The 21st International Conference on Strangeness in Quark Matter 3-7 June 2024, Strasbourg, France

Measurements of Hypernuclei Properties and Production at RHIC

Yuanjing Ji Lawrence Berkeley National Laboratory

Supported by U.S. DEPARTMENT OF ENERGY

Office of Science

Outline

- Introduction
- RHIC Beam Energy Scan II and STAR Detector
- Hypernuclei Intrinsic Properties
 - Lifetime, $^3_\Lambda {\rm H}\,B_\Lambda\,$ and ${\rm R_3}$
- Hypernuclei Production
 - Energy Dependence of dN/dy and $\langle p_T \rangle$ from 3-27 GeV Au+Au Collisions
 - Multiplicity Dependence from 200 GeV Ru+Ru/Zr+Zr Collisions
- Summary and Outlook

lightest hypernucleus

Hypernuclei and Hyperon-Nucleon (Y-N) Interaction

Hypernuclei -> probe to Y-N (Y-N-N) interaction

 Inner structure governed by interactions between nucleons (and hyperons)

Hypertriton ($^{3}_{\Lambda}$ H)

n

Hyperhydrogen-4 ($^{4}_{\Lambda}$ H) Hyperhelium-4 ($^{4}_{\Lambda}$ He)

Intrinsic Properties

- How tight they bind together
- How they decay: lifetime, branching ratio

Production mechanism

• How they form in heavy ion collisions

Y-N Interaction, EoS and Astrophysics

- Equation of State (EoS) in dense nuclear matter
 - The strangeness degree of freedom in EoS at high baryon density region
- High baryon density nuclear matter
 - e.g. low energy HIC, neutron stars

Laura Tolós, 03/06

SM2024

"Hyperon puzzle"

STAR Beam Energy Scan II (BES II)

- Collisions species: Au+Au
- Collider mode: $\sqrt{s_{NN}} = 7.7 27 \text{ GeV}$
- Fixed-Target mode: $\sqrt{s_{NN}} = 3.0 7.7 \text{ GeV}$

Fixed-Target Setup at STAR

Hypernuclei reconstruction at RHIC

Chenlu Hu, 05/06 Xiujun Li, 04/06

8

Anti-matter Hypernuclei

- STAR observed $\frac{4}{\Lambda}\overline{H}$ in 2023.
 - Benefit from high energy heavy ion collisions ($\mu_B \rightarrow 0$).
 - The heaviest observed antimatter nuclear and hypernuclear cluster to date.

Datasets used:

- 200 GeV collisions
 - Au+Au
 - Zr+Zr/Ru+Ru

SM2024

- 193 GeV collisions
 - U+U

Sevent Stand Stand

Measurements on Hypernuclei Intrinsic Properties

$^4_\Lambda H$ and $^4_\Lambda He$ Lifetimes

Xiujun Li, poster

A. Gal, EPJ Web Conf. 259, 08002 (2022)

*

• Isospin rule predicts:

$$\frac{\Gamma(^{4}_{\Lambda}\mathrm{He} \rightarrow {}^{4}\mathrm{He} + \pi^{0})}{\Gamma(^{4}_{\Lambda}\mathrm{H} \rightarrow {}^{4}\mathrm{He} + \pi^{-})} \approx \frac{1}{2}$$

- $\tau(^{4}_{\Lambda}H)/\tau(^{4}_{\Lambda}He) = 0.74 \pm 0.04$
- New data: ${}^{4}_{\Lambda}$ He = 214 ± 10 ± 10 ps
 - Shorter than $\tau(\Lambda)$ by 3σ
 - $\tau(^{4}_{\Lambda}\text{H})/\tau(^{4}_{\Lambda}\text{H}e) = 0.92 \pm 0.06$

$^{3}_{\Lambda}$ H Branching Ratio R_{3}

- Calculations propose that $^3_{\Lambda}{\rm H~R_3}$ may be sensitive to B_{Λ}
 - B_{Λ} : Λ separation energy
 - ${}^{3}_{\Lambda}\mathrm{H} B_{\Lambda} = \mathrm{M}(d) + \mathrm{M}(\Lambda) \mathrm{M}({}^{3}_{\Lambda}\mathrm{H})$

$$R_{3} = \frac{B.R.(^{3}_{\Lambda}H \rightarrow {}^{3}He\pi^{-})}{B.R.(^{3}_{\Lambda}H \rightarrow pd\pi^{-}) + B.R.(^{3}_{\Lambda}H \rightarrow {}^{3}He\pi^{-})}$$

STAR: $R_3 = 0.272 \pm 0.030 \pm 0.042$

• STAR new R₃ data favors small binding energy of hypertriton.

$^{3}_{\Lambda}$ H Λ -Separation Energy (B_{Λ})

- Λ separation energy (B_{Λ}) : ${}_{\Lambda}^{3}H B_{\Lambda} = M(d) + M(\Lambda) M({}_{\Lambda}^{3}H)$
 - Benchmark of Y-N interaction strength

Sevent 2024, Strasbourg, France

Measurements on Hypernuclei Production at RHIC

Models at mid-rapidity

Thermal model

• Hadron chemical freeze out T_{ch} and μ_B

•
$$\frac{dN}{d^3 p} \sim \exp(-\frac{E-\mu_B}{T})$$

• Assuming the conserved baryon entropy after hadron chemical freeze-out

Coalescence formation

- Baryons / nuclei very close in phase space (\vec{p}, \vec{r}) .
 - Any experimental evidence?
 - The role of *Y-N* interaction?

Fruitful Results from STAR BES II

- Utilizing BES II datasets, we measure:
 - ${}^{3}_{\Lambda}$ H p_T spectra, dN/dy, $\langle p_T \rangle$ in Au+Au collisions at $\sqrt{s_{NN}} = 3-27$ GeV
 - ${}^{4}_{\Lambda}$ H, ${}^{4}_{\Lambda}$ He p_T spectra, dN/dy, $\langle p_T \rangle$ in Au+Au collisions at $\sqrt{s_{NN}} =$ 3-3.5 GeV

Chenlu Hu, 05/06

Xiujun Li, 04/06

SM2024

Sevent Market State Stat

Energy Dependence of Hypernuclei Production

Energy Dependence of $^{3}_{\Lambda}$ H Production

 $^{3}_{\Lambda}$ H production yields reaches peak at around 3-4 GeV.

• Increase steeply from 27 to 3 GeV as $\sqrt{s_{NN}}$ goes lower

Xiujun Li, 04/06

SM2024

- Interplay between:
 - $\sqrt{s_{NN}} \downarrow$, baryon density \uparrow , yields \uparrow
 - $\sqrt{s_{NN}} \downarrow$, strangeness canonical suppression¹, yields \downarrow

Thermal-FIST, Coal.+UrQMD: T. Reichert et al, PRC 107, 014912 (2023) Pb+Pb: ALICE, PLB 754, 360 (2016) Au+Au: STAR, PRL 128, 202301 (2022)

Energy Dependence of $^{3}_{\Lambda}$ H Production

Thermal-FIST, Coal.+UrQMD: T. Reichert et al, PRC 107, 014912 (2023) Pb+Pb: ALICE, PLB 754, 360 (2016) Au+Au: STAR, PRL 128, 202301 (2022)

UrQMD + Instant coal.

- Describe data from 3-10 GeV
- Instant coalescence after hadron kinetic freeze-out
- Coalescence condition:
 - $|\overrightarrow{p_1} \overrightarrow{p_2}| < \Delta P, |\overrightarrow{r_1} \overrightarrow{r_2}| < \Delta R$

Xiujun Li, 04/06

Thermal-FIST model

- Hadron chemical freeze-out T and μ_B
- Strangeness canonical ensemble in low energies
- ~ 2 times larger than the data

$^{3}_{\Lambda}$ H/ Λ Compared to Thermal Model

Xiujun Li, 04/06 Yixuan Jin, 05/06

- Thermal model also over-predict ${}^{4}_{\Lambda}H$ and ${}^{4}_{\Lambda}He$ yields while JAM+coal. describes the data. ${}^{4}_{\Lambda}H^{*}(J^{+} = 1) \rightarrow {}^{4}_{\Lambda}H(J^{+} = 0) + \gamma$
- Evidence of the formation of ${}^{4}_{\Lambda}$ H and ${}^{4}_{\Lambda}$ He excited states in 3-4 GeV collisions.

Energy Dependence of $^{3}_{\Lambda}H \langle p_{T} \rangle$

- $^{3}_{\Lambda}$ H and $t \langle p_{T} \rangle < \langle p_{T} \rangle^{BW}$ at 3 GeV
- Hint of $^3_\Lambda {\rm H}$ and $t \, \langle p_T \rangle \! < \! \langle p_T \rangle^{BW} \! > 7.7 \; {\rm GeV}$
 - $\langle p_T \rangle^{BW}$: Blast-wave (BW) expectation calculated using kinetic freeze-out parameters from measured light hadron (π, K, p) spectra.

Xiujun Li, 04/06

SM2024

Blastwave function: $\frac{1}{2\pi p_T} \frac{d^2 N}{dp_T dy} \propto \int_0^R r dr m_T I_0\left(\frac{p_T \sinh \rho(r)}{T_{kin}}\right) \times K_1\left(\frac{m_T \cosh \rho(r)}{T_{kin}}\right)$

 $^{3}_{\Lambda}$ H and t might do not follow the same collective expansion as light hadrons.

Hypernuclei Collectivity versus Mass

Chenlu Hu, 05/06 Junyi Han, 04/06

• Hypernuclei $\langle p_T \rangle$ (and v_1) show linear mass scaling from 3 to 3.5 GeV in mid-rapidity.

Consistent with coalescence formation picture.

Sevent 2024, Strasbourg, France

Multiplicity Dependence of Hypernuclei Production

$^{3}_{\Lambda}$ H/ 3 He Production in Zr+Zr/Ru+Ru 200 GeV

calculation describes the data

— 0.102 (ALICE 2023)

S@M2024

Strangeness Population Factor

26

$$E_{A} \frac{\mathrm{d}^{3} N_{A}}{\mathrm{d} p_{A}^{3}} = B_{A} \left(E_{\mathrm{p,n}} \frac{\mathrm{d}^{3} N_{\mathrm{p,n}}}{\mathrm{d} p_{\mathrm{p,n}}^{3}} \right)^{A} \Big|_{\vec{p}_{\mathrm{p}} = \vec{p}_{\mathrm{n}} = \frac{\vec{p}_{A}}{A}}$$

- Direct connection to coalescence parameters B_A
- $S_3 vs. dN_{ch}/d\eta$: Possible insights to nuclei radius and coalescence mechanism

- No obvious p_T, rapidity and centrality dependence of S_A observed at 3 GeV
 - Evidence that B_A of light and hyper nuclei follow similar tendency versus p_T , rapidity and centrality

- No obvious multiplicity dependence within uncertainties
- Within uncertainties, coalescence calculations are consistent with the measured data
 - More precise data needed

STAR: arXiv:2310.12674; Science 328, 58-62 (2010) MUSIC + UrQMD + Coal.: arXiv:2404.02701 Multiplicity Dependence of S₃ at $\mu_B \rightarrow 0$ Dongsheng Li, 05/06 S^{M2024}

- Thermal-FIST with canonical ensemble fails to describe the data trend
 - Ratios have already canceled volume size and strangeness suppression factor

STAR: arXiv:2310.12674; Science 328, 58-62 (2010) Thermal-FIST: Com. Phys. Comm. 244, 295 (2019) PLB 785, 171 (2018)

T and μ_B from π /K/p spectra

System Size Dependence of S₃

Xiujun Li, 04/06 Dongsheng Li , 05/06

- Increasing trend observed in S₃ vs collisions energy.
- V. Vovchenko, PLB (2020) 135746
- Possibly due to stronger feed down contribution in lower energies.
- $S_3 vs. dN_{ch}/d\eta$: coalescence model describes the data within uncertainties.

Summary

New experimental data on:

- ${}^{3}_{\Lambda}$ H in 3.0 27 GeV Au+Au collisions
- ${}^{4}_{\Lambda}$ H, ${}^{4}_{\Lambda}$ He in 3.0 3.5 GeV Au+Au collisions
- $^{3}_{\Lambda}$ H in 200 GeV Zr+Zr/Ru+Ru collisions

- Experimental data support coalescence is a dominate mechanism of hypernuclei formation at mid-rapidity in heavy-ion collisions at RHIC.
- Hypernuclei **are not in equilibrium** at hadron chemical freeze-out at RHIC energies.

What's Next at RHIC?

Huge datasets from BES-II and 200 GeV Au+Au collisions at RHIC. - Enable measurements on both high μ_B and $\mu_B \rightarrow 0$ region.

³He/p and d/p from BES II

Yixuan Jin, 05/06

STAR, Phys. Rev. Lett. 130, 202301 (2023)

Strangeness Population Factor

S. Zhang et al, PLB 684, 224 (2010)

- S_A: Direct connection to coalescence parameters.
- Possible insights to nuclei radius and microscope picture of coalescence.

ALICE

● p–Pb, √s_{NN} = 8.16 TeV

• p-Pb, $\sqrt{s_{NN}} = 5.02 \text{ TeV}$

pp, $\sqrt{s} = 5$ TeV pp, $\sqrt{s} = 7 \text{ TeV}$

pp, $\sqrt{s} = 13 \text{ TeV}$ pp, $\sqrt{s} = 13$ TeV, HM

 10^{2}

Pb-Pb, √s_{NN} = 2.76 TeV Pb-Pb, $\sqrt{s_{NN}} = 5.02 \text{ TeV}$

 10^{3}

 $\langle \mathrm{d} \textit{N}_{\mathrm{ch}} / \mathrm{d} \eta_{\mathrm{lab}} \rangle_{|\eta_{\mathrm{lab}}| \, < \, 0.5}$

10

10°

10-1

10

10

10¹

ິ

×10⁻⁶

---- CSM, $T_{...} = 155$ MeV, $V_c = 3 dV/dy$

-- CSM, $T_{ob} = 155$ MeV, $V_{c} = dV/dy$

Coalescence two-body

Coalescence three-body

(³He + ³He) / (p + p)

10

5

10

 $dN_{ch}/d\eta$

10²

K. Jia. PLB 792 (2019) 132-137

Two-body COAL.

Three-body COAL.

10³

Near term question:

- Will we observe the unique behavior from hypernuclei that differ from light nuclei with more data?

Long term goals:

- Understanding the Y-N and three body interaction e.g. Y-N-N;

- Constrain on strangeness degree of freedom in EoS.

Experimental venue

- Further investigation on light hypernuclei
 - Production, e.g. kinetic freeze-out
 - Collectivity, e.g. v₂
 - Intrinsic properties
 - e.g. B_{Λ} , spin, B.R., lifetime etc.
- Search of double Λ hypernuclei and exotic hyperon states.
 - *Y Y* interaction
- Precise measurements on particle correlations.
 - $p \Lambda$, $d \Lambda$, $\Lambda \Lambda$ correlations, etc.

Future Perspective

Great potential for discovering unobserved hypernuclei in heavy ion collisions.

- A>=5 and Ξ hypernuclei
- Anti-hypernuclei
- Exotic strangeness states and double Λ hypernuclei
- etc

Thermal model: B. Dönigus, Eur. Phys. J. A 56:280 (2020) A. Andronic et al, PLB 697, 203 (2011)