6 causality conditions

CORE+CORONA PICTURE

Y. Kanakubo, Quark Matter 2023 Hydro-like core begins to dominate for $dN_{\rm ch}/d\eta \approx 10-20$

BJÖRN SCHENKE

K. Werner, Phys.Rev.C 108 (2023) 6, 064903 see talk by P.B. Gossiaux

see talk by Ishu Aggarwal on new measurements in d+Au by STAR

SMALLER: ULTRAPERIPHERAL COLLISIONS

W. Zhao, C. Shen and B. Schenke, Phys.Rev.Lett. 129 (2022) 25, 252302

- in ultra-peripheral Pb+Pb collisions (UPC) at the LHC

Long range two-particle correlations were observed in photo-nuclear processes The magnitudes of v_n in UPCs are comparable with those in p+Pb collisions

see talk by A. Baty for another really small system: $e^+ + e^-$ at the highest multiplicity 19

MODELING γ^* + Pb

A. J. Baltz et al. Phys. Rept. 458, 1-171 (2008); W. Zhao, C. Shen and B. Schenke, Phys.Rev.Lett. 129 (2022) 25, 252302

- Same 3+1D hydrodynamic model
- Virtual photon described as vector meson: quark-antiquark pair plus soft cloud Energy of the incoming photon fluctuates event by event

- Center of mass collision energy for the $\gamma^* + A$ system fluctuates
- Center of mass rapidity of $\gamma^* + A$ collision fluctuates in the lab frame

PARTICLE PRODUCTION AND FLOW IN p+A AND γ^* +A

W. Zhao, C. Shen and B. Schenke, Phys.Rev.Lett. 129 (2022) 25, 252302

- Shapes of $dN_{ch}/d\eta$ reproduced for p+Pb and γ^* +Pb collisions
- Elliptic flow difference between p+Pb and γ^* +Pb collisions reproduced Driven by different amount of longitudinal flow decorrelation

BJÖRN SCHENKE

FLOW INSIDE JETS

HARD PROBES

W. Ke, I. Vitev, Phys.Rev.C 107 (2023) 6, 064903

Data: ATLAS Collaboration, Phys. Lett. B 763 (2016) 313 **BJÖRN SCHENKE**

Model of QGP formation in p+A as described by hydrodynamics leads to quenching of hadron spectra that is inconsistent with the p+Pb data

Agreement in d+Au collisions is better! (data has opposite high p_T behavior with centrality) \rightarrow **Centrality determination is critical**

Correlation between hard and soft degrees of freedom important A. Majumder for JETSCAPE, arXiv:2308.02650

HARD PROBES - EXPERIMENTAL N_{coll} Removing centrality selection bias in π^0 suppression in d+Au collisions:

PHENIX Collaboration, arXiv:2303.12899

• Direct photons as benchmark for particle production from hard-scattering processes

$$N_{\rm coll}^{\rm EXP} = \frac{Y^{\gamma^{\rm dir}}}{d{\rm Au}} / \frac{Y^{\gamma^{\rm dir}}}{pp}$$

- $\bullet \text{Using a Glauber model}\,N_{\mathrm{coll}}$ led to enhancement at low $N_{coll} \rightarrow$ now removed
- Suppression at large $N_{\rm coll}$ remains

J/PSI SUPPRESSION IN SMALL SYSTEMS

 $\sigma_{J/\psi}/\sigma_{D^0}$

No QGP-like J/ψ suppression in Pb+Ne

LHCb Collaboration, Eur.Phys.J.C 83 (2023) 7, 658

Pb+Ne and Pb+O

G. Giacalone et al, arXiv:2405.20210

 Flow sensitive to shapes of Ne and O

- Clear predictions from fluid dynamics with input from ab initio calculations of the structure of ¹⁶O and ²⁰Ne
- Further test hydrodynamic picture at LHC see talk by G. Giacalone

²⁰Ne

SUMMARY

- Elliptic flow in photo-nuclear events well described by same framework used in p+A
- Applicability of hydrodynamics: Issues of accuracy, causality, stability
- Frameworks with non-equilibrium transport component possible way to go
- Studies of hard probes in small systems plagued by biases from centrality selection **BJÖRN SCHENKE**

• Strong final state effects provide most consistent description of small systems

• Differences between v_n from STAR and PHENIX from different rapidity ranges

Strangeness in Quark Matter

BACKUP

BJÖRN SCHENKE

DISTINGUISH MODELS IN e+A COLLISIONS AT EIC

W. Zhao, C. Shen and B. Schenke, Phys.Rev.Lett. 129 (2022) 25, 252302 Y. Shi, L. Wang, S. Y. Wei, B. W. Xiao and L. Zheng, Phys. Rev. D 103, 054017 (2021)

- Hydro: Larger B^2 means larger transverse area for geometry to fluctuate $v_2 \propto B^2$
- CGC: Larger B^2 leads to a larger number of independent domains $v_2 \propto 1/B^2$
- Study Q^2 dependence at the Electron Ion Collider (EIC) to test this

BJÖRN SCHENKE

JET QUENCHING

ALICE Collaboration, arXiv:2309.03788

Data:

- Recoil jet distribution widens in High Multiplicity (HM) events
- PYTHIA8 (no jet quenching) reproduces effect
- Effect is bias from HM event selection
 - Preference for events with recoil jet at forward rapidity where multiplicity is determined, depletes recoil jets at mid rapidity, bias towards multi-jet states

CORE+CORONAPICTURE

Hydro-like core begins to dominate for $dN_{\rm ch}/d\eta \approx 10-20$

BJÖRN SCHENKE

HIGH p_T AZIMUTHAL ANISOTROPY

18

CMS Collaboration, PAS HIN-23-002, **Rohit Kumar Singh's poster; also see** ATLAS Collaboration, Eur.Phys.J.C 80 (2020) 1, 73

Path-length dependent energy loss in p+Pb? C. Park, S. Jeon, C. Gale Nucl.Part.Phys.Proc. 289-290 (2017)

Alternative: Anisotropy from transverse momentum of incoming partons; Contribution from $gg \rightarrow gg$ with one gluon linearly polarized gives largest contribution to v_2

I. Soudi, A. Majumder, arXiv:2308.14702, 2404.05287 32

BJÖRN SCHENKE

 $N_{\rm ch}/\langle N_{\rm ch} \rangle$

COMPARISON TO A+A DATA

C. Shen and B. Schenke, Phys. Rev. C 105, 064905 (2022)

Au+Au @ RHIC BES

Reasonable description of A+A experimental data

- Predictions for the net proton rapidity and centrality dependence at **RHIC BES energies**
- Our results at mid-rapidity are consistent with the STAR measurements
- Measurements of the rapidity dependence can further constrain the distributions of initial baryon charges

PHENIX 3X2PC STUDY W. Zhao, S. Ryu, C. Shen and B. Schenke, Phys.Rev.C 107 (2023) 1, 014904

BJÖRN SCHENKE

DIFFERENTIAL v_2 **IN UPC Pb+Pb**

BJÖRN SCHENKE

MEAN p_T **IN UPC Pb+Pb**

DECORRELATION IN UPC

Importance of Pre-Hydrodynamic Evolution

A blast-wave like pre-hydrodynamic flow: $\eta_{\perp} = \alpha^{\mathrm{pre-flow}} r$.

- Stronger pre-hydrodynamic flow leads to larger mean p_T and anisotropic coefficients.
- A systematic calibration including pre-hydrodynamic flow is important.

W. Zhao, S. Ryu, C. Shen and B. Schenke Phys. Rev. C 107, 014904 (2023). η_{\perp} is transverse flow rapidity, r is the distance from the point to the string center. The $\alpha^{pre-flow}$ controls the strength of the pre-hydrodynamic flow.

HYDRODYNAMICS AND EOS

• For the equation of state we use NEOS with finite μ_B, μ_S, μ_O A. Monnai, B. Schenke, C. Shen, Phys. Rev. C 100, 024907 (2019) A. Monnai, B. Schenke, C. Shen, Int.J.Mod.Phys.A 36 (2021) 07, 2130007

And choose $n_S = 0$ and $n_O = 0.4 n_B$ for Au+Au collisions:

BJÖRN SCHENKE

CENTRALITY DEFINITION C. Shen and B. Schenke, in preparation

- We can now determine centrality in the same rapidity bins as the experiments
- It does make a difference for the shape of the rapidity distribution

MULTIPLICITY DISTRIBUTIONS C. Shen and **B.** Schenke, in preparation

- The predicted charged hadron rapidity distribution agrees well with the PHENIX measurements from central to peripheral collisions
- The role of spectators at forward rapidity needs further investigation

Model reproduces the STAR multiplicity distribution in d+Au collisions at 200 GeV

ANISOTROPIC FLOW c. Shen and B. Schenke, in preparation **System dependence Energy dependence**

- **PHENIX** event plane method with event plane at y in [-3.9, -3.1]

BJÖRN SCHENKE

Discrepancies could come from different method being used in the experiment Biggest deviation from the data in p+Au in the Au going direction (non-flow?)

NET-BARYON DISTRIBUTIONS

C. Shen and **B.** Schenke, in preparation

BJÖRN SCHENKE

NET-BARYON DISTRIBUTIONS

C. Shen and B. Schenke, in preparation

