

Measurements of quarkonia production

L. Massacrier

Université Paris-Saclay, CNRS/IN2P3, IJCLab, Orsay, France

Quarkonium related presentations at SQM 2024

Quarkonium related experimental presentations:

- Recent results on heavy flavours and quarkonia from ALICE F. Fionda Mon. 11:05
- Observation of double J/ ψ production in p-Pb with CMS S. Leontsinis Tues. 14:40
- Investigating the interplay between initial hard processes and final-state effects measuring (non)-prompt J/ ψ with ALICE M. Coquet Tues. 15:00
- Detailed study of the production of Y mesons in Pb-Pb collisions with CMS P. Ranjan Pujahari Tues. 15:20
- Recent conventional and exotic charmonia results from LHCb Y. Kang Tues. 15:40
- Ultra-peripheral collisions at LHCb L. Hengne Tues. 17:10
- Forward rapidity elliptic flow measurements in PHENIX Au-Au collisions at 200 GeV L. Bichon Wed. 9:30
- J/ ψ photoproduction and polarization in peripheral Pb-Pb collisions with ALICE D. Mallick Wed. 10:40
- Prospects for open-heavy flavour and quarkonium measurements with NA60+ R.Arnaldi Wed. 12:00

Posters:

- Studying QCD production mechanisms and medium effects on quarkonia formation with ALICE Z. Xiong
- Decoding charmonia polarization in pp collisions at LHC energies S. Deb
- System size dependence of collective phenomena by means of quarkonia measurements with ALICE S. Zhu
- Exploring Y production mechanisms using PYTHIA simulation in proton-proton collisions O. Mezhenska
- The spin interference effect with photoproduced ${m
 ho}^0$ and J/ ψ in UPC at STAR A. Sheikh
- Multi-particle cumulant J/ ψ v₂ measurement in Pb-Pb collisions V. Valencia
- Prompt/Non-prompt J/ ψ separation performances with ALICE $\,$ E. Barreau

This presentation will mainly focus on quarkonium hadronic production in pp/pA/AA Usual disclaimer : personal biased selection of results, with focus on most recent results, in a more global context

Quarkonia as probe of the medium in AA collisions

- Quarkonia are bound states of a heavy quark (c,b) and its antiquark
- Heavy quarks produce early in the collision and sensitive to full medium evolution

□ Sensitivity to:

- Gluon distributions in nuclei
- Initial magnetic field and vorticity in the QGP

thermalization

Sequential dissociation in medium depending on quarkonium binding energy

Parton energy loss

Regeneration in medium or at phase boundary

Quarkonia as tool in small systems

Interpretation of medium effects on quarkonium production requires a good understanding of the probe in reference systems without QGP formation

Ideal system to study Cold Nuclear Matter effects : nPDFs, (coherent) energy loss, nuclear absorption, comovers...

Elementary collisions to understand the probe itself:

- Production mechanism: a two scales problem (perturbative initial qq production, nonperturbative binding into quarkonium). Several models on market: NRQCD, ICEM...
- Role of feed-down contributions
- But also a QCD tool: spectroscopy (rare decays, exotic quarkonium states/tetraquark), gluon distributions in proton

□ The peculiarity of the high multiplicity regime in small systems: QGP-like features seen for several observables

- Role of initial/final state (MPI, comovers..) effects on quarkonium production
- Look for collectivity with heavy quarks

But quarkonium production in «min-bias» small system events remains a good baseline for AA studies...

Quarkonium production in « min-bias » pp/e⁺e⁻ collisions

*Also quarkonium production in jets (not covered)

Quarkonium spectroscopy and exotica

Large variety of measurements to characterize all quarkonium family states (BES III, B-factories...), and their rare decays

And still discovery of new states LHCb (2020) heavy tetraquark candidate X(6900) Similar structure observation by ATLAS/CMS + two more candidates X(6600) and X(7100)

Quarkonium spectroscopy and exotica

S. Navas et al. (PDG), Phys. Rev. D 110, 030001 (2024

Large variety of measurements to characterize all quarkonium family states (BES III, B-factories...), and their rare decays

Strasb

9

Non-prompt $\psi(2S)$, mid-rapidity

L. Massacrier – Measurements of quarkonia production – Strangeness in Quark Matter 2024, 3-7th June 2024 – Strasbourg, France

ALICE Coll, EPIC 83 (2023) 61

□ Can data still further constrain models?

- □ LHC: large data sample for precise quarkonium production measurements at several c.m.s energies
- Cross section ratios among energies: benefit from partial cancellation of several theoretical uncertainties (renormalization scale, factorization scale...)
- Challenging for models to describe cross section ratios

Quarkonium polarization in pp collisions

Simultaneous description of quarkonium cross section and polarization observables: a long standing puzzle for models

S-wave quarkonium produced almost unpolarized at LHC, long standing challenge for NRQCD

 $\Box \chi_{c1}$ and χ_{c2} (P-wave) results from CMS favor a scenario where at least one of the two states is strongly polarized (HX), in agreement with NRQCD

CMS Collab., PRL 124, 162002 (2020)

Improvement of S-wave polarization description with NRQCD using global-fit analyses

Quarkonium production in high multiplicity pp collisions and associated quarkonium production

« High multiplicity » regime and associated quarkonium production

...and few related pPb results

Final state effects: comovers...

Collectivity

ALICE Coll., JHEP 06 (2022) 015

Study the correlation between soft and hard processes, role of MPI
 Stronger than linear increase for mid-y J/ψ, almost linear for forward J/ψ, Y(ns)
 Different trend versus (midrapidity) multiplicity expected by most of the models for forward J/ψ and mid-y J/ψ, increase with mul. explained by different mechanisms (color reconnection, coherent particle production, 3-gluon fusion, saturation, or percolation) that might differ with rapidity. All models take into account MPI.

□ Different behaviour versus multiplicity could be related to the quarkonium rapidity, the charged particle rapidity, the *△*y between the two (accounting for possible auto-correlations)...Need systematic scan of all quantities, and done recently by PHENIX

 $\hfill \label{eq:Faster}$ Faster than linear increase when overlap in rapidity between N_{ch} and J/ψ

□ Different behaviour versus multiplicity could be related to the quarkonium rapidity, the charged particle rapidity, the *Ay* between the two (accounting for possible auto-correlations)...Need systematic scan of all quantities, and done recently by PHENIX

Faster than linear increase when overlap in rapidity between N_{ch} and J/ψ
 Reduced increase with multiplicity for large Δy gap between N_{ch} and J/ψ

□ Different behaviour versus multiplicity could be related to the quarkonium rapidity, the charged particle rapidity, the *△*y between the two (accounting for possible auto-correlations)...Need systematic scan of all quantities, and done recently by PHENIX

- □ Faster than linear increase when overlap in rapidity between N_{ch} and J/ψ
- □ Reduced increase with multiplicity for large *Δ*y gap between N_{ch} and J/ψ
- Strong reduction of the increase with mult. when J/ψ subtracted from the mult. evaluation (autocorrelations!)

□ Different behaviour versus multiplicity could be related to the quarkonium rapidity, the charged particle rapidity, the *△*y between the two (accounting for possible auto-correlations)...Need systematic scan of all quantities, and done recently by PHENIX

- □ Faster than linear increase when overlap in rapidity between N_{ch} and J/ψ
- □ Reduced increase with multiplicity for large *Δ*y gap between N_{ch} and J/ψ
- Strong reduction of the increase with mult. when J/ψ subtracted from the mult. evaluation (autocorrelations!)
 Less enhancement when large Δy gap between N_{ch} and J/ψ

Different behaviour versus multiplicity could be related to the quarkonium rapidity, the charged particle rapidity, the *Ay* between the two (accounting for possible auto-correlations)...Need systematic scan of all quantities, and done recently by PHENIX

- □ Faster than linear increase when overlap in rapidity between N_{ch} and J/ψ
- □ Reduced increase with multiplicity for large Δ y gap between N_{ch} and J/ ψ
- □ Strong reduction of the increase with mult. when J/ψ subtracted from the mult. evaluation (autocorrelations!)
- □ Less enhancement when Δy gap between N_{ch} and J/ ψ
- Results in between ALICE mid-y and forward-y
- MPI required to describe PHENIX data

ALICE Coll., [HEP 06 (2023) 147

- Excited to ground state ratio to pin down final state effects on quarkonium production in high multiplicity events (eg. comovers)
- ALICE forward incl. ψ(2S)/J/ψ ratio vs mid-y mult. compatible with flat trend and comover scenario* within large unc. both in pp and pPb.
 *for prompt production

- Excited to ground state ratio to pin down final state effects on quarkonium production in high multiplicity events (eg. comovers)
- □ ALICE forward incl. $\psi(2S)/J/\psi$ ratio vs mid-y mult. compatible with flat trend and comover scenario^{*} within large unc. both in pp and pPb.

*for prompt production

New (precise) LHCb measurement separating prompt/non-prompt charmonium. Significant decreasing trend with multiplicity, compatible with comovers when probe and N_{ch} in the same rapidity interval (caveat: autocorrelation, x-axis not fully corrected)

ALICE Coll., JHEP 06 (2023) 147

CMS Coll., CMS-PAS-HIN-24-001

- Excited to ground state ratio to pin down final state effects in high multiplicity events
- □ ALICE forward incl. $\psi(2S)/J/\psi$ ratio vs mid-y mult. compatible with flat trend and comover scenario within large unc. in pp
- □ New (precise) LHCb measurement (for prompt $\psi(2S)/J/\psi$) in pPb tends to favor comover scenario but several caveats for comparison to ALICE and models (x-axis corrections, $\Delta \eta$ between the probe and N_{ch})
- □ ALICE forward incl. $\psi(2S)/J/\psi$ ratio vs mid-y mult. compatible with flat trend and comover scenario within large unc. in pPb
- □ New precise CMS measurement for prompt $\psi(2S)/J/\psi$ ratio tends to favor comovers (also caveats in comparison to ALICE and models)

Associated quarkonium production in pp/pPb collisions

 \Box Associated quarkonium production \rightarrow Direct probe for MPI

 \Box Pioneering measurements by CMS: triple J/ ψ production in pp, double J/ ψ production in pPb

In pPb, benefit from the fact that large transverse parton density of the nucleus enhances DPS contribution w.r.t pp

CMS Coll., PAS HIN-23-013

CMS, $\sqrt{s_{NN}}$ =8.16 TeV, J/ ψ +J/ ψ **CMS**, \sqrt{s} =13 TeV, J/ ψ +J/ ψ +J/ ψ Nat. Phys. **19** (2023) 338 CMS*, √s=7 TeV, J/ψ+J/ψ Phys. Rept. 889 (2020) 1 ATLAS, √s=8 TeV, J/ψ+J/ψ Eur. Phys. J. C 77 (2017) 76 **D0**, √s=1.96 TeV, J/ψ+J/ψ Phys. Rev. D 90 (2014) 111101 **D0***, √s=1.96 TeV, J/ψ+Y Phys. Rev. Lett. 117 (2016) 062001 ATLAS*, √s=7 TeV, W+J/ψ Phys. Lett. B 781 (2018) 485 ATLAS*, √s=8 TeV, Z+J/ψ Phys. Rept. 889 (2020) 1 ATLAS*, √s=8 TeV, Z+b→J/ψ Nucl. Phys. B 916 (2017) 132 **D0**, √s=1.96 TeV, γ+b/c+2-jet Phys. Rev. D 89 (2014) 072006 **D0**. \sqrt{s} =1.96 TeV. γ +3-iet Phys. Rev. D 89 (2014) 072006 **D0**, √s=1.96 TeV, 2-γ+2-jet Phys. Rev. D 93 (2016) 052008 **D0**, √s=1.96 TeV, γ+3-jet Phys. Rev. D 81 (2010) 052012 **CDF**, √s=1.8 TeV, γ+3-jet Phys. Rev. D 56 (1997) 3811 UA2, √s=640 GeV, 4-jet Phys. Lett. B 268 (1991) 145 **CDF**, √s=1.8 TeV, 4-jet Phys. Rev. D 47 (1993) 4857 ATLAS, Vs=7 TeV, 4-jet JHEP 11 (2016) 110 CMS, √s=7 TeV, 4-jet Eur. Phys. J. C 76 (2016) 155 CMS, √s=13 TeV, 4-jet JHEP 01 (2022) 177 CMS, √s=7 TeV, W+2-jet JHEP 03 (2014) 032 ATLAS, vs=7 TeV, W+2-jet New J. Phys. 15 (2013) 033038 CMS, √s=13 TeV, WW Phys. Rev. Lett. 131 (2023) 091803

* Non-exhaustive list

□ Use Δy and $\Delta \phi$ variables to disentangle SPS and DPS contribution to the di-J/ ψ cross section

□ Non universality of σ_{eff} → depends on parton species and x fraction probed

Characterizes the area occupied by the interacting partons in the transverse space

Take home message: quarkonium in pp collisions

- Large variety of precise quarkonium cross section measurements (over wide kinematic and energy ranges thanks to complementary experiments), together with polarization
- □ Improvement in the simulatenous description of both quantities by NRQCD and ICEM models
- Associated quarkonium production and quarkonium production versus multiplicity powerful to probe MPI and comovers but require for the latter : large statistics, common description of axis by experiments (and compatible with theory outputs), systematic scans with rapidity of the probe and of the multiplicity (accounting for autocorrelations when any)

Quarkonium production in pA collisions Cold nuclear matter Collectivity effects $E\frac{d^{3}N}{d^{3}p} = \frac{1}{2\pi}\frac{d^{2}N}{p_{T}dp_{T}dy}\left(1 + \sum_{n=1}^{\infty} 2v_{n}\cos(n(\phi - \Psi_{RP}))\right)$ $R_{\rm pPb}(y_{\rm cms}, p_{\rm T}) = \frac{{\rm d}^2 \sigma_{\rm pPb}^{{\rm J}/\psi}/{\rm d}y_{\rm cms} {\rm d}p_{\rm T}}{A_{\rm Pb} \cdot {\rm d}^2 \sigma_{\rm pp}^{{\rm J}/\psi}/{\rm d}y_{\rm cms} {\rm d}p_{\rm T}}$ nPDF comovers 1.5 antishadowing Ferminuclear motion coherent absorption eus)/\sigma_{DIS}(nuc 1.0 energy loss EMC-effect 0.6 7_{DIS}(nuc shadowing 0.2 p'_{\perp} 10-3 10-2 10-1 =)= $p_{\perp}=0$ $\delta \ell_{n\perp}$ ${}^{\rm g}\ell_{2\perp}{}^{\rm g}q_{\perp}$ $z_1 \, z_2$ Nuclear medium

Cold nuclear matter effects on J/ψ production in pPb/pAu

□ LHC energies:

- Moderate CNM on prompt J/ ψ at mid-rapidity (mainly low p_T), modeled by nPDF
- Stronger suppression at forward-y (p-going) describe by several models (nPDFs, coherent energy loss...)

□ RHIC energies:

Suppression due to CNM also concentrated at low p_T for midrapidity and described by nPDFs

□ What about excited charmonia?

Cold nuclear matter effects on $\psi(2S)$ production in pPb/pAu

- □ Similar R_{pPb} evolution for J/ ψ and ψ (2S) at LHC and RHIC in pPb/pAu despite different c.m.s energies
- □ Stronger suppression for $\psi(2S)$ w.r.t J/ ψ at backward rapidity, suggesting final state effects at play (and of similar strength at both energies)
- □ Recent prompt $\psi(2S)/J/\psi$ measurement from LHCb, described by comover models both at forward and backward rapidities
- □ LHCb SMOG pNe measurement in agreement with other $\psi(2S)/J/\psi$ ratio measurements at low energy

Cold nuclear matter effects on χ_c production in pPb

□ New measurement by LHCb of $\chi_{c1} + \chi_{c2}$ via J/ ψ + γ decay

 $\Box \chi_c / J/\psi$ fraction in pPb consistent with pp data at forward y

□ Ratio larger than unity at backward y could be related to $\psi(2S)$ suppression at backward y (and therefore affecting prompt J/ ψ production via feed-down)

 \Box No final state dissociation of χ_c observed in pPb collisions

Reminder : prompt J/ ψ :

- Direct J/ ψ
- J/ ψ from χ_c decay
- J/ ψ from ψ (2S) decay

Cold nuclear matter effects on γ production in pPb

□ CMS at mid-rapidity: Indication of suppression for $\Upsilon(nS)$ states, stronger suppression for excited states (following order of binding energies), $R_{pPb}(\Upsilon(1S)) > R_{pPb}(\Upsilon(2S)) > R_{pPb}(\Upsilon(3S))$

□ Final state effects required to describe the stronger suppression for excited states. nPDFs+comovers describe the rapidity trend of the Υ (nS) RpPb (caveat large experimental uncertainties for excited states in some of the y bins)

Quarkonium elliptic flow in pPb

Evidence for non-zero prompt J/ ψ v₂ in high multiplicity pPb collisions (evidence for heavy quark collectivity, weaker collectivity for heavy quarks than light quarks)

 \Box $\Upsilon(IS)$ v₂ consistent with zero, smaller than J/ ψ v₂

□ Transport model underestimates J/ ψ v₂ (negligible path length dependent effects and regeneration in pPb). Similar v₂ at forward and backward rapidity (although different event multiplicities) suggest that observed v₂ cannot originate from final-state interactions alone

Take home message: quarkonium in pA collisions

S Strasbourg 2024

LHCb Coll., PRL132 (2024) 102302, LHCb-PAPER-2023-028

- □ Systematic studies of charmonia (including χ_c !) and bottomonia states in pA collisions done at LHC. Important to understand feed-down effects
- □ Weakly bound resonances (ψ (2S),Y(3S)) seem suppressed with respect to their ground state at backward rapidity (except for χ_c)
- \Box Significance of the deviation w.r.t unity still not so large \rightarrow improved precision would help

L. Massacrier – Measurements of quarkonia production – Strangeness in Quark Matter 2024, 3-7th June 2024 – Strasbourg, France

Energy and system size dependence of $J/\psi R_{AA}$

Global uncertainty

10²

 \Box Strong rise of the J/ ψ R_{AA} from RHIC to LHC energies \rightarrow evidence for charmonium regeneration at LHC

- STAR: No strong collision system size dependence of the J/ ψ R_{AA}
- □ Amont of suppression at $\sqrt{s_{NN}} = 200$ GeV in Au-Au beyond expectation from CNM

More on J/ ψ $R_{\rm AA}\,{\rm at}$ LHC

ALICE Coll., Phys. Lett. B 849 (2024) 138451

- □ J/ ψ production in central Pb-Pb collisions described by an interplay between dissociation, regeneration and energy loss
- Stronger regeneration at midrapidity w.r.t forward rapidity
- □ J/ ψ /D⁰ ratio interesting to further contrain models (similar initial state). Increasing ratio with centrality well described by SHMc at $\sqrt{s_{NN}}$ = 5.02 TeV (ratio related to charm fugacity)
- □ Fixed Target@LHC: No evidence for anomalous J/ ψ suppression in central Pb-Ne collisions at $\sqrt{s_{NN}} = 68.5 \text{ GeV}$

$\psi(2\mathsf{S})\;\mathsf{R}_{\mathsf{A}\mathsf{A}}\;\mathrm{and}\;\psi(2\mathsf{S})/\mathsf{J}/\psi$ (double) ratio

ALICE Coll., PRL 132 (2024) 042301

ALICE Coll., PRL 132 (2024) 042301, ALICE Coll., JHEP 2002 (2020) 041, CMS Coll., EPJC 78 (2018) 509

□ A golden probe at low p_T to disentangle among regeneration models

□ First hint of ψ (2S) regeneration at LHC energies (still statistically limited in Run 2)

□ Transport model better reproduces the ψ (2S) R_{AA} in central Pb-Pb events

□ Sequential suppression of charmonia at RHIC in AA, ψ (2S)/J/ ψ double ratio in AA significantly lower than in pA

$\Upsilon(nS) R_{AA}$

$\Upsilon(nS) R_{AA}$

□ Obervation of Υ (3S) by CMS in Pb-Pb collisions

- Sequential suppression of Υ(nS) states at LHC energy, and also at RHIC
- □ Similar suppression at RHIC and LHC for $\Upsilon(IS)$ despite factor 25 in \sqrt{s} : in favor of a negligible melting of direct $\Upsilon(IS)$ Suppression of excited states only + CNM effects

□ Hint that Y(2S) might be less suppressed at RHIC in peripheral events than at LHC

Quarkonium collectivity in AA collisions

- □ Significant J/ ψ v₂ at low p_T and LHC energies (and stronger than pPb/pp) : sign of regeneration and thermalization of charm quarks in medium
- □ Hint for $\psi(2S) v_2$ larger than J/ ψ v₂ for p_T > 6.5 GeV/c. Larger contribution from recombination for $\psi(2S)$? Interesting to extend with Run 3 and down to lower p_T
- \Box $\Upsilon(IS)$ v₂ compatible with zero, no evidence for regeneration within current uncertainties. Would be interesting to look at v₂ of excited states if doable
- □ J/ ψ v₂ compatible with zero at RHIC

Quarkonium polarization in AA collisions

ALICE Coll., PRL 131 (2023) 042303

Polarization measurement w.r.t event plane can probe the initial magnetic field and angular momentum of the formed medium

 $\rho_{00} = 1/3 \rightarrow$ absence of spin
alignment

□ Hint for spin alignment of J/ ψ both at RHIC and ALICE with similar pattern, despite different initial magnetic field, regeneration effects, rapidities... Theoretical guidance needed

Quarkonium photoproduction in AA collisions

S Strasbourg Strasbourg

Study ambiguity in nuclei photon emitter

Spin interference of $|/\psi|$

Transverse polarization of photoproduced J/ ψ in Pb-Pb collisions with nuclear overlap

Probe quantum fluctuations of the gluon density

Take home message AA

- □ Sequential dissociation of Υ (nS) states in medium at RHIC and LHC with similar pattern → important to understand feed-down contributions
- □ Sequential suppression of charmonia at RHIC, interplay between dissociation and regeneration of charmonia at LHC (looking forward improved precision for $\psi(2S)$ measurements)
- \Box Thermalization of charm quarks in medium at LHC

Prospects

S M Strasbourg 2024

□ First Run 3 quarkonium results starting to be released

□ Several LHC upgrades highly relevant for quarkonium physics:

- ALICE mid-rapidity: access to γ states, prompt/non-prompt charmonium separation down to lower p_T
- ALICE forward rapidity: prompt/non-prompt charmonium separation
- LHCb: quarkonium measurements down to centrality 30% in Pb-Pb, access to all centralities in Pb-Ar
- CMS: analysis of minbias data could improve the low p_T reach for quarkonia

Stay tuned and thanks for your attention!

Back up

STAR PRD 102,092009 (2020)

d²σ/db₁ (μb/(GeV/c)) pp, $\sqrt{s} = 5.02 \text{ TeV}$ • ALICE, |y| < 0.9, $L_{int} = 19.4 \text{ nb}^{-1} \pm 2.1\%$ • ATLAS, |y| < 0.75, $L_{int} = 25.0 \text{ pb}^{-1} \pm 5.4\%$ • CMS, |y| < 0.9, $L_{int} = 28.0 \text{ pb}^{-1} \pm 2\%$ **10**⁻¹ Non-prompt J/ψ , Non-prompt J/ψ mid-rapidity 10⁻² **10⁻³** FONLL, M. Cacciari et al. model / data 2 1.5 0.5 00 12 14 16 2 8 10 4 6 р_т (GeV/*c*) L. Massacrier – Measurements of quarkonia production – Strangeness in Quark Matter 2024, 3-7th June 2024 – Strasbourg, France

ALICE Coll., |HEP (2022) 190, CMS Coll. Eur. Phys. J. C77 (2017) 269, ATLAS Coll., Eur. Phys. J. C78 (2018) 171

- Excited to ground state ratio to pin down final state effects in high multiplicity events
- □ ALICE forward incl. $\psi(2S)/J/\psi$ ratio vs mid-y mult. Compatible with flat trend and comover scenario within large unc. both in pp and pPb.
- □ New (precise) CMS measurement in pPb tends to favor comover scenario but several caveats for comparison to ALICE and models (x-axis corrections, $\Delta\eta$ between the probe and N_{ch})

□ Trend of PHENIX data compatible with ALICE in pp independently of the $\Delta \eta$ gap

□ Different behaviour versus multiplicity could be related to the quarkonium rapidity, the charged particle rapidity, the *△*y between the two (accounting for possible auto-correlations)...Need systematic scan of all quantities, and done recently by PHENIX

- □ Faster than linear increase when overlap in rapidity between N_{ch} and J/ψ
- □ Reduced increase with multiplicity for large *Δ*y gap between N_{ch} and J/ψ
- Strong reduction of the increase with mult. when J/ψ subtracted from the mult. evaluation (autocorrelations!)
- □ Less enhancement when Δy gap between N_{ch} and J/ ψ
- Results in between ALICE mid-y and forward-y

57