

Study of hadron two-body and three-body interactions with femtoscopy

Raffaele Del Grande^{1,*}

¹ Physik Department E62, Technische Universität München, 85748 Garching, Germany

21st International Conference on Strangeness in Quark Matter (SQM 2024) Strasbourg, France 6th June 2024

*raffaele.del-grande@tum.de

Why do we study hadronic interactions?

Understand how QCD evolves from high-energy to low-energy regime

How do hadrons interact? 2-body and many-body interactions

Mesons and baryons

 τ decay (N³LO) \vdash low O² cont. (N³LO) \vdash

DIS jets (NLO)

Heavy Quarkonia (NLO)

0.35

Femtoscopy technique at the Large Hadron Collider

Femtoscopy technique at the Large Hadron Collider

 $\overline{\mathbf{p}}_a$

Hadronic interaction

 $\overrightarrow{\mathbf{p}}_b$

Femtoscopy technique

$$C(\vec{\mathbf{p}}_{a},\vec{\mathbf{p}}_{b}) \equiv \frac{P(\vec{\mathbf{p}}_{a},\vec{\mathbf{p}}_{b})}{P(\vec{\mathbf{p}}_{a})P(\vec{\mathbf{p}}_{b})}$$

ALICE: Thomas Humanic 4 Jun, 09:10 Neelima Agrawal 4 Jun, 18:30 Anton Riedel 5 Jun, 09:30 Valentina Mantovani Sarti 5 Jun, 08:30 Laura Serksnyte/Anton Riedel 4 Jun, 17:30
STAR: Priyanka Roy 4 Jun, 17:10 Bijun Fan 4 Jun, 17:30 Boyang Fu 5 Jun, 09:10
Theo: Kenshi Kuroki 5 Jun, 08:50 Juan Torres-Rincon 6 Jun, 18:00

Correlation function

Measuring $C(k^*)$, fixing the source $S(\vec{r})$, study the interaction

M.Lisa, S. Pratt et al., ARNPS 55 (2005), 357-402 L. Fabbietti et al., ARNPS 71 (2021), 377-402

Source function in pp collisions at the LHC

• Emitting source function anchored to p-p correlation function

$$C(k^*) = \int S(\vec{r}) |\psi(\vec{k}^*, \vec{r})|^2 d^3 \vec{r}$$

measured known interaction

• Gaussian parametrization

$$S(r) = \frac{1}{(4\pi r_{core}^2)^{3/2}} \exp\left(-\frac{r^2}{4r_{core}^2}\right) \times \frac{\text{Effect of short lived}}{\text{resonances (ct ~ 1 for } 1)}$$

ALICE Coll., PLB, 811 (2020), 135849

Talk: Anton Riedel 5 Jun, 09:30 *Poster:* Neelima Agrawal 4 Jun, 18:30

Source function in pp collisions at the LHC

• Emitting source function anchored to p-p correlation function

$$C(k^*) = \int S(\vec{r}) |\psi(\vec{k}^*, \vec{r})|^2 d^3 \vec{r}$$

measured known interaction

• Gaussian parametrization

 $S(r) = \frac{1}{(4\pi r_{core}^2)^{3/2}} \exp\left(-\frac{r^2}{4r_{core}^2}\right) \times$

ALICE Coll., PLB, 811 (2020), 135849

 One universal source for all hadrons (cross-check with K⁺-p, π-π, p-Λ, p-π)

• Small particle-emitting source created in pp collisions at the LHC ALICE Coll., PLB, 811 (2020), 135849; ALICE Coll., arXiv:2311.14527

Talk: Anton Riedel 5 Jun, 09:30 *Poster:* Neelima Agrawal 4 Jun, 18:30

Femtoscopy measurements at the LHC

ALICE provided unprecedented precision input in the study of the hadronic interactions

Femtoscopy measurements at the LHC

ALICE provided unprecedented precision input in the study of the hadronic interactions

The NA and NNA interactions in neutron stars

- High density in the core of neutron stars

 → Production of hyperons as Λ at ρ = 2-3ρ₀ and softening of the equation of state
 - \rightarrow Incompatibility with astrophysical measurements of $M_{NS}\gtrsim 2~M_{\odot}$
 - \rightarrow Long-standing hyperon puzzle

Nature Reviews Physics 4 (2022) Figure adapted from NICER

The NA and NNA interactions in neutron stars

- High density in the core of neutron stars
 → Production of hyperons as Λ at ρ = 2-3ρ₀ and
 softening of the equation of state
 - \rightarrow Incompatibility with astrophysical measurements of $M_{NS}\gtrsim 2~M_{\odot}$
 - \rightarrow Long-standing hyperon puzzle

D. Lonardoni et al., PRL 114 (2019)

The NA and NNA interactions in neutron stars

- High density in the core of neutron stars

 → Production of hyperons as Λ at ρ = 2-3ρ₀ and softening of the equation of state
 - \rightarrow Incompatibility with astrophysical measurements of $M_{NS}\gtrsim 2~M_{\odot}$
 - ightarrow Long-standing hyperon puzzle
- Repulsive 3-body ∧NN interaction can stiffen the EoS but:
 → Effect on EoS largely model dependent
 - \rightarrow too repulsive YNN leads to no hyperons in the NSs

D. Logoteta et al., EPJA 55 (2019); D. Lonardoni et al., PRL 114 (2019)

Can we exploit femtoscopy measurements?

D. Lonardoni et al., PRL 114 (2019)

The p Λ interaction so far...

- Mainly investigated with scattering data
 → High-precision results by CLAS at large momenta
 CLAS coll.PRL 127 (2021), 27, 27230
 - → Large uncertainties at low momenta and not available down to threshold
- Cusp structure at ΣN opening
 - \rightarrow Coupling ΛN-ΣN driving the behaviour of Λ at finite ρ D. Gerstung et al. Eur.Phys.J.A 56 (2020), 6, 175; J.Haidenbauer, U. Meißner, EPJA 56 (2020), 3, 91
 - \rightarrow State-of-art chiral potentials with different $\Lambda N-\Sigma N$ strength

The pA interaction before femtoscopy

The $p\Lambda$ interaction in the femtoscopy era

NLO19: J.Haidenbauer, U. Meißner, EPJA 56 (2020), 3, 91 NLO13: J.Haidenbauer, N.Kaiser et al., NPA 915, 24 (2013)

The $p\Lambda$ interaction in the femtoscopy era

Raffaele Del Grande

The $p\Lambda$ interaction in the femtoscopy era

• <u>NEW</u>: combined analysis of femtoscopic and scattering data

D. Mihaylov, J. Haidenbauer and V. Mantovani Sarti, PLB 850 (2024) 138550

New parameterizations of the χEFT Compatible with repulsive 3-body forces

• Point-like particle models anchored to scattering experiments

W. T. H. Van Oers et al., NPA 561 (1967); J. Arvieux et al., NPA 221 (1973); E. Huttel et al., NPA 406 (1983); A. Kievsky et al., PLB 406 (1997); T. C. Black et al., PLB 471 (1999);

- Coulomb + strong interaction using Lednický model Lednický, R. Phys. Part. Nuclei 40, 307–352 (2009)
- Only s-wave interaction
- Source radius evaluated using the universal m_{τ} scaling

Point-like particle description doesn't work for p-d

- Full three-body calculations are required (NN + NNN + Quantum Statistics)
- Hadron-nuclei correlations at the LHC can be used to study many-body dynamics

Raffaele Del Grande

- Full three-body calculations are required (NN + NNN + Quantum Statistics)
- Hadron-nuclei correlations at the LHC can be used to study many-body dynamics
- Sensitivity to three-body forces up to 5%

Raffaele Del Grande

- Full three-body calculations are required (NN + NNN + Quantum Statistics)
- Run 3 data from 2022 already analysed and results are promising!
- In Run 3 expected uncertainty of 1%

Talk by Laura Serksnyte/Anton Riedel 4 Jun, 17:30

p-p-p correlation function

• First ever full three-body correlation function calculations

three-proton wave function

 $C(Q_3) = \int \rho^5 d\rho \, S(\rho, \rho_0) |\Psi(\rho, Q_3)|^2$ hyperradius

- Wave function via HH:
 - AV18
 - Three-body Coulomb interaction
 - Quantum statistics

A. Kievsky, et al., Phys.Rev.C 109 (2024) 3, 034006

- Negligible contribution from UIX
- Utilise to study three-body source
- Only shape of the theory and data should be compared

p-p-p correlation function

• ALICE Run 3 data from 2022 already analysed and results are promising!

• At the end of Run 3: 25 times larger statistical sample than 2022 alone

$p-p-\Lambda$ correlation function

- New data by ALICE (Run 3 2022 data)
- By the end of Run 3: 150 times larger statistical triplets sample expected compared to Run 2 due to developed software triggers!

Raffaele Del Grande

$p-p-\Lambda$ correlation function

p-p-Λ correlation function

• First theoretical predictions: \rightarrow effect up to 50% due to 3BFs

60

Raffaele Del Grande

Femtoscopy to study bound states

$p{\-}\varphi$ correlation function:

- Spin-3/2 interaction: elastic channel

 Lattice QCD potentials (HAL QCD)
 Yan Lyu et al., Phys. Rev. D 106 (2022) 074507
- Spin-1/2 interaction: inelastic channels (Nφ−ΛK, Nφ−ΣK)
 → Complex potential fitted to the data
- Attractive potential with C(k*) < 1 provides indication of a p-φ bound state → Binding Energy = 14.7–56.6 MeV

E. Chizzali, Y. Kamiya et al., PLB 848 (2024) 138358

Correlation analysis as alternative to the standard invariant mass analyses to study bound states

Talk by K. Kuroki 5 June 08:50

D*D correlation and link to molecular states

 T^+_{CC} : molecular state ? Inversion of the sign of the scattering length of the $D^{*+}D^0$ pair translates into an inversion of the correlation function from pp to Pb-Pb collisions at the LHC

Y. Kamiya et al. EPJA 58 (2022)

First measurement of $D\pi$ correlation functions

L. Liu et al, Phys. Rev. D87 (2013) 014508

X.-Y. Guo et al, Phys. Rev. D 98 (2018) 014510 Z.-H. Guo et al Eur. Phys. J. C 79 (2019) 13

B.-L. Huang et al, Phys. Rev. D 105 (2022) 036016

- Coulomb-only interaction favoured
- Tension with theory models

ALICE Coll., arXiv:2401.13541 (2023)

Talk by Juan Torres-Rincon 6 Jun, 18:00

$D\pi$ correlation function fit

- $D^+\pi^+$ and $D^+\pi^-$ share I=3/2 channel \rightarrow simultaneous fit
- Vanishing scattering parameters in both isospin channels
- Tension with theory especially in I=1/2 channel

Talk by Juan Torres-Rincon 6 Jun, 18:00

ALICE Coll., arXiv:2401.13541 (2023)

Conclusions and Outlook

- Exciting results from femtoscopy
 → Important experimental input to understand the many facets of QCD in strange and charm sector
 - Most precise p-A data at low momenta
 - First extraction of the p-Λ scattering parameters using femtoscopy and scattering data
 - First measurements of three-particle correlation functions
 - Indication of a p-φ bound state using correlation techniques
 - First measurements of D meson correlations
- On-going Run 3 and future Run 4
 - Access to precise data on three-particle interactions and interactions with charm mesons
 - Sensitivity to the effect of three-body forces in the correlation functions

Backup

p-p-p correlation function

• Cumulant method provides first hint of effects beyond two-body correlations

- A deviation of nσ = 6.7 from lower-order contributions
- Theoretical predictions necessary to understand the origin of the deviation further

p-p-Λ correlation function

• Cumulant method provides first hint of effects beyond two-body correlations

R. Kubo, J. Phys. Soc. Jpn. 17, 1100-1120 (1962)

• Compatible with lower-order contributions ($n\sigma = 0.8$)

The p Λ interaction in the femtoscopy era

New scenario for pΛ interaction

 → Weaker ΛN-ΣN coupling favoured, important for neutron stars

D. Gerstung et al. Eur.Phys.J.A 56 (2020), 6, 175

- Most precise data on p∧ system at low momenta
 → Input for low energy effective models in the strange baryonic sector
- More pieces needed for the hyperon puzzle in LHC Run 3 and Run-4
 - $\rightarrow p\Sigma^{+,-}$ and Λd interactions
 - \rightarrow Three-particle ppp and pp Λ interactions

ALICE coll. arXiv: 2206.03344 (2023)

$D^*\pi$ interaction

- Similar results as for D- π \rightarrow heavy-quark spin symmetry
- D*π
 - Coulomb-only interaction favoured
 - Tension with theory model

J. M. Torres-Rincon et al, Phys. Rev. D 108 (2023) 096008 Z.-W. Liu et al, Phys. Rev. D 84 (2011) 034002

$D^{\ast}\pi$ correlation function fit

- Vanishing scattering parameters within uncertainties
- Scattering parameters compatible with $D\pi$ results \rightarrow Heavy-quark spin symmetry

An example of EoS for neutron stars

$|S| = 1: p - \Lambda$ interaction

(mb) Scattering data χEFT NLO13 **(b)** $\Lambda p \rightarrow \Lambda p$ 20 χEFT NLO19 Sechi-Zorn et al. Jülich 04 Alexander et al. Hauptman et al. NSC97f Piekenbrock 200 Uncertainties ~ 30% U_{Λ} (MeV) Repulsive at low momenta **NI 013** xEFT NLO19 -20 100 Attractive -40 1.5 2.0 1.0 PNM k_⊏ (1/fm) 45 135 220 310 385 *k** (MeV/*c*) J.Haidenbauer, N.Kaiser et al. NPA 915 24 (2013)

J.Haidenbauer, U. Meißner EPJA 56 (2020)

- Low statistics and not available at low momenta
- $\Lambda N-\Sigma N$ coupled system \rightarrow two-body coupling to ΣN is not (yet) measured
- ΣN coupling strength relevant for EoS
 - Strongly affects the behaviour of Λ at finite density
 - Implications for ANN interactions
- NLO19 predicts weak coupling NA-N Σ
 - Attractive Λ interaction in neutron matter

Comparison with χEFT potentials

- Sensitivity to different ΣN coupling strength
- NLO19 favoured ($n_{\sigma} = 3.2$) \rightarrow attractive interaction of Λ at large densities

$|S| = 1: p - \Lambda$ interaction

ALICE Coll. PLB 833 137272 (2022)

p-ф bound state

- Predicted by various theoretical calculations
- No experimental evidence
 - Standart method of invariant mass measurment not yet available
- Accessible by studying **interaction** among constituents

	System	E _B [MeV]
QCD Van der Waal using Yukawa type Potential ¹	φN	1.8
Chiral quark model ²	φN	3.0
Monte Carlo study of ϕ photoproduction from nuclear targets ³	φN	2.5
Quark delocalization color screening model ⁴	φN	0.3-8.8
Unitary coupled-channel approximation anchored to ALICE pd scattering data ⁵	φN	9.0
Phenomenological potential+variational method ⁶	φN	9.3/9.23
	φΝΝ	10.0/17.5
Phenomenological potential+variational method ⁷	φN	9.5
	φΝΝ	39.8
	φφΝΝ	124.6

¹H. Gao, T.-S. H. Lee, and V. Marinov, Phys. Rev. C 63 (2001) 022201(R)

²F. Huang, Z.Y. Zhang, and Y.W. Yu, Phys. Rev. C 73 (2006) 025207

³H. Gao et al., Phys. Rev. C 95 (2017) 055202

⁴S. Liska, H. Gao, W. Chen, and X. Qian, Phys. Rev. C 75 (2007) 058201

⁵B.-X. Sun, Y.-Y. Fan, and Q.-Q. Cao, arXiv, 2206.02961 (2022)

⁶V. B. Belyaev, W. Sandhas, and I. I. Shlyk, Few-Body Syst. 44 (2008) 347

⁷S. A. Sofianos, G. J. Rampho, M. Braun, and R. M. Adam, J. Phys. G. 37 (2010) 085109

Raffaele Del Grande

|S|=0 sector: $p-\phi$ spin dependent interactions

$$V_{\frac{1}{2}}(r) = V_{LATTIC,MOD}(r) + i \cdot \sqrt{f(r; b_3)} \cdot \frac{\gamma}{r} e^{-m_K \cdot r}$$

$$\beta \cdot V_{short}(r) + V_{2\pi}(r)$$

Best fit to data obtained for attractive potential

- $\circ \quad \beta = 7.0^{+0.8}_{-0.2}(stat.)^{+0.2}_{-0.2}(syst.)$
- $\circ \quad \gamma = 0.0^{+0.0}_{-0.2}(stat.)^{+0.0}_{-0.2}(syst.)$

Repulsive potential (β <0) excluded by over 3σ

Within uncertainties room for inelastic contributions expected by theory

Imaginary Pot restricted to γ<0 (attractive) to model absorption processes

Comparison with χEFT potentials

- Sensitivity to different ΣN coupling strength
- NLO19 favoured ($n_{\sigma} = 3.2$) \rightarrow attractive interaction of Λ at large densities

$|S| = 1: p - \Lambda$ interaction

ALICE Coll. PLB 833 137272 (2022)

p-d correlation function: d as composite object

The three body wave function with proper treatment of 2N and 3N interaction at very short distances goes to a p-d state.

• Three–body wavefunction for p–d: $\Psi_{m_2,m_1}(x,y)$ describing three-body dynamics,

anchored to p-d scattering observables.

- x = distance of p-n system within the deuteron
- y = p-d distance
- m_2 and m_1 deuteron and proton spin

• $\Psi_{m_2,m_1}(x,y)$ three-nucleon wave function asymptotically behaves as p-d state:

$$\Psi_{m_2,m_1}(\boldsymbol{x},\boldsymbol{y}) = \Psi_{m_2,m_1}^{\text{(free)}} + \sum_{LSJ}^{J \leq \overline{J}} \sqrt{4\pi} i^L \sqrt{2L+1} e^{i\sigma_L} (1m_2 \frac{1}{2}m_1 | SJ_z) (LOSJ_z | JJ_z) \widetilde{\Psi}_{LSJJ_z}.$$

Asymptotic form Strong three-body interaction Ψ_{LSJJ_Z} describe the configurations where the three particles are close to each other Ψ_{LSJJ_Z}

 $\buildrel \Psi^{(\mathrm{free})}_{m_1,m_2}$ an asymptotic form of p-d wave function

Kievsky et al, Phys. Rev. C 64 (2001) 024002 Kievsky et al, Phys. Rev. C 69 (2004) 014002 Deltuva et al, Phys. Rev. C71 (2005) 064003

p-d correlation function

Mrówczyński et al Eur. Phys. J. Special Topics 229, 3559 (2020)