

MOLECULAR STATES WITH CHARM: INSIGHTS FROM VACUUM & FINITE-TEMPERATURE ANALYSES

Juan M.Torres-Rincon Universitat de Barcelona Institut de Ciències del Cosmos

Introduction

Hadrons as aggregates of more fundamental structures

- Conventional hadrons: mesons and baryons
- Glueballs: gg, ggg ...
- g g
- Multiquark states: tetraquarks, pentaquarks...
- **Hybrid:** qqqg, qq<u>¯</u>g ...
- Hadronic molecules: colorless states bound by the residual strong force

Reviews:

- Chen et al., RPP80 (2017) 7, 076201
- Guo et al., RMP90 (2018) 1, 015004
- Brambilla et al., PR873 (2020) 154
- Chen et al., RPP86 (2023) 2, 026201
- Liu et al., arXiv:2404.06399

Pictures credit: Chen *et al.* RPP86 (2023) 2, 026201

Heavy-light molecular states

 $D_0^*(2300)$ originally generated as a low-mass pole until "double-pole structure" is proposed

Albaladejo et al. PLB 767 (2017) 465 ; Guo et al. EPJC79 (2019)13; Meißner, Sym. 12 (2020) 6, 981; JMT-R, Sym. (2022)13 (2021), 8, 1400

EFT approaches with 2-body dynamics

Chiral SU(3) EFT with heavy mesons

Kolomeitsev, Lutz, PLB582 (2004) 39 Hofmann, Lutz, NPA733 (2004) 142 Guo *et al.* PLB641:278-285 (2006) Guo, Hanhart. Krewald, Meißner, PLB666 (2008) 251 Tolos, Torres-Rincon, PRD88, 074019 (2013) Altenbuchinger, Geng, Weise, PRD89, 014026 (2014)

Broken SU(4) EFT Gamerman *et al.* PRD76: 074016 (2007)

Dominance of hadronic components:

Albaladejo et al. EPJC 78 (2018) 9,722

Other states

D_{sJ} (2860) Guo, Meißner, PRD 84, 014013 X₀ (2866) [D* \overline{K} *] Liu et al. PRD102 (2020) 091502

Heavy-meson effective theory

$$\mathcal{L}_{\mathrm{LO}} = \mathcal{L}_{\mathrm{LO}}^{\mathrm{ChPT}} + \langle \nabla^{\mu} H \nabla_{\mu} H^{\dagger} \rangle - m_{H}^{2} \langle H H^{\dagger} \rangle - \langle \nabla^{\mu} H^{*\nu} \nabla_{\mu} H_{\nu}^{*\dagger} \rangle + m_{H}^{2} \langle H^{*\nu} H_{\nu}^{*\dagger} \rangle$$

$$+ ig \langle H^{*\mu} u_{\mu} H^{\dagger} - H u^{\mu} H_{\mu}^{*\dagger} \rangle + \frac{g}{2m_{D}} \langle V_{\mu}^{*} u_{\alpha} \nabla_{\beta} H_{\nu}^{*\dagger} - \nabla_{\beta} V_{\mu}^{*} u_{\alpha} H_{\nu}^{*\dagger} \rangle \epsilon^{\mu\nu\alpha\beta} ,$$

$$\mathcal{L}_{\mathrm{NLO}} = \mathcal{L}_{\mathrm{NLO}}^{\mathrm{ChPT}} - h_{0} \langle H H^{\dagger} \rangle \langle \chi_{+} \rangle + h_{1} \langle H \chi_{+} H^{\dagger} \rangle + h_{2} \langle H H^{\dagger} \rangle \langle u^{\mu} u_{\mu} \rangle + h_{3} \langle H u^{\mu} u_{\mu} H^{\dagger} \rangle$$

$$+ h_{4} \langle \nabla_{\mu} H \nabla_{\nu} H^{\dagger} \rangle \langle u^{\mu} u^{\nu} \rangle + h_{5} \langle \nabla_{\mu} H \{ u^{\mu}, u^{\nu} \} \nabla_{\nu} H^{\dagger} \rangle$$

$$+ \tilde{h}_{0} \langle H^{*\mu} H_{\mu}^{*\dagger} \rangle \langle \chi_{+} \rangle - \tilde{h}_{1} \langle H^{*\mu} \chi_{+} H_{\mu}^{*\dagger} \rangle - \tilde{h}_{2} \langle H^{*\mu} H_{\mu}^{*\dagger} \rangle \langle u^{\nu} u_{\nu} \rangle - \tilde{h}_{3} \langle H^{*\mu} u^{\nu} u_{\nu} H_{\mu}^{*\dagger} \rangle$$

$$u_{\mu} = i (u^{\dagger} \partial_{\mu} u - u \partial_{\mu} u^{\dagger})$$

$$- \tilde{h}_{4} \langle \nabla_{\mu} H^{*\alpha} \nabla_{\nu} H_{\alpha}^{*\dagger} \rangle \langle u^{\mu} u^{\nu} \rangle - \tilde{h}_{5} \langle \nabla_{\mu} H^{*\alpha} \{ u^{\mu}, u^{\nu} \} \nabla_{\nu} H_{\alpha}^{*\dagger} \rangle$$

$$\left[u^{\dagger} \langle u^{\mu} u^{\nu} \rangle - \tilde{h}_{5} \langle \nabla_{\mu} H^{*\alpha} \{ u^{\mu}, u^{\nu} \} \nabla_{\nu} H_{\alpha}^{*\dagger} \rangle ,$$

$$\left[u^{\dagger} \langle u^{\mu} u^{\nu} \rangle - \tilde{h}_{5} \langle u^{\mu} u^{\mu} \rangle - \tilde{h}_{5} \langle u^{\mu} u^{\mu} u^{\mu} \rangle + \tilde{h}_{\alpha} \langle u^{\mu} u^{\mu} \rangle - \tilde{h}_{\alpha} \langle u^{\mu} u^{\mu} \rangle + \tilde{h}_{\alpha} \langle u^{\mu} u^{\mu} u^{\mu} \rangle + \tilde{h}_{\alpha} \langle u^{\mu} u^{\mu} \rangle + \tilde{h}_$$

 h_i , \tilde{h}_i : NLO low-energy constants Guo et al. EPJC79, 1, 13 (2019)

$$u = \exp\left[\frac{i}{\sqrt{2}f_{\pi}} \begin{pmatrix} \frac{\pi^{0}}{\sqrt{2}} + \frac{\eta}{\sqrt{6}} & \pi^{+} & K^{+} \\ \pi^{-} & -\frac{\pi^{0}}{\sqrt{2}} + \frac{\eta}{\sqrt{6}} & K^{0} \\ K^{-} & \bar{K}^{0} & -\frac{2\eta}{\sqrt{6}} \end{pmatrix}\right]$$

Kolomeitsev, Lutz, PLB582 (2004) 39 Hofmann, Lutz, NPA733 (2004) 142 Guo *et al.*, PLB641 (2006) 278 Guo, Shen, Chiang, PLB647 (2007) 133

Guo et al., PLB666 (2008) 251 Geng et al., PRD82,05422 (2010) Abreu et al. (JMT-R), AP 326 (2011) 2737 Altenbuchinger, Geng, Weise, PRD89, 014026 (2014)

Heavy-meson effective theory

 $-2C_{24}^{ij}\Big(2h_2(p_2\cdot p_4)+h_4\big((p_1\cdot p_2)(p_3\cdot p_4)+(p_1\cdot p_4)(p_2\cdot p_3)\big)\Big)$

 $+2C_{35}^{ij}\Big(h_3(p_2\cdot p_4)+h_5\big((p_1\cdot p_2)(p_3\cdot p_4)+(p_1\cdot p_4)(p_2\cdot p_3)\big)\Big)\Big]$

$$V_{ij}^{\text{s-wave}}(p, p'; \sqrt{s}) = \frac{1}{2} \int_{-1}^{1} d\cos\theta_{pp'} V_{ij}(p_1, p_2, p_3, p_4)$$

$$p_1$$
 p_3 p_3 p_4

Lippmann-Schwinger equation for the T-matrix elements

 $V_{ij}(p_1, p_2, p_3, p_4) = \frac{1}{f_{\pi}^2} \left[\frac{C_{\text{LO}}^{ij}}{4} \left[(p_1 + p_2)^2 - (p_2 - p_3)^2 \right] - 4C_0^{ij} h_0 + 2C_1^{ij} h_1 \right]$

$$T_{if}(q',q;z) = V_{if}(q',q;z) + \sum_{l} \int_{0}^{\infty} \frac{4\pi k^{2} dk}{(2\pi)^{3}} \frac{V_{il}(q',k;z) T_{lf}(k,q;z)}{2\omega_{H,l} 2\omega_{\phi,l}(z-\omega_{H,l}-\omega_{\phi,l})}$$

On-shell reduction: Oller, Oset, NPA620 (1997) 438; Oset, Ramos NPA635 (1998) 99

 $T = V(1 - VG)^{-1}$

Molecular states as poles of T matrix

0 2350

JMT-R, Ramos, Tolos, PRD 108, 096008 (2023) $D_0^*(2300)$ z_{pole} = (2092 + i129) MeV z_{pole} = (2647+i265) MeV $D^+\pi^- \rightarrow D^+\pi^ D_s^+K^- \rightarrow D_s^+K^-$ 70 le4 1000 2 60 800 50 $|T(z)|^{2}$ $|T(z)|^2$ 40 30 400 20 200 10 400 200 350 180 160 V 140 M 120 M 180 25002550260026502700 Re (2) [MeV] 27502800 200 300 Inevi 2000 2050 250 2100 Re (2) [MeV] 2150 100 2200 $D^0K^+ \rightarrow D^0K^+$ 1000 2 800 $D_{s0}^{*}(2317)$ 600 (N 400 z_{pole}=(2320 + i 0) MeV 200 50 40 Internet ²³⁰⁰2310 Re (z) [MeV] 2330 2340 10

Albaladejo et al. PLB 767 (2017) 465

 $D_0^*(2300)$

$M \ ({\rm MeV})$	$\Gamma/2~({\rm MeV})$	$ g_{D\pi} $	$ g_{D\eta} $	$ g_{D_s\bar{K}} $
2105^{+6}_{-8}	102^{+10}_{-12}	$9.4_{-0.2}^{+0.2}$	$1.8^{+0.7}_{-0.7}$	$4.4_{-0.5}^{+0.5}$
2451^{+36}_{-26}	134^{+7}_{-8}	$5.0\substack{+0.7 \\ -0.4}$	$6.3\substack{+0.8 \\ -0.5}$	$12.8\substack{+0.8\\-0.6}$

Pole parameters

Meson-baryon molecular states

Meson-baryon states with open charm

 $\Lambda_{c}(2595), \Lambda_{c}(2880), \Sigma_{c}(2800), \Xi_{c}(2970)...$

$$V_{ij}(s) = D_{ij} \frac{2\sqrt{s} - M_i - M_j}{4f_i f_j} \sqrt{\frac{E_i + M_i}{2M_i}} \sqrt{\frac{E_j + M_j}{2M_j}}$$

Lutz, Kolomeitsev, NPA730 (200) 110 Hofmann, Lutz, NPA763 (2005) 90 Mizutani, Ramos, PRC74, 065201 (2006) He, Liu, PRD82:114029 (2010) Romanets *et al.* PRD 85, 114032 (2012) He et al., EPJC51, 883 (2007) Jimenez-Tejero et al. PRC80, 055206 (2009) Jimenez-Tejero et al., PRC84, 015208 (2010) ... see Guo et al. RMP90, 015004 (2018)

 $T(s) = \frac{1}{1 - V(s)G(s)}V(s)$

Romanets et al. PRD 85, 114032 (2012)

Also hidden charm pentaquarks candidates $P_c(4380) \& P_c(4450)$ also studied under the molecular assumption [$\Sigma_c(2520)$ D] & [χ_{c1} p] (among other possible interpretations), e.g.

Chen et al., PRL 115, 172001 (2015); Meißner, Oller, PLB751 (2015) 59

X(3872): Heavy-heavy molecular states

X (3872) [Belle Coll. PRL91, 262001 (2003)] seems to have strong coupling to DD^{*} Törnqvist, ZPC61, 525 (1994)

- Quantum number: I⁺⁺ (LHCb coll., PRLII0 (2013) 2220001)
- Nature still not clear: $D\overline{D}^*$ but also conventional $\chi_{c1}(2P)$, tetraquark, hybrid, glueball...
- Mass very close to $D\overline{D}^*$ threshold. Width extremely small

Molecular description: Chiral SU(4) Gamermann, Oset, EPJA33:119,2007 Local Hidden Gauge Montaña et al. (JMT-R) PRD107(2023)5, 054014 Local Hidden Gauge Lagrangian in SU(4) Molina, Oset, PRD80 (2009) 114013 Molina *et al.* PRD80 (200) 014025

$$\mathcal{L} = -\frac{1}{4} \langle V_{\mu\nu} V^{\mu\nu} \rangle + \frac{1}{2} m_V^2 \left\langle \left(V_\mu - \frac{i}{g} \Gamma_\mu \right)^2 \right\rangle$$

Montaña et al. (JMT-R) PRD107(2023)5,054014

X,Y,Z: Heavy-heavy molecular states

Plethora of heavy-quarkonium like states (+200):

Guo et al., RMP90 (2018) 1, 015004

X(3872): Molecular vs Tetraquark

Insights from Heavy-Ion Collisions

- Production of extended molecule (~5 fm) drastically depends on system's volumen
- For tetraquark, compact state (~0.5 fm) it is independent of centrality

Zhang et al. PRL126, 012301 (2021)

First measurement of X(3872) in Pb-Pb collisions by CMS collaboration:

CMS collaboration PRL128, 032001 (2022)

Femtoscopy in p+p collisions

Heinz, Jacak, ARNPS 49 (1999) 529-579 Lisa, Pratt, Wiedemann, ARNPS 55 (2005) 357 Fabbietti, Mantovani Sarti, Vazquez Doce, ARNPS 71, 377 (2021)

Femtoscopy can also help in identifying resonant states

Femtoscopy studies with charm in high multiplicity p+p collisions @ $s^{1/2}=13$ TeV:

DN: ALICE coll., PRD 106 (2022) 052010 $D^{(*)}\pi, D^{(*)}K, D^{(*)}\overline{K}$: ALICE coll, 2401.13541

Insights from femtoscopy

Resonances/bound present characteristic effects Examples with charm:

Albaladejo, Nieves, Ruiz Arriola, PRD108 (2023) 1,014020

Liu, Lu, Geng, PRD107 (2023) 7,074019

Kamiya, Hyodo, Ohnishi EPJA58 (2022) 7,131

D meson correlation functions

D_s and D^* meson correlation functions

Charm at finite temperature

D meson at finite temperature

Fuchs et al. PRC73,035204, (2006) He, Fries, Rapp, PLB701, 445 (2011) Ghosh, Mitra, Sarkar, NPA917:71 (2013) Cleven et al. PRC96, 045201 (2017) JMT-R et al. PRC105, 025203 (2022)

D-meson thermal width

D & D_s spectral functions Montaña et al. (JMT-R), PLB 806 (2020) I 35464 & PRD 102 (2020) 096020

15

Thermal evolution of charm molecular states

D_{s0}* (2317) Acquires thermal broadening for typical freeze-out temperatures

2 poles of **D**₀*(2300) state Weak dependence on temperature

Montaña et al. (JMT-R), PLB 806 (2020)135464 & PRD 102 (2020) 096020

X(3872): In-medium exotics

$$G(E, \mathbf{P}; T) = \int \frac{d^3q}{(2\pi)^3} \int d\omega \int d\omega' \frac{S_1(\omega, \mathbf{q}; T)S_2(\omega', \mathbf{P} - \mathbf{q}; T)}{E - \omega - \omega' + i\epsilon} [1 + f(\omega; T) + f(\omega'; T)]$$

$$T(s) = \frac{1}{1 - V(s)G(s)}V(s)$$

X(3872), X(4014) as molecules melt down around T=110 MeV Modified thermal production at freeze out in RHICs?

X(3872) and $T_{cc}(3875)^+$ also in dense medium

Montesinos et al., PRC108 (2023) 3, 035205

Summary

- Molecular state is a genuine interpretation for many of the seen charm exotic states
- 2. Natural option for close-to-threshold states (weakly bound)
- Useful information from heavy-ion physics.
 Femtoscopy correlation functions can help to identify resonant states
- 4. Finite-temperature broadening can affect production and decay products in RHICs

MOLECULAR STATES WITH CHARM: INSIGHTS FROM VACUUM & FINITE-TEMPERATURE ANALYSES

Juan M.Torres-Rincon Universitat de Barcelona Institut de Ciències del Cosmos

