Strange Resonances & Exotic States

Anders Knospe Lehigh University 6 June 2024

Outline

How can do we use resonances to study...

- Hadronic Phase
- Hadrochemistry
- Hadron Structure
- Flow & Vorticity

My own biased & incomplete selection of (mostly recent) results...

K^{*0} & ϕ

- Suppression of K^{*0}/K in central A+A collisions
 - Below p+p, p+Pb, and statistical-model predictions
 - Suggests that re-scattering is dominant over regeneration
- In contrast, ϕ/K not suppressed
 - Consistent w/ statistical models
 - Lifetime of $\phi \sim 10 \times$ longer than K^{*0}
 - Re-scattering effects not significant

K^{*0}: Intermediate Nuclei

- New STAR result: K^{*0}/K ratio in isobar (Ru+Ru & Zr+Zr) collisions at 200 GeV.
- Ratio decreases with increasing $\langle N_{part} \rangle$, consistent with other observations from STAR, including Au+Au and Cu+Cu.

- Also consistent with results in Xe+Xe collisions at 5.44 TeV from ALICE.
- Identities of the colliding nuclei don't matter: yield & suppression controlled by $\langle N_{part} \rangle$ or multiplicity

K^{*0} & ϕ : p_T Dependence

- K^*/K and ϕ/K ratios calculated in two different p_T ranges.
- Suppression of K*/K observed for 0.4<p_<2 GeV/c, but not 2<p_<4 GeV/c.
- No suppression of \u03c6/K for either range.
- Suggests that re-scattering is more important at low p_T.

*K**⁰ & *\phi*: EPOS

• EPOS:

- Scattering effects modeled with UrQMD
- Qualitatively describes falling K^{*0}/K ratio, largely flat ϕ/K
- Turning off UrQMD: K^{*0}/K described less well, little effect on ϕ/K

*K**⁰ & *\phi*: Models

- PHSD:
 - Re-scattering and absorption of decay products in hadronic phase
 - Suppression of K^{*0}/K
 - Better agreement with ALICE data than EPOS
- HRG PCE
 - Hadron Resonance Gas in Partial Chemical Equilibrium
 - Good agreement with ALICE measurement

K^{*±} & Models

- New measurements of K*±
 - Very similar behavior to K*0
 - K^{*±}/K ratio follows same trend as K^{*0}/K vs. multiplicity
- MUSIC [arXiv:2105.07539]
 - w/o SMASH afterburner: flat prediction
 - w/ SMASH afterburner: slower
 decrease in K*/K than measurement
- HRG PCE
 - Predicts decrease in *K**/*K* vs. multiplicity
 - Good agreement with measurement

K^{*0} & ϕ : Low Energy

- STAR Beam Energy Scan: measurements of K^{*0} & ϕ
- BES-I: K*/K and φ/K ratios consistent with results from full RHIC energy & LHC.
 - Apparent decrease of K^*/K with increasing $\langle N_{part} \rangle$, although uncertainties must be considered.
 - Little energy dependence.

12

 BES-II: little energy or centrality dependence in *\u00f6*/*K* ratio.

K^{*0}: Low Energy

- NA61/SHINE observes suppression w.r.t. p+p of K^{*0}/K ratios in Ar+Sc collisions at $\sqrt{s_{NN}} = 17$ and 12 GeV.
- But that suppression turns off for $\sqrt{s_{NN}}$ = 8.8 GeV

13

- Shorter lifetime for hadronic phase \rightarrow less influence of re-scattering.

14

Darticle Yield Ratio Many results, not just $K^* \& \phi$, to discuss longer-lived Let's collect the various yield ratios on • this summary plot: Yield ratios (scaled for visibility) vs. multiplicity Numerator & denominator particle should have same strangeness & baryon number 0.1 - From low-multiplicity p+p to central A+AResonance lifetimes decrease from top to bottom. $c\tau$ will be listed on left 0.01 Not all measurements shown. short-lived Mostly showing ALICE, but some STAR data will appear too. 10³ 10² 10^{4} 10 Compare to EPOS & GC Thermal Model dN $c\tau$ [fm]

• ϕ/K : little multiplicity dependence

 K*/K: decreases with increasing multiplicity, clear suppression in A+A

• ϕ/K : little multiplicity dependence

 K*/K: decreases with increasing multiplicity, clear suppression in A+A

ρ/*π*: decreases with increasing multiplicity, clear suppression in *A*+*A*

• ϕ/K : little multiplicity dependence

17

• $\Lambda(1520)/\Lambda$: clear suppression in A+A

 K*/K: decreases with increasing multiplicity, clear suppression in A+A

ρ/*π*: decreases with increasing multiplicity, clear suppression in *A*+*A*

- ϕ/K : little multiplicity dependence
- A(1520)/A : clear suppression in A+A

 K*/K: decreases with increasing multiplicity, clear suppression in A+A

ρ/*π*: decreases with increasing multiplicity, clear suppression in *A*+*A*

• ϕ/K : little multiplicity dependence

19

- A(1520)/A : clear suppression in A+A
- Σ*/Λ: flat in small systems, STAR observes no suppression in A+A, ALICE: weak suppression in A+A?
- K*/K: decreases with increasing multiplicity, clear suppression in A+A

ρ/*π*: decreases with increasing multiplicity, clear suppression in *A*+*A*

- ϕ/K : little multiplicity dependence
- A(1520)/A : clear suppression in A+A
- Σ*/Λ: flat in small systems, STAR observes no suppression in A+A, ALICE: weak suppression in A+A?
- K*/K: decreases with increasing multiplicity, clear suppression in A+A
- △/p: flat in small systems, EPOS predicts no suppression in A+A
- *ρ*/*π*: decreases with increasing multiplicity, clear suppression in *A*+*A*

- Several short-lived resonances are suppressed in central A+A collisions w.r.t. small systems thermal model
 - A suppression trend is sometimes also visible even in the small systems.
 - Suppression trends are at least qualitatively described by models that include descriptions of the hadronic phase (EPOS, MUSIC+SMASH, PHSD, ...)
- However, not all short-lived resonances are expected to be suppressed
- And the relationship between resonance lifetime and suppression is not simple

• Can estimate lower limit hadronic phase lifetime τ_{low} from exponential decay law, scaled by a Lorentz factor:

$$\left(\frac{K^*}{K}\right)_{\text{kin}} = \left(\frac{K^*}{K}\right)_{\text{chem}} \times \exp\left(-\frac{\tau_{\text{low}}}{\tau_{K^*}}\right)$$

- Assumes simultaneous freeze out of all particles, negligible regeneration
- Roughly linear increase in lifetime with cube root of multiplicity (proxy for system radius)
- Smooth transitions between systems
- Values range from 0 in small systems to 6 fm/c in large systems

• Can estimate lower limit hadronic phase lifetime τ_{low} from exponential decay law, scaled by a Lorentz factor:

$$\left(\frac{K^*}{K}\right)_{\text{kin}} = \left(\frac{K^*}{K}\right)_{\text{chem}} \times \exp\left(-\frac{\tau_{\text{low}}}{\tau_{K^*}}\right)$$

- Assumes simultaneous freeze out of all particles, negligible regeneration
- Same technique employed by NA61/SHINE to extract hadronic lifetime in Ar+Sc collisions.

- Lifetime at
$$\sqrt{s_{NN}}$$
 = 8.8 GeV near 0.

at SQM: B. Kozłowski

Hadrochemistry

Spherocity & ϕ

- The study observes that strangehadron production is suppressed in jet-like events.
 - Strangeness enhancement connected to underlying event and soft processes.
- For 0–10% highest mult. pp, split sample into spherocity classes.
- Calculate the double ratio: $\frac{(h/\pi)_{\text{spherocity classes}}}{(h/\pi)_{\text{spherocity integrated}}}$
- Double ratio increases for \varXi
- But not for φ : behaves like S=0 particle in this context.

ϕ Enhancement: NA61/SHINE

• The ϕ/π ratio increases w/ energy

- Ratio is higher in Ar+Sc & Pb+Pb collisions than in *p*+*p*.
- The ϕ/π ratio is higher than the K^{\pm}/π^{\pm} ratios at the same energies.

\overline comparent for the second s

- HADES, FOPI, & STAR measurements of ϕ/K around 3 GeV are greater than higher energy measurements \rightarrow canonical suppression of K
- Measurements can be used to estimate correlation radius r_c in CSM, but disagreement between r_c values from ϕ/K^- and ϕ/Ξ ratios.

28

φ: Low Energy

- UrQMD describes the observed behavior
 - Includes N^* resonances that decay to ϕ
- PHSD also describes the observed behavior
 - Introduces *T*-matrix approach and includes modified *K* mass as function of baryon density

Hadron Structure

30

Exotic Mesons

 Internal structures are unclear: "vanilla" meson, tetraquark, glueball, hybrid?

glueball

tetraquark

diquark-antidiquark molecule

 \overline{S}

 \overline{d}

$f_0(980)$

- Reconstructed via decay $f_0(980) \rightarrow \pi^+\pi^-$.
- ALICE *p*+*p*
 - Ratio $f_0(980)/\pi$ is underestimated by $\gamma_{\rm S}$ -CSM
 - Measured value disfavors the configuration with |S|=2 (particle is $s\bar{s}$)
- ALICE *p*+Pb
 - Ratio $f_0(980)/K^{*0}$ decreases with increasing multiplicity
 - Normalize ratio to low-multiplicity value:
 - $\gamma_{\rm S}$ -CSM predicts slow decrease w/ multiplicity for |S|=0
 - γ_{S} -CSM predicts slow increase w/ multiplicity for |S|=2
 - ALICE data favor |S|=0 (no strangeness) configuration
 - Also: measurements of nuclear modification factor do not exhibit Cronin enhancement → suggests that f₀(980) has 2-(anti)quark structure

$f_0(980)$

- CMS measures v_2 of $f_0(980)$ in p+Pb
- Then does NCQ scaling under different hypotheses for the number of valence partons inside the $f_0(980)$
 - "Vanilla" meson: n_q =2 ($q\bar{q}$)
 - Hybrid meson: n_q =3 ($q\bar{q}g$)
 - Tetraquark: $n_q=4$ ($q\bar{q}q\bar{q}$ or $K\bar{K}$ molecule)
 - Perform fit with n_q as a free parameter
- Preferred n_q value is near 2
 - n_q =3 excluded at 3.5 σ level
 - n_q =4 disfavored

32

"we find strong evidence that the $f_0(980)$ hadron is a normal quark-antiquark state."

*f*₁(1285)

• ALICE: $f_1(1285) \rightarrow K^0_S K^{\pm} \pi^{\mp}$ in p+p

- The $\gamma_{\rm S}$ -CSM preproduces the measured ϕ/π ratio under the |S|=2 assumption ($\phi = s\bar{s}$)
- The $\gamma_{\rm S}$ -CSM agrees better with ALICE measurement of $f_1(1285)/\pi$ ratio for |S|=0 assumption.

$a_0(980)^{\pm}$

• ALICE femtoscopy studies: measure correlation function of $K_S^0 K_S^0$ and $K_S^0 K^{\pm}$ pairs in *p*+*p*.

 $f_0(980) \to K_{\rm S}^0 K_{\rm S}^0$ $a_0(980)^{\pm} \to K_{\rm S}^0 K^{\pm}$

- Extract source radius R and correlation strength λ .
- No energy dependence.
- While *R* is same for both correlations, λ is significantly lower for $K_S^0 K^{\pm}$ pairs.
 - Suggests that $a_0(980)^{\pm}$ may be a tetraquark.

35

$K_0(700)^{\pm}$

• ALICE femtoscopy studies: measure correlation function $K_{\rm S}^0 \pi^{\pm}$ pairs in *p*+*p*.

 $K_0(700)^\pm \to K^0_{\rm S}\pi^\pm$

- Extract source radius R and correlation strength λ .
- Correlation strength λ is smaller than for $K_{\rm S}^0 K_{\rm S}^0$ and $\pi^{\pm} \pi^{\pm}$ pairs.
- And λ increases with increasing R → this behavior is expected if K₀(700)[±] is a tetraquark.

Flow & Vorticity

ϕ Meson v_2 at PHENIX

• PHENIX measures v_2 of ϕ mesons in Cu+Au and U+U collisions.

- v₂ values evolve with centrality and colliding species
 - Result for 0-50% U+U comparable to 30-80% Au+Au.
- But scaling by the empirical factor $\varepsilon N_{\text{part}}^{1/3}$ gives a single curve.
- Also measurements of ϕ nuclear modification $\frac{\varphi}{2}$

³⁸ Spin Alignment of Vector Mesons

- A+A collisions with non-zero impact parameter have large orbital angular momentum L̂, which is ⊥ reaction plane
- Leads to vorticity in QGP

 → global polarization of quarks
 → global polarization of hadrons (Λ, vector mesons)
- For $K^{*0} \& \phi$:
 - Measure distributions of decay products as function of θ^* : angle w.r.t. quantization axis (\hat{L}).
 - Fit to extract *ρ*₀₀, element of spin density matrix →

$$egin{aligned} rac{\mathrm{d}N}{\mathrm{d}(\cos heta^*)} \propto (1-
ho_{00}) + (3
ho_{00}-1)\cos^2 heta^* \
ho_{00} = rac{1}{3} \, \mathrm{means} \, \mathrm{no} \, \mathrm{polarization} \end{aligned}$$

³⁹ Spin Alignment of Vector Mesons

⁴⁰ Spin Alignment of Vector Mesons

- Preliminary STAR measurements in BES-II confirm $\rho_{00} > \frac{1}{3}$ deviation for ϕ .
- Rapidity dependence: deviations become larger with larger |y|.
 - Consistent with theoretical prediction.
 - Particles moving with larger |y| see larger field fluctuations in direction \perp motion.

Conclusions

- Resonances give us multiple ways to probe the properties of ion-ion collision systems (both large and small).
- Experimentalists have accumulated a useful collection of many different types of results on many different resonances.
- Theorists are continuing to come up with ingenious ways to describe these measurements and predict new things to search for.
- Looking ahead, improvements in detectors and accelerators will allow us to add new, rare resonances to the toolbox.
- Thanks to the many people and groups whose plots I used!
- Thanks to the organizers for giving me the opportunity to speak today!

Backup Material

$p-\phi$ interaction

- *φ* proposed as mediator for repulsive hyperon-hyperon force
 - Important for neutron star EoS
- Attraction between p & \u03c6 in pp collisions (first measurement)
- Scattering parameters extracted
- Extracted Yukawa-type coupling constant for $N-\phi$ interaction

 $g_{N-\phi} = 0.14 \pm 0.03 \text{ (stat.)} \pm 0.02 \text{ (syst.)}$

- ALICE: Observation seems to be incompatible with bound state.
- Subsequent studies suggest a possible bound state in ${}^2S_{1/2}$ channel ($E_{\rm B}$ of 10–70 MeV).
 - At SQM: K. Kuroki (5 June)

44

$\chi_{c1}(3872)$

- Long-standing questions about structure of $\chi_{c1}(3872)$.
- LHCb observes gradual decrease of $\chi_{c1}(3872)/\psi(2S)$ ratio with increasing multiplicity.
 - Consistent w/ compact tetraquark structure
 → dissociation stronger as mult. increases.
 - Not enough coalescence in *p*+*p*.
- LHCb observes enhancement of *χ*_{c1}(3872) in *p*+Pb.
 - Different behavior than $\psi(2S)$.
 - Also consistent w/ compact tetraquark structure.
 - Greater importance of coalescence in this collision system.

K^{*0} & *\phi*: Energy Dependence

 These ratios have also been measured by STAR in p+p, d+Au, Cu+Cu, & Au+Au

- STAR also observes smooth transitions between collision systems → resonance yield ratios controlled by multiplicity
- No clear energy dependence for RHIC up to LHC energies
- One possible exception: STAR *\u03c6/K* measurements are systematically higher than ALICE in *A*+*A* collisions

K^{*0} & ϕ : Small Systems

 Measurements of K^{*0} & φ vs. multiplicity in p+p and p+Pb collisions

- Intriguing suggestion of K^{*0} suppression in highmultiplicity p+p, p+Pb
- Could be hint of hadronic phase with non-zero lifetime in small systems
- Smooth transitions between different collision systems as function of multiplicity
 - Resonance yields controlled by system size (as seen for yields of longer-lived hadrons)
- For p+p at 13 TeV: comparisons to various
 Models: pp 13 TeV
 PYTHIA6 Perugia 2011
 - EPOS-LHC provides best description of K*/K -- PYTHIA8 Monash 2013 0
 - -PYTHIA8 Without CR
 - -EPOS -CSM
 - −DIPSY (*T*_{ch}=156 MeV)

Short-Lived: ρ^0

- A wide resonance → complicated to fit
- Like K*, observe decreasing trend with increasing multiplicity
 - Suppression of $\rho^{0/\pi}$ in central Pb+Pb collisions
 - And hint of decrease in *p*+Pb
- EPOS

- EPOS w/o UrQMD: ρ^{0}/π decreases only weakly
- EPOS w/ UrQMD: good qualitative agreement, but systematically above ALICE measurement
- Consistent with resonance suppression in hadronic phase, effects of re-scattering dominant over regeneration

Short-Lived: A(1520)

- Suppression of A(1520)/A in central A+A w.r.t. p+p, p+Pb, and thermal models
- Flat (or increasing w/ multiplicity) for small systems
- No energy dependence for RHIC→LHC
- Model Comparisons:
 - Qualitatively described by EPOS
 - Decent description by MUSIC+SMASH
 - PCE, $\gamma_{\rm S}$ CSM do not describe the suppression
 - Or suppression of *p*-wave baryons
 [A(1520)] in recombination model
 [PRC 74 061901(R) (2006)]

Intermediate Lifetime: Ξ^{*0}

• In Pb+Pb:

- No significant centrality dependence
- Flat trend qualitatively described by EPOS and SHARE3
- Systematically lower in (mid-)central
 Pb+Pb than in *p*+*p* and *p*+Pb
- Below thermal model
- Weak suppression?
- In p+p and p+Pb: No clear multiplicity dependence

Short Lifetimes: $\Sigma^{*\pm}$

 STAR observes flat Σ*±/Λ ratio from p+p & d+Au to Au+Au collisions

- ALICE: no multiplicity dependence in small systems
- ALICE has not reported final Σ*±/Λ ratio in Pb+Pb yet.
 - The $\Sigma^{*\pm}/\pi^{\pm}$ ratio deviates below thermal model for central collisions
 - But shows only weak centrality dependence in Pb+Pb
 - Does re-scattering balance out strangeness enhancement?
- EPOS overpredicts the value, but can describe the shape
- PYTHIA8 + Angantyr also describes the shape

Short Lifetimes: **A**

• Difficult to measure (background)

- STAR observes no clear multiplicity dependence in Δ⁺⁺/p ratio in p+p and d+Au collisions
- EPOS predicts no significant suppression as function of multiplicity (at LHC energies)
- Would be an interesting missing piece to fill in if we could do it.

 Use HRG PCE model to fit measured yields of π[±], K[±], p, φ, & K^{*0}

- Extract kinetic freeze-out temperature in Pb+Pb and Xe+Xe collisions at LHC energies
- Values range from 90 to 130 MeV, somewhat lower than T_{chem}
- *T*_{kin} decreases as collision centrality increases, consistent with a longer-lived hadronic phase
- Values for the two collision systems are consistent for similar multiplicities.

- Procedure can be extended to other particles [K^{*±}, ρ⁰, Λ(1520)]
- For each class of particle, the lifetime increases smoothly with multiplicity

53

 Earlier study estimated hadronic phase lifetime in EPOS:

ϕ Enhancement

- Strange particle production increases with increasing system size
- And particles containing more s squarks are enhanced more.
- How does the ϕ meson ($s\bar{s}$) fit?
 - Does it behave like an S=0 particle?
 - Or S=2? Or some effective strangeness between 0 & 2?
 - Different theoretical treatments (canonical suppression, color ropes, ...) may give different answers.

ϕ Enhancement

The *φ*/*π* ratio is not flat → *φ* does not seem to behave like S=0 particle.

- Models where the strangeness evolution is due to canonical suppression at low multiplicity predict a flat ratio.
- *φ*/K ratio is pretty flat, although φ may be enhanced slightly more than K.
 - Canonical suppression of $K \rightarrow$ higher ϕ/K ratio at low mult.: inconsistent w/ data.
- ϕ is enhanced less than Ξ (S=2).
- So does the ϕ have an "effective strangeness" between 1 and 2?
 - A recent spherocity study by ALICE may complicate the interpretation...

Spherocity

- Spherocity S₀^{p_T=1} quantifies extent to which a given event is
 - Azimuthally isotropic ($S_0^{p_T=1}=1$) or
 - Back-to-back "jet-like" ($S_0^{p_T=1}=0$).
- ALICE performed a study of hadron production (π, K, p, φ, K*, Λ, Ξ) in high-multiplicity pp collisions.
 - JHEP **05** 184 (2024)
 - The resonances are part of a comprehensive study → see A. F.
 Nassirpour's talk (4 June) for full details.
 - But let's look at one ϕ result...

