

Spin Polarization in Relativistic Heavy Ion Collisions

Xu-Guang Huang Fudan University, Shanghai

June 06, 2024 @ Strasbourg, France

Spin as a probe of quark gluon plasma

• Electronics vs. spintronics in condensed matter physics (and industry)

- "Electronics" vs. "spintronics" in heavy-ion collisions?
 - Charged hadrons multiplicity N_{ch} Global spin polarization $P_{y,x,z}$
 - Harmonic flows of charges $v_1, v_2, ...$

- Harmonic flows of spin $f_{2:x,v,z}$, ...

Spin as a probe of quark gluon plasma

• What manipulate spin?

Many features of the partonic medium can be extracted from hadron spin polarization measurements

Spin polarization and spin density matrix

- Spin state of particle ensemble can be described by the spin density matrix
 - Spin-1/2 particle (3 parameters: vector polarization)

$$\rho_{1/2} = \frac{1}{2} + \frac{1}{2} \mathbf{P}_{1/2} \cdot \boldsymbol{\sigma}$$

• Spin-1 particle (8 parameters: 3 for vector and 5 for tensor polarizations)

$$\rho_1 = \frac{1}{3} + \frac{1}{2} \mathbf{P}_1 \cdot \mathbf{S} + \sum_{m=-2}^{2} (-1)^m \mathbf{T}_{2,-m} S_{2,m}$$

Spin polarization and spin density matrix

- Spin state of particle ensemble can be described by the spin density matrix
 - Spin-1/2 particle (3 parameters: vector polarization)

• Spin-1 particle (8 parameters: 3 for vector and 5 for tensor polarizations)

$$\rho_{1} = \frac{1}{3} + \frac{1}{2} P_{1} \cdot S + \sum_{m=-2}^{2} (-1)^{m} T_{2,-m} S_{2,m}$$

$$\stackrel{\bar{p}_{K^{+}}}{\longrightarrow} \stackrel{\hat{p}_{K^{-}}}{\longrightarrow} \frac{1}{N} \frac{dN}{d\Omega^{*}} = \frac{1}{4\pi} \left(1 - \sqrt{\frac{24\pi}{5}} \sum_{m=-2}^{2} (-1)^{m} T_{2,-m} Y_{2,-m}(\theta^{*},\phi^{*}) \right)$$

$$\stackrel{\phi \to K^{+} + K^{-}}{\longrightarrow}$$

Global spin polarization: Experiments

- Along global angular momentum direction
- Decreasing at higher energies
- Consistent with zero at LHC energies
- Λ and $\overline{\Lambda}$ consistent within error bar

See talk by Hu on Wed. for BES II data 6

Global spin polarization: Theory

- Global polarization is (mainly) due to global angular momentum (AM)
- Vorticity: a bridge connecting initial AM and final global polarization

An estimate for static spin:
$$P = \frac{\langle s \rangle}{s} = \frac{1}{sZ} \operatorname{Tr} \left(s e^{-\beta H + \beta s \cdot \omega} \right) \approx \frac{s+1}{3} \frac{\omega}{T}$$

Covariant extension for spin-1/2: (Becattini etal 2013, Fang-Pang-Wang-Wang 2016, Liu-Mameda-Huang 2020)

$$P^{\mu}(p) = -\frac{1}{8m} \epsilon^{\mu\nu\rho\sigma} p_{\nu} \frac{\int d\Sigma_{\lambda} p^{\lambda} f'(x,p) \varpi_{\rho\sigma}(x)}{\int d\Sigma_{\lambda} p^{\lambda} f(x,p)} + O(\varpi^2)$$

- Valid at global equilibrium in lab frame. f(x, p) is Fermi-Dirac distribution
- Thermal vorticity $\varpi_{\rho\sigma} = \left(\frac{1}{2}\right) \left(\partial_{\sigma}\beta_{\rho} \partial_{\rho}\beta_{\sigma}\right), \beta_{\mu} = u_{\mu}/T$
- Spin polarization is enslaved to thermal vorticity, not dynamical
- When magnetic field is present: $\omega \Rightarrow \omega + s^{-1} \mu_H B$ and $\varpi_{\rho\sigma}^{\perp} \Rightarrow \varpi_{\rho\sigma}^{\perp} 2\beta \mu_H F_{\rho\sigma}^{\perp}$

Global spin polarization: Theory

Theory based on thermal vorticity

(Li-Pang-Wang-Xia 2017; Sun-Ko 2017; Wei-Deng-Huang 2019; Xie-Wang-Csernai 2017; Karpenko-Becattini 2016)

(See also: Sun-Ko etal 2019; Xie-Wang-Csernai etal 2018-2021; Ivanov etal 2017-2019; Liao etal 2018-2021; Deng-Huang-Ma 2021; Fu etal 2021; Pu etal 2022;)

Local spin polarization

• Spin harmonic flows:

$$\frac{dP_{y,z}}{d\phi} = \frac{1}{2\pi} [P_{y,z} + 2f_{2y,z}\sin(2\phi) + 2g_{2y,z}\cos(2\phi) + \cdots]$$

1) longitudinal polarization vs ϕ

2) Transverse polarization vs ϕ

Failure of global equilibrium ansatz in describing local spin polarization

Spin at local equilibrium

• A local Gibbs state for spin-1/2 fermions* (Zubarev etal 1979, Van Weert 1982, Becattini etal 2013)

$$\hat{\rho}_{\mathrm{LG}} = \frac{1}{Z_{\mathrm{LG}}} \exp \left\{ -\int_{\Xi} d\Xi_{\mu}(y) \begin{bmatrix} \hat{\Theta}^{\mu\nu}(y)\beta_{\nu}(y) - \frac{1}{2}\hat{\Sigma}^{\mu\rho\sigma}(y)\mu_{\rho\sigma}(y) \end{bmatrix} \right\}$$

Thermal flow vector Spin potential

• A spin Cooper-Frye formula (Liu-Huang 2021; Buzzegoli 2021)

$$\bar{S}_{\mu}(p) = \bar{S}_{5\mu}(p) - \frac{1}{8\int d\Xi \cdot p \ n_F} \int d\Xi \cdot p \frac{n_F(1-n_F)}{E_p} \bigg\{ \epsilon_{\mu\nu\alpha\beta} p^{\nu} \mu^{\alpha\beta} + 2 \frac{\varepsilon_{\mu\nu\rho\sigma} p^{\rho} n^{\sigma}}{p \cdot n} \big[p_{\lambda}(\xi^{\nu\lambda} + \Delta \mu^{\nu\lambda}) + \partial^{\nu} \alpha \big] \bigg\}$$

$$\xi_{\mu\nu} = \frac{1}{2} \left(\partial_{\mu}\beta_{\nu} + \partial_{\nu}\beta_{\mu} \right) \quad : \text{Thermal shear tensor} \qquad \alpha = -\beta\mu \quad : \text{Baryon chemical potential}$$

$$\Delta \mu_{\rho\sigma} = \mu_{\rho\sigma} - \varpi_{\rho\sigma} \quad \text{with} \quad \varpi_{\rho\sigma} = \frac{1}{2} \left(\partial_{\sigma}\beta_{\rho} - \partial_{\rho}\beta_{\sigma} \right) \quad \text{thermal vorticity tensor}$$

$$\bar{S}_{\mu}^{\mu} \text{ is the polarization induced by finite chirality}$$

* Obtained by maximizing Von Neumann entropy under local constraints of stress and angular momentum tensors: $s = -\text{Tr}(\hat{\rho}\ln\hat{\rho})$ with $n_{\mu}\text{Tr}(\hat{\rho}\,\hat{\Theta}^{\mu\nu}) = n_{\mu}\Theta^{\mu\nu}$ and $n_{\mu}\text{Tr}(\hat{\rho}\,\hat{\Sigma}^{\mu\rho\sigma}) = n_{\mu}\Sigma^{\mu\rho\sigma}$ ¹⁰

Thermal shear contribution

Recall

$$S^{\mu}(x,p) = -\frac{1}{E_p} \left[\frac{1}{4} \epsilon^{\mu\nu\alpha\beta} p_{\nu}\mu_{\alpha\beta} + \frac{1}{2p \cdot n} \epsilon^{\mu\nu\alpha\beta} \left(\xi_{\nu\lambda} + \Delta\mu_{\nu\lambda} \right) n_{\beta} p_{\alpha} p^{\lambda} \right] n_F (1-n_F) + O(\mu_{\rho\sigma}^2, \partial^2)$$

• Relax the global equilibrium condition (1) (Becattini-Buzzegoli-Palermo 2021, Liu-Yin 2021)

$$\partial_{\mu}\beta_{\nu} + \partial_{\nu}\beta_{\mu} \neq 0$$

$$\mu_{\rho\sigma} = \varpi_{\rho\sigma} = \frac{1}{2} \left(\partial_{\sigma} \beta_{\rho} - \partial_{\rho} \beta_{\sigma} \right)$$

(Becattini-Buzzegoli-Palermo-Inghirami-Karpenko 2021)

(See also Hidaka-Pu-Yang 2018; Yi-Pu-Yang 2021; Florkowski-Kumar-Mazeliauskas-Ryblewski 2021; Sun-Zhang-Ko-Zhao 2021; Alzhrani-Ryu-Shen 2022; Lin-Wang 2022; Jiang-Wu-Cao-Zhang 2023;)

Temperature vorticity as spin potential

Recall

$$S^{\mu}(x,p) = -\frac{1}{E_p} \left[\frac{1}{4} \epsilon^{\mu\nu\alpha\beta} p_{\nu}\mu_{\alpha\beta} + \frac{1}{2p \cdot n} \epsilon^{\mu\nu\alpha\beta} \left(\xi_{\nu\lambda} + \Delta\mu_{\nu\lambda}\right) n_{\beta} p_{\alpha} p^{\lambda} \right] n_F (1-n_F) + O(\mu_{\rho\sigma}^2, \partial^2)$$

• Relax the global equilibrium condition (2) (Wu-Pang-Huang-Wang 2019)

$$\partial_{\mu}\beta_{\nu} + \partial_{\nu}\beta_{\mu} = 0 \qquad \qquad \mu_{\rho\sigma} = \frac{1}{2T^2} \left[\partial_{\sigma}(Tu_{\rho}) - \partial_{\rho}(Tu_{\sigma})\right]$$

(See also Florkowski-Kumar-Ryblewski-Mazeliauskas 2019)

Discussion 1: Pseudo-gauge ambiguity

• The pseudo-gauge ambiguity

• The local equilibrium density operator is, however, changed

$$\begin{split} \hat{\rho}_{\rm LG} &= \frac{1}{Z_{\rm LG}} \exp\left\{-\int d\Xi_{\mu} \left[\hat{\Theta}^{\mu\nu}\beta_{\nu} - \frac{1}{2}\hat{\Sigma}^{\mu\rho\sigma}\mu_{\rho\sigma}\right]\right\} \\ &\to \hat{\rho'}_{\rm LG} = \frac{1}{Z'_{\rm LG}} \exp\left\{-\int d\Xi_{\mu} \left[\hat{\Theta}^{\mu\nu}\beta_{\nu} - \frac{1}{2}\hat{\Sigma}^{\mu\rho\sigma}\mu_{\rho\sigma} - \frac{1}{2}(\varpi_{\lambda\nu} - \mu_{\lambda\nu})\Phi^{\mu\lambda\nu} - \xi_{\lambda\nu}\Phi^{\lambda\mu\nu}\right]\right\} \end{split}$$

(Becattini-Florkowski-Speranza 2019)

Discussion 1: Pseudo-gauge ambiguity

- The spin Cooper-Frye formula is thus pseudo-gauge dependent
- It is possible to eliminate thermal vorticity and shear terms completely

(Liu-Huang 2021; Buzzegoli 2021)

$$\bar{S}_{\mu}(p) = -\frac{1}{8\int d\Xi \cdot p \ n_F} \int d\Xi \cdot p \frac{n_F(1-n_F)}{E_p} \left[\epsilon_{\mu\nu\alpha\beta} p^{\nu} \mu^{\alpha\beta} \right]$$

• Thus the connection between measured spin polarization and its "sources" is ambiguous (more observables are needed)

Discussion 2: Dissipative effects

• Dissipative contributions to spin polarization (Full results not known yet)

$$\begin{split} \widehat{\rho} &= \frac{1}{Z} \exp \left[\underbrace{-\int_{\Sigma} \mathrm{d} \Sigma_{\mu} \left(\widehat{T}^{\mu\nu} \beta_{\nu} - \zeta \widehat{j}^{\mu} - \frac{1}{2} \Omega_{\lambda\nu} \widehat{S}^{\mu\lambda\nu} \right)}_{\widehat{\rho}_{\mathrm{LE}}(t) \ at \ \Sigma} + \underbrace{\int_{\Omega} \mathrm{d} \Omega \ \widehat{T}^{\mu\nu}_{S} \xi_{\mu\nu} + \widehat{T}^{\mu\nu}_{A} (\Omega_{\mu\nu} - \varpi_{\mu\nu}) - \frac{1}{2} \widehat{S}^{\mu\lambda\nu} \nabla_{\mu} \Omega_{\lambda\nu}}_{\mathrm{Dissipative Corrections}} \right] \\ \Pi^{\mu}(p) &= \frac{1}{2\mathcal{N}} \int \mathrm{d} \Sigma_{\lambda} p^{\lambda} f_{0p} \left[-\frac{\hbar}{2m} \widetilde{\Omega}^{\mu\rho} \left(E_{p} u_{\rho} + p_{\langle \rho \rangle} \right) + \left(g^{\mu}_{\nu} - \frac{p_{\langle \nu \rangle}}{E_{p}} u^{\mu} \right) \left(\chi_{\mathfrak{p}} \mathfrak{p}^{\langle \nu \rangle} - 6 \chi_{\mathfrak{n}} \mathfrak{q}^{\rho\nu}_{\rho} + \chi_{\mathfrak{z}} \mathfrak{z}^{\nu\alpha} p_{\langle \alpha \rangle} \right) \\ &+ \chi_{\mathfrak{q}} \mathfrak{q}^{\langle \nu \rangle \alpha\beta} p_{\langle \alpha} p_{\beta \rangle} \right) \end{split}$$
(Shi-Gale-Jeon 2020; Weickgenannt etal 2022; Wang-Lin 2022)

• Could appear at $O(\partial)$, equally important for phenomenological application

$$\begin{split} \partial_{\mu}s^{\mu} &= \left(T_{S}^{\mu\nu} - T_{S(\text{LE})}^{\mu\nu}\right)\xi_{\mu\nu} - \left(j^{\mu} - j_{\text{LE}}^{\mu}\right)\partial_{\mu}\zeta + \left(T_{A}^{\mu\nu} - T_{A(\text{LE})}^{\mu\nu}\right)\left(\Omega_{\mu\nu} - \varpi_{\mu\nu}\right) \\ &- \frac{1}{2}\left(S^{\mu\lambda\nu} - S_{\text{LE}}^{\mu\lambda\nu}\right)\partial_{\mu}\Omega_{\lambda\nu} \\ \varpi_{\mu\nu}: \text{ is the thermal vorticity} \end{split}$$

See talks by Daher on Wed. and Palermo on Wed.

- Suffer from pseudo-gauge ambiguity
- Bulk viscosity affects longitudinal polarization strongly

(Becattini-Daher-Sheng 2024; Palermo etal 2024; Banerjee etal 2024) ¹⁵

Discussion 3: Second-order contribution

• In practice, the gradient of thermodynamic quantities may not be tiny in the "most vortical fluid", and thus second-order contribution is practically important

$$S^{(2)\mu} = S^{(2)\mu}_{\text{lin}} + S^{(2)\mu}_{\text{quad}}$$

(Non-dissipative contribution)

$$S_{\rm lin}^{(2)\mu}(p) = \frac{1}{4m(p^0)^2 N} \int d\Sigma \cdot p_+ n_F(x,p) \left[1 - n_F(x,p)\right] \left(y_{\Sigma}^0(0) - x^0\right) \\ \times \hat{t}_{\alpha} p_{\rho} \left[\epsilon^{\mu\sigma\alpha\rho} p^{\lambda} p^{\nu} \partial_{\sigma} \xi_{\nu\lambda} + \left(\frac{1}{2}p^{\alpha} \epsilon^{\mu\nu\lambda\rho} - \epsilon^{\mu\alpha\lambda\rho} p^{\nu}\right) p^{\sigma} \partial_{\sigma} \varpi_{\nu\lambda} \right. \\ \left. - \epsilon^{\mu\sigma\alpha\rho} p^{\lambda} \partial_{\sigma} \partial_{\lambda} \zeta + \frac{1}{2} \epsilon^{\alpha\nu\lambda\sigma} \partial^{\rho} (\Omega_{\nu\lambda} - \varpi_{\nu\lambda}) (p^{\mu} p_{\sigma} - m^2 g_{\sigma}^{\mu}) \right] .$$

$$\begin{split} S_{\text{quad}}^{(2)\mu}(p) &= \frac{1}{2\int d\Sigma \cdot p_{+} \text{tr} \left[W^{(0)}(x,p) \right]} \int d\Sigma \cdot p_{+} \frac{\left[1 - 2n_{F}(x,p) \right] \text{tr} \left[\gamma^{\mu} \gamma^{5} W^{(1)}(x,p) \right] \text{tr} \left[W^{(1)}(x,p) \right]}{\left[1 - n_{F}(x,p) \right] \text{tr} \left[W^{(0)}(x,p) \right]} \\ &- \frac{1}{2} \left\{ \frac{\int d\Sigma \cdot p_{+} \text{tr} \left[\gamma^{\mu} \gamma^{5} W^{(1)}(x,p) \right]}{\int d\Sigma \cdot p_{+} \text{tr} \left[W^{(0)}(x,p) \right]} \right\} \left\{ \frac{\int d\Sigma \cdot p_{+} \text{tr} \left[W^{(1)}(x,p) \right]}{\int d\Sigma \cdot p_{+} \text{tr} \left[W^{(0)}(x,p) \right]} \right\} \end{split}$$

See talk by Sheng on Wed.

Discussion 4: Dynamics of spin polarization

• Give spin potential or spin polarization dynamics

Spin hydrodynamics: Fluid velocity, temperature, and spin density evolve together

Spin kinetic theory: Particle and spin phase-space distribution functions evolve together

• A lot of theoretical progress since 2019

Reviews: Hidaka-Pu-Wang-Yang 2022; Hattori-Hongo-Huang 2022; Pu-Huang 2023; Becattini-Buzzegoli-Niida etal 2024

Numerical simulation are strongly needed.

Discussion 5: Very low energies

• Vorticity and global spin polarization expected to be vanishing near collision threshold

• Not seen in data by STAR@RHIC 2021, HADES@GSI 2021 down to 2.4 GeV

- AM is transferred to Λ spin more efficiently at lower energies?
- Further studies @ FAIR, NICA, HIAF?

Discussion 6: small system

- Similar magnitude and trend with AA
- Hydrodynamic collectivity?
- Gluonic initial condition?
- Polarizing Fragmentation Functions?

See talk by Li on Wed.

• Recall that the spin density matrix of a spin-1 particle (e.g. ϕ meson):

$$\rho^{V} = \begin{pmatrix} \rho_{11} & \rho_{10} & \rho_{1-1} \\ \rho_{01} & \rho_{00} & \rho_{0-1} \\ \rho_{-11} & \rho_{-10} & \rho_{-1-1} \end{pmatrix}$$

• In recombination process $q + \overline{q} \rightarrow \phi$ (Liang-Wang 2004)

$$\rho_{00} = \frac{1 - P_q P_{\bar{q}}}{3 + P_q P_{\bar{q}}} \approx \frac{1}{3} - \frac{4}{9} P_q P_{\bar{q}}$$

• The results of Λ global polarization suggest $P_q \approx P_{\bar{q}} \sim O(10^{-2})$

Expectation: spin alignment parameter
$$\rho_{00} - \frac{1}{3} \sim O(10^{-4})$$

- Spin quantization is along global angular momentum direction
- ϕ decreasing at higher energies, similar with Λ global polarization
- Non-monotonic at tens of GeV. Critical phenomenon?
- Puzzle: ϕ -meson $\rho_{00} > 1/3$ and big
- Puzzle: K^{*0} spin alignment consistent with zero

- J/ ψ and D^{*+} seem to follow same pt trend at 5.02 TeV
- No explicit energy and rapidity dependence for J/ψ
- High-pt $ho_{00} > 1/3$ and big
- Puzzle: Low-pt J/ $\psi \rho_{00} < 1/3$ and significant for both RHIC and LHC

 ϕ -meson $\rho_{00} \approx \frac{1}{2} + C_{\Lambda} + C_{B} + C_{S} + C_{F} + C_{L} + C_{H} + C_{\varphi} + C_{g}$

Physics Mechanisms	ρ ₀₀
$\mathbf{c}_{\mathbf{\Lambda}}$: Quark coalescence + vorticity ^[1]	< 1/3 , magnitude $\sim 10^{-4}$
c _B : Quark coalescence + EM-field ^[1]	> 1/3, magnitude ~ 10 ⁻⁴
c _s : Medium induced vector meson spectrum spliting ^[2]	> or < 1/3, magnitude unclear
c_F : Quark fragmentation ^[3]	> 1/3, magnitude ~ 10 ⁻⁵
c_L: Local spin alignment ^[4]	< 1/3, magnitude $\sim 10^{-2}$
с_н: Second order hydro fields ^[5]	> or <1/3, magnitude unclear
\mathbf{c}_{φ} : Vector meson field ^[6]	> 1/3, magnitude can fit to data
c _g : Fluctuating glasma fields ^[7]	<1/3, magnitude unclear

[1]. Liang et. al., Phys. Lett. B 629, (2005); Yang et. al., Phys. Rev. C 97, 034917 (2018); Xia et. al., Phys. Lett. B 817, 136325 (2021); Beccattini et. al., Phys. Rev. C 88, 034905 (2013). [2]. Liu and Li, arxiv:2206.11890; Sheng et. al., Eur. Phys. J. C84, 299 (2024); Wei and Huang, Chin.Phys.C47, 104105 (2023); [3]. Liang et. al., Phys. Lett. B 629, (2005). [4]. Xia et. al., Phys. Lett. B 817, 136325 (2021); Gao, Phys. Rev. D 104, 076016 (2021). [5]. Kumar, Yang, Gubler, Phys.Rev.D109, 054038(2024); Gao and Yang, Chin.Phys.C48, 053114 (2024); Zhang, Huang, Becattini, Sheng, 2024. [6]. Sheng et. al., Phys. Rev. D 101, 096005 (2020); Phys. Rev. D 102, 056013 (2020); Phys Rev. Lett. 131, 042304 (2023). [7]. Muller and Yang, Phys. Rev. D 105, L011901 (2022); Kumar et.al., Phy. Rev. D108, 016020 (2023).

See talk by Yang on Wed.

• Quark polarization fluctuation and ϕ spin alignment

$$\langle P_q P_{\bar{q}} \rangle \neq \langle P_q \rangle \langle P_{\bar{q}} \rangle \qquad \Longrightarrow \qquad \rho_{00} = \frac{1 - \langle P_q P_{\bar{q}} \rangle}{3 + \langle P_q P_{\bar{q}} \rangle} \approx \frac{1}{3} - \frac{4}{9} \langle P_q P_{\bar{q}} \rangle$$

• If a ϕ field exists, s and \bar{s} feel a "strangeness" vector field, just like EM field

$$\rho_{00}(x,\mathbf{k}) \approx \frac{1}{3} - \frac{4g_{\phi}^2}{m_{\phi}^2 T_{\mathbf{h}}^2} C_1 \left[\frac{1}{3} \mathbf{B}_{\phi}' \cdot \mathbf{B}_{\phi}' - (\boldsymbol{\epsilon}_0 \cdot \mathbf{B}_{\phi}')^2 \right] - \frac{4g_{\phi}^2}{m_{\phi}^2 T_{\mathbf{h}}^2} C_2 \left[\frac{1}{3} \mathbf{E}_{\phi}' \cdot \mathbf{E}_{\phi}' - (\boldsymbol{\epsilon}_0 \cdot \mathbf{E}_{\phi}')^2 \right]$$

• Suitably choosing these strangeness field fluctuation can well explain data

(Sheng et. al., 2020, 2022, 2023)

- Does such mesonic field exist?
- Need other independent observables to check

Local spin alignment

• Local spin alignment

More significant at higher energies

Central collisions

 $\mathbf{P}^{q,\bar{q}} = (P_x^{q,\bar{q}}, P_y^{q,\bar{q}}, P_z^{q,\bar{q}})$

(b)

Quark spin density matrix:

$$\rho^{q,\bar{q}} = \frac{1}{2} \begin{pmatrix} 1 + P_y^{q,\bar{q}} & P_z^{q,\bar{q}} - iP_x^{q,\bar{q}} \\ P_z^{q,\bar{q}} + iP_x^{q,\bar{q}} & 1 - P_y^{q,\bar{q}} \end{pmatrix}$$

More significant at higher energies

Local spin alignment

• Vector meson spin density matrix element

(Xia-Li-Huang-Huang 2020)

More experimental verification of this scenario is needed

1) Measure azimuthal angle dependence

2) Measure ho_{00} w.r.t other plane, e.g., yz plane

Summary

Thank you

Discussions: Hydrodynamic benchmark

• Relativistic vorticities

$$\rho_{rs}(\mathbf{k}) = \frac{\int_{\Sigma_{\rm FO}} d\Sigma \cdot k \, f_{rs}(x,k)}{\sum_r \int_{\Sigma_{\rm FO}} d\Sigma \cdot k \, f_{rr}(x,k)}$$

• Spin dependent distribution function

$$f_{rs}^{(0)}(x,k) = \delta(k^2 - m^2)\theta(k^0)\delta_{rs}n_B(\beta(x)\cdot k)$$

$$f_{rs}^{(1)} = \frac{i}{2} \delta(k^2 - m^2) \theta(k^0) n_B (1 + n_B) \epsilon_r^{\gamma_3 *}(k) \epsilon_s^{\gamma_0}(k) \left\{ 2\Omega_{\gamma_0 \gamma_3} + \hat{k}^{\rho_1} \Omega_{\rho_1 [\gamma_0} \hat{n}_{\gamma_3]} \right\} \left[\hat{n}_{[\gamma_0} [\partial_{\gamma_3]} \beta_{\nu_1}](x) \hat{k}^{\nu_1} (x) \hat{k}^{\nu_1} (x) \hat{k}^{\nu_1} (x) \hat{k}^{\nu_2} (x) \hat{k}^{\nu_1} (x) \hat{k}^{\nu_2} (x) \hat{k}^$$

$$f_{rs}^{(2)} \equiv \left\langle \widehat{\mathcal{B}}_2 \widehat{f}_{rs} \right\rangle_{0,c} = f_{rs}^{(2)}|_{TT} + f_{rs}^{(2)}|_{TS} + f_{rs}^{(2)}|_{ST} + f_{rs}^{(2)}|_{SS} + f_{rs}^{(2)}|_{T} + f_{rs}^{(2)}|_{SS} + f_{rs}^{(2)}|_{TS} + f_{rs}^{(2)}|_{SS} + f$$

Discussions: Hydrodynamic benchmark

• One term (the simplest one, other terms' expressions are very long):

$$\begin{split} & f_{rs}^{(2)}|_{S}(x,k) \\ = & \delta(k^{2} - m^{2})\theta(k^{0})n_{B}(1 + n_{B})\epsilon_{r}^{\gamma_{3}*}(k)\epsilon_{s}^{\gamma_{0}}(k)\frac{1}{2E_{k}}[\partial_{\alpha_{1}}^{\perp}\Omega_{\rho_{1}\sigma_{1}}](x) \\ & \times \frac{1}{2}\left[\hat{k}^{\alpha_{1}}\hat{n}^{\rho_{1}}\eta^{\sigma_{1}}_{\ (\gamma_{0}}\hat{n}_{\gamma_{3}}) - \left(\eta^{\alpha_{1}\rho_{1}} - \frac{k^{\alpha_{1}}k^{\rho_{1}}}{m^{2}}\right)\eta^{\sigma_{1}}_{\ (\gamma_{0}}\hat{n}_{\gamma_{3}}) - \gamma_{k}^{2}\hat{k}^{\rho_{1}}\eta^{\sigma_{1}}_{\ (\gamma_{0}}\eta_{\gamma_{3}})^{\alpha_{1}}\right] \end{split}$$

• Time-reversal and parity symmetry implies that only second order terms contribute to spin alignment

(Zhang-Huang-Becattini-Sheng to appear)