Supported in part by:

Flow/Correlation in Light Ion Collisions p/d/³He+Au/Pb, O+O

Strasbourg

- One of the <u>European</u> "capitals"
- Different cultures meet here

Various types of physics come together

6/7/24

p/d/³He+A, O+O, Ne+Ne...

Various types of physics come together

A unique diversity help us study: 1)Initial stage 2)Thermalization

RHIC vs LHC: Correlation from initial stage

v_2 - p_T correlation at low p_T :

The initial momentum-driven correlation is positive, while the geometry-driven correlation is negative. The geometry-driven correlation is larger at the LHC than at RHIC. *A sign change is predicted at the LHC, but not at RHIC, when combining these two effects*

Strasbourg

RHIC vs LHC: v_2 , v_3

In O+O collisions, a larger v_2 and v_3 values are predicted at LHC energy compared to RHIC energy from CGC-Hydro

- ✓ Non-flow subtracted v_2 and v_3 show minimal method dependence.
- ✓ A positive v₂-p_T correlation is observed. A non-flow subtraction for peripheral collisions is under study

Waiting results from LHC for comparison.

Signature of QGP in Small System: Collectivity from multi-particle cumulant

The four-particle cumulant has been measured in p+p, p+Pb, and peripheral Pb+Pb collisions to investigate collectivity in small systems.

Signatures of QGP in Small System: Species dependent flow

Mass ordering is observed at low p_T for identified particle flow. Radial flow? NCQ scaling is also found to roughly hold for strangeness particles f0 flow prefers to two-quark hadron structure 6/7/24 Shengli Huang

Signatures of QGP in Small System: Local polarization of hyperons

PAS HIN-24-002

Lambda local polarization is also observed in p+Pb collisions

Di-hadron correlation at small x: From equator to north pole

Di-hadron suppression is observed at small x but not at large x.

It indicates gluon saturate at small x(CGC)

How can we isolate the final-state effects?

Would collisions such as O+O or p+p with similar multiplicities as central p+Au provide a baseline?

1.5 billion MB and 1.5 billion HM p+p events with tiny pile-up were recorded last month at RHIC.

Signation Light Ion Collisions

Longitudinal De-Correlation @ LHC

Larger longitudinal flow de-correlation is observed in p+Pb and p+p collisions. The third-order flow shows greater de-correlation than the second-order flow AMPT captures the de-correlation for F_3 but underestimates F_2 .

Longitudinal De-Correlation @ RHIC

In p/d+Au collisions, $v_3(p_T)$ between measurements obtained from mid-mid rapidity di-hadron correlation(STAR) and those from mid-forward rapidity(PHENIX) differ by a factor of 3

This discrepancy may arise from longitudinal fluctuations (flow decorrelation), a phenomenon partially accounted for by the 3D-Glauber model.

Mid-Mid vs Mid-Forward correlation in O+O

✓ V_n measured from mid-mid(TPC-TPC) and mid–forward(EPD-TPC) correlations are similar
Flow decorrelation is weak in symmetric lon collision with larger sizes

✓ Results from the new STAR d+Au dataset will shed more light on flow decorrelation

Signation Light Ion Collisions

Y Sub-Nucleon Fluctuation in small system

Eccentricity difference between p+p, p+Au, d+Au and ³He+Au is substantially mitigated by the sub-nucleon fluctuation

2024

Strasbourg

The system dependence for v_n

The final state contribution is expected to largely cancel out in the v_n ratio due to similar multiplicity.

The system dependence for v_n

The system dependence for v_n

Nucleon spatial Geometry
Sub-nucleon spatial Geometry

STAR measurements prefer to the sub-nucleon fluctuation

Symmetric and asymmetric collisions

Model	point-like quark	fluctuated gluon field $d(\Omega)(-d(\Omega))$
0 1007 311 . 4	$\frac{\varepsilon_2^2\{2\}(\varepsilon_3^2\{2\})}{\varepsilon_2^2\{2\}(\varepsilon_3^2\{2\})}$	$\frac{\varepsilon_2^2\{2\}(\varepsilon_3^2\{2\})}{\varepsilon_2^2(\varepsilon_3^2\{2\})}$
0-10% "He+Au	0.61(0.47)	0.53(0.38)
$0\text{-}10\% d\text{+}\mathrm{Au}$	0.71(0.45)	0.53(0.36)
0-10% $^{16}O + ^{16}O(NLEFT)$	0.44(0.43)	Quark Glauber: PRC 94 , 024914(2016) Gluon field: PRC 94 , 024919(2016)

$$v_2(O+O) < v_2(d+Au) \approx v_2(^{3}He+Au)$$

 $v_3(O+O) \approx v_3(d+Au) \approx v_3(^{3}He+Au)$

Consistent with expectation of subnucleon fluctuation

Signation Light Ion Collisions

Pre-flow in 3D-Glauber

Pre-flow will boost the v_2 and v_3 in 3DGlauber+Hydro model

Sonic and superSONIC Model

- SONIC model with initial geometry eccentricity without sub-nuclear fluctuations under-predicts v₃ in all systems
- superSONIC model with preequilibrium flow can reproduce the v₃ even without sub-nucleon fluctuations

SONIC and superSONIC Model

SONIC model with initial geometry eccentricity without sub-nuclear fluctuations under-predicts v₃ in all systems

superSONIC model with preequilibrium flow can reproduce the v₃ even without sub-nucleon fluctuations

Sub-nucleon fluctuation or pre-flow?

Can we do the geometry scan in small system?

Different multiplicity dependent ϵ_n O+O: nuclei shape + (sub-)nucleon fluctuation ³He/d+Au: (sub-)nucleon fluctuation

AMPT: Different flow behaviors between symmetric and asymmetric systems

Comparison v₂ between symmetric and asymmetric systems will provide direct information to study final state contribution

Effective Field Theory of low energy QCD

AFDMC(VMC) model: Auxiliary Field Diffusion MC NLEFT model: Nuclear Lattice Effective Field Theory Two types of *ab initio* EFT models with different choice of the nuclear Hamiltonian and a numerical method to solve the Schrödinger equation

Two types of 3PF fitting to the one body distribution from VMC and NLEFT

AFDMC/NLEFT:with many-body correlation

3PF fit: without many-body correlation

One-body distribution

NLEFT: Lu et al., PLB **797** (2019) 134863

AFDMC:Lonardoni et al., PRC 97 (2018) 4, 044318

Eccentricity Fluctuation in ¹⁶O+¹⁶O

Eccentricity Fluctuation: $\sigma^2 = \langle \varepsilon_n^2 \rangle - \langle \varepsilon_n \rangle^2$

 $(\varepsilon_n \{2\})^2 = \langle \varepsilon_n^2 \rangle = \langle \varepsilon_n \rangle^2 + \sigma^2$ $(\varepsilon_n \{4\})^2 = \sqrt{2 \langle \varepsilon_n^2 \rangle - \langle \varepsilon_n^4 \rangle} \approx \langle \varepsilon_n \rangle^2 - \sigma^2$

nucl-th/0607009

Eccentricity fluctuation from two types of 3PF are similar in both TRENTO and PHOBOS Glauber

Stronger eccentricity fluctuations from NLEFT than that of AFDMC in PHOBOS Glauber

Four-particle cumulant in O+O

In central collisions:

The v_2 {2} is nearly flat

The v_3 {2} increases slightly

However, v₂{4} clearly decreases

arXiv:2404.09780

AMPT in O+O

- v₂{4}/v₂{2} from data shows a strong centrality dependence while it is almost flat from AMPT
- ϵ_2 {4}/ ϵ_2 {2} \approx v₂{4}/v₂{2} from AMPT. Final state effect has been largely canceled?

v₂{4}/v₂{2} vs. TRENTO Model

TRENTO: PRC.92.011901(2015) Calculated by Giuliano

- ϵ_2 {4}/ ϵ_2 {2} from TRENTO with NLEFT, AFDMC and 3PF are similar.
- Larger than v_2 {4}/ v_2 {2}.

 ϵ_2 {4}/ ϵ_2 {2} from AFDMC model in PHOBOS Glauber are much close to v_2 {4}/ v_2 {2} \rightarrow many-nucleon correlation (e.g. α cluster) enhances the flow fluctuation?

Quark Glauber: PRC **94**, 024914 (2016)

- ✓ ϵ_2 {4}/ ϵ_2 {2} from quark Glauber over-predicts the v₂{4}/v₂{2}
- $\checkmark\,$ Many-nucleon correlation is diluted by sub-nucleon fluctuation?

Outlook: $v_2{4}/v_2{2}$ in small system

- The ratio ϵ_2 {4}/ ϵ_2 {2} remains constant as a function of centrality and is insensitive to sub-nuclear fluctuations in d+Au collisions
- Similarly, v₂{4}/v₂{2} in d+Au collisions will serve as a good reference for understanding the same ratio in O+O collisions.

Future RUN@LHC

Will RHIC run beyond 2025?

Shengli Huang any isotope for approved gas should be ok

Xe

to be validated, should be possible for short runs at end of data-taking

Summary

Many interesting measurements has been done in light ion collisions

However, the story is just beginning.

Let us wait for O+O collisions at the LHC in 2025 and for more system scans from RHIC and the LHC

Outlook: v₂{4}/v₂{2} in small system

- v₂{4}/v₂{2} show very weak multiplicity and system dependence from pp to p+Pb
- Will it help to find the relation between v_{4}/v_{2} and $\epsilon_{2}^{4}/\epsilon_{2}^{2}$