

Transport Overview

Steffen A. Bass

emphasis on:

transport relevant to strangeness and open heavy flavor

not covered:

- transport for (heavy flavor) jets, quarkonia, photons & leptons
- initial state phenomena & spin degrees of freedom
- general soft matter transport w/o flavor applications

(c) CERN. All rights reserved.

What is a transport model?

- •A transport model describes the time-evolution of the collision, utilizing a set of physics processes that can be derived or approximated from some underlying theory.
- •The model is capable of predicting quantities that can be measured in experiments, thus allowing for the testing of its underlying assumptions via a comparison to data and gaining physics insight from such a comparison
- •Transport models are also utilized to gain understanding on processes not directly accessible to experimental observation

Flavors of Transport Models:

microscopic transport models based on the **Boltzmann Equation**:

- transport of a system of microscopic particles
- all interactions are based on binary scattering

$$\left[\frac{\partial}{\partial t} + \frac{\vec{p}}{E} \times \frac{\partial}{\partial \vec{r}}\right] f_1(\vec{p}, \vec{r}, t) = \sum_{processes} C(\vec{p}, \vec{r}, t)$$

diffusive transport models based on the Langevin Equation:

- transport of a system of microscopic particles in a thermal medium
- interactions contain a drag term related to the properties of the medium and a noise term representing random collisions

$$\vec{p}(t + \Delta t) = \vec{p}(t) - \frac{\kappa}{2T} \vec{v} \cdot \Delta t + \vec{\xi}(t) \Delta t$$

Each transport model relies on roughly a dozen physics parameters to describe the time-evolution of the collision and its final state. These physics parameters act as a representation of the information we wish to extract from experiment.

Applicability ranges for transport @ high energy

kinetic theory

anisotropic viscous RFD

viscous RFD

viscous RFD + hadronic afterburner (hybrid models)

Boltzmann transport

Kinetic theory: from initial state to hydrodynamic evolution

KøMPøST model:

$$T^{\mu\nu}(\tau_{\rm hydro}, \mathbf{x}) = \overline{T}_{\mathbf{x}}^{\mu\nu}(\tau_{\rm hydro}) + \frac{\overline{T}_{\mathbf{x}}^{\tau\tau}(\tau_{\rm hydro})}{\overline{T}_{\mathbf{x}}^{\tau\tau}(\tau_{\rm EKT})} \int d^2 \mathbf{x}' \, G_{\alpha\beta}^{\mu\nu}(\mathbf{x},$$

- non-equilibrium linear response formalism: evolve energy-momentum tensor from its non-equilibrium form at $\tau_{\rm EKT}$ up to $\tau_{\rm hydro}$
- decompose energy-momentum tensor into a local average and linearized perturbations δT
- response functions G describe evolution of perturbations calculated via kinetic theory

• Kurkela, Mazeliauskas, Paquet, Schlichting & Teaney: Phys. Rev. Lett. 122 (2019) 122302

 $e_{\mathrm{id}}(\tau)$

 $e(\tau)$

 $\mathbf{x}', \tau_{\text{hydro}}, \tau_{\text{EKT}}) \delta T_{\mathbf{x}}^{\alpha\beta}(\tau_{\text{EKT}}, \mathbf{x}')$

Kinetic theory: chemical equilibration

Numerically solve Boltzmann equation for homogenous boost invariant q and g distribution functions: $\partial_{\tau} f_s(\mathbf{p}, \tau) - \frac{p^2}{\tau} \partial_{p^z} f_s(\mathbf{p}, \tau) = -\mathcal{C}^s_{2\leftrightarrow 2}[f] - \mathcal{C}^s_{1\leftrightarrow 2}[f]$

• Kurkela & Mazeliauskas: Phys. Rev. Lett. 122 (2019) 142301

with scattering rates for $gg \leftrightarrow gg$, $gq \leftrightarrow gq$,

qq⇔qq, gg⇔qqbar, g⇔gg, q⇔qg,g⇔qqbar

• ordering of equilibration time scales:

 $\tau_{\rm hydro} < \tau_{\rm chem} < \tau_{\rm therm}$

- for reasonable values of the coupling (in terms of η/s) one obtains the following time scale estimates
 - hydrodynamization: ~ 0.5 fm/c
 - chemical equilibration: ~ 1.5 fm/c
 - thermalization: ~ 3.3 fm/c
- validates application of hydrodynamics at times $\tau_0 \sim 0.6$ fm/c
- use of Lattice EoS in full chemical equilibrium at early times is questionable

State of the Art: viscous relativistic fluid dynamics

standard relativistic viscous hydrodynamics:

- based on 2nd order Israel-Stewart theory

anisotropic hydro:

- allows to describe systems far from isotropy (equilibrium)
- VISH: Song & Heinz; Phys. Rev. C77 (2008) 064901
- MUSIC: Schenke, Jeon & Gale; Phys. Rev. C82 (2010) 014903
- vHLLE: Karpenko, Huovinen & Bleicher; Computer Phys. Comm. 185 (2014) 3016-3027
- VISHNU: Chen, Song, Bernhard, Bass & Heinz; Computer Phys. Comm. 199 (2016) 61-65
- aHydroQP: M. Alqahtani, M. Nopoush & M. Strickland: Phys. Rev. C92 (2015) 054910

New developments: hydro with conserved charges

Dynamics of conserved charges (BQS) provide additional insights:

- impact of gluon splitting (charge creation) in the initial state
- formation and dynamics of multi-strange hadrons
- proper modeling of conserved charge fluctuations as probes of the QCD critical point

Hydro with BSQ conserved charges:

- conservation of Baryon-#, Strangeness and Charge (vHLLE)
- 4D Equation of State, EoM with a 3x3 diffusion matrix for conserved charges a
- coupling terms between shear & bulk viscosities and BSQ currents
- available codes: CCAKE w/ ICCING initial condition (SPH), MUSIC

• C. Plumberg et al.: e-Print: 2405.09648 [nucl-th]

(Mostly) hadronic transport: UrQMD and SMASH

 $\left[\frac{\partial}{\partial t} + \frac{\vec{p}}{E} \times \frac{\partial}{\partial \vec{r}}\right] f_1(\vec{p}, \vec{r}, t) = \sum_{\text{processes}} C(\vec{p}, \vec{r}, t)$

- transport of a system of hadrons (all well-established hadrons & resonances listed by PDG up to mass of M \approx 2.4 GeV
- interactions are based on binary scattering using a geometric collision criterion: $d_{\min} \leq \sqrt{\frac{\sigma_{\mathrm{tot}}}{\pi}}$
- multi-particle decays via formation of intermediate resonance
- string fragmentation via PYTHIA for initial particle production
- Potentials modeled via QMD type sum over two-particle inter
- S. A. Bass et al.: Prog.Part.Nucl.Phys. 41 (1998) 255-369
- M. Bleicher et al.: J.Phys.G 25 (1999) 1859-1896
- J. Weil et al.: Phys. Rev. C 94 (2016) 054905

Phi meson production: resonances & rescattering

UrQMD:

- $N^* \leftrightarrow \phi B$ at beam energies below the pp threshold

- J. Steinheimer & M. Bleicher: J. Phys. G 43 (2016) 015104
- T. Song, J. Aichelin & E. Bratkovskaya: Phys. Rev. C 106 (2022) 024903

PHSD:

State of the Art @ High Energy: Macro + Micro Hybrid

Initial condition:

- calculated on the basis of gluon saturation physics or pomeron exchange
- alternatively: phenomenological scheme for entropy deposition & constrained by global model to data fit
- examples: IP-Glasma, Trento

viscous hydrodynamics

- EbE 3+1D viscous RFD
- describes QGP dynamics & hadronization
- Lattice QCD EoS
- examples: MUSIC, VISHNU, VHLLE

Hadronic afterburner:

- non-equilibrium evolution of an interacting hadron gas
- separation of chemical and kinetic freeze-out
- hadron gas shear & bulk viscosities are implicitly contained in calculation
- Examples: UrQMD, SMASH

Macro + Micro Hybrid: comprehensive description of data

• Macro + Micro hybrid models are capable of describing a comprehensive set of bulk observables across RHIC & LHC

• D. Everett et al.: Phys Rev C103 (2021) 054904

Transport and strangeness: mapping freeze-out

- out times, temperatures and radii

- S.A. Bass & A. Dumitru: Phys. Rev. C 61 (2000) 064909
- T. Reichert, G. Inghirami & M. Bleicher: European Physics Journal Web Conf. 259 (2022) 10005 [SQM 2021]

Microscopic transport: PHSD

- W. Cassing & E.L. Bratkovskaya: Phys. Rev. C78 (2008) 034919
- W. Cassing & E.L. Bratkovskaya: Nucl. Phys. A831 (2009) 215-242

String formation in primary NN collisions \rightarrow decays to pre-hadrons (baryons and mesons)

• Formation of a QGP state if $\varepsilon > \varepsilon_{critical}$: Dissolution of pre-hadrons \rightarrow DQPM massive quarks/gluons and mean-field energy

llisions :	inelastic collisions :	
$q \rightarrow g + q$	$q + \overline{q} \rightarrow g + g$	$q + \overline{q} \rightarrow g + g$
$\overline{q} \rightarrow g + \overline{q}$	$g \rightarrow g + g$	$g \rightarrow g + g$
$g \rightarrow g + g$		

LUND string model

Hadronization to colorless off-shell mesons and baryons

 $q + q + q \Leftrightarrow baryon ('string')$

Strict 4-momentum and quantum number conservation

Hadron-string interactions – off-shell HSD

Microscopic transport: AMPT 1.X

- based on microscopic transport (Boltzmann eqn)
- includes productions of all flavours 3D, conserved charges
- non-equilibrium initial condition & dynamics/evolution

- Z. Lin, C. Ko, B. Zhang & S. Pal: Phys. Rev. C72 (2005) 064901
- Z. Lin & L. Zheng: Nucl.Sci.Tech. 32 (2021) 113
- https://myweb.ecu.edu/linz/ampt/

• A multi-phase transport (AMPT) model: constructed as a self-contained kinetic description of heavy ion collisions

• evolves the system from initial condition to final observables via a changing set of microscopic degrees of freedom

Microscopic transport: AMPT 2.X

- based on microscopic transport (Boltzmann eqn)
- includes productions of all flavours 3D, conserved charges
- non-equilibrium initial condition & dynamics/evolution

- Z. Lin, C. Ko, B. Zhang & S. Pal: Phys. Rev. C72 (2005) 064901
- Z. Lin & L. Zheng: Nucl.Sci.Tech. 32 (2021) 113
- https://myweb.ecu.edu/linz/ampt/

• A multi-phase transport (AMPT) model: constructed as a self-contained kinetic description of heavy ion collisions

• evolves the system from initial condition to final observables via a changing set of microscopic degrees of freedom

Low/Medium Energy: Quantum Molecular Dynamics

The Boltzmann Equation does not contain many-body correlations needed to describe cluster formation: use a many-body approach instead: Quantum Molecular Dynamics (QMD)

generalized Ritz variational principle:

$$\delta \int_{t_1}^{t_2} \left\langle \Phi \left| i\hbar \frac{d}{dt} - H \right| \Phi \right\rangle dt = 0 \quad \text{with} \quad \Phi = \prod_i \phi_i$$

and $\phi_i(\vec{x}; \vec{q_i}, \vec{p_i})$

for a Hamiltonian of the form:

- inclusion of potentials / a realistic equation of state is crucial for cluster formation
- current models include: UrQMD, PHQMD, IQMD
- J. Aichelin: Phys. Rept. 202 (1991) 233-360
- S. A. Bass et al.: Prog.Part.Nucl.Phys. 41 (1998) 255-369
- J. Aichelin, E. Bratkovskaya, A. Le Fevre, V. Kireyeu & V. Kolesnikov: Phys. Rev. C101 (2020) 044905

 $(\vec{x}, \vec{q_i}, \vec{p_i}, t)$ (N-body wave function w/o anti-symmetrization) $\vec{f}_{i},t) = \left(\frac{2}{L\pi}\right)^{3/4} \exp\left\{-\frac{2}{L}(\vec{x}-\vec{q}_{i}(t))^{2} + \frac{1}{\hbar}i\vec{p}_{i}(t)\vec{x}\right\}$

the variational principle yields EoM for the centers of the Gaussians:

$$\frac{\langle H \rangle}{\partial \vec{q_i}}$$
 and $\dot{\vec{q_i}} = \frac{\partial \langle H \rangle}{\partial \vec{p_i}}$

Cluster formation at low/medium energies:

Transport is a powerful tool for the study of the non-equilibrium dynamics of cluster formation:

Deuteron formation (RHIC-BES): PHQMD w/ realistic EoS & MST cluster algorithm Calculation shows the need to include correlations and binding energy effects AuAu, 0-10% 0.04 STAR — $^{3}_{\Lambda}$ H kinetic MST stabilization 10^{0} 0.03 dN/dy |y|<0.2 dN/dy 0.02 10 0.01 Au+Au 0-10% , |y|<0.3 10^{-2} 0.00 10^{2} 10¹ 3 $(s_{NN})^{1/2}$ [GeV]

- G. Coci, S. Glaessel, V. Kireyeu, J. Aichelin, C. Blume, E. Bratkovskaya, V. Kolesnikov & V. Voronyuk: Phys. Rev. C108 (2023) 014902
- T. Reichert, J. Steinheimer, V. Vovchenko, B. Doenigus & M. Bleicher: Phys. Rev. C 107 (2023) 014912
- A. Kittiratpattana, T. Reichert, N. Buyukcizmeci, A. Botvina, A. Limphirat, C. Herold, J. Steinheimer & M. Bleicher: Phys. Rev. C 109 (2024) 044913

Hyper-nuclei in π +A at SIS:

- UrQMD predicts π+A collisions may produce a large variety of hyper-nuclei at SIS
- allows for study of the strange matter EoS

Heavy Quark Transport

RFD with conserved charm current:

- fluid-dynamical description of charm evolution
- heavy quarks are treated as a conserved current after initial production in hard processes

Boltzmann dynamics:

- medium constituents: thermal light partons
- heavy quarks scatter with medium partons & radiate gluons based on pQCD matrix elements

Langevin dynamics:

- no assumptions on medium constituents
- heavy quarks get frequent kicks from the medium → transport coefficients

Hybrid models

- Improved Langevin (with radiative energy loss)
- Lido Linearized Boltzmann with diffusion model
- MATTER/LBT: multi-scale energy-loss

Langevin with Radiative Processes

modify Langevin Eqn. with force term due to gluon radiation:

$$\frac{d\vec{p}}{dt} = -\eta_D(p)\,\vec{p} + \vec{\xi} + \vec{f_g}$$

same noise correlator and fluctuation-dissipation relation still hold:

$$\eta_D(p) = \frac{\kappa}{2TE}$$
 and $\langle \xi^i(t) \, \xi^j(t') \rangle = \kappa \, \delta^{ij} \, \delta(t-t')$

gluon radiation calculated in Higher Twist formalism:

$$\frac{dN_g}{dx\,dk_\perp^2\,dt} = \frac{2\alpha_s(k_\perp)}{\pi}\,P(x)\,\frac{\hat{q}}{k_\perp^4}\sin^2\left(\frac{t-t_i}{2\,\tau_f}\right)\,\left(\frac{k_\perp^2}{k_\perp^2+x^2\,M^2}\right)^4$$

• relevant transport coefficients are now:

$$D = \frac{t}{M\eta_D(0)} = \frac{2T^2}{\kappa} \quad \text{and} \quad \hat{q}$$

radiation force defined through rate of radiated gluon momenta: $\vec{f} = d\vec{p}$

Guo & Wang: PRL 85, 3591 Majumder: *PRD 85, 014023* Zhang, Wang & Wang: PRL 93, 072301

$$= 2 \kappa C_A / C_F$$

[•] S. Cao, G-Y. Qin & S.A. Bass: Phys. Rev. C88 (2013) 044907

Lido: Boltzmann + Langevin Hybrid

Combine the strength of the linearized-Boltzmann and Langevin approaches:

$$\frac{p \cdot \partial f_Q}{E} = \mathcal{C}[f_Q] - \frac{\partial}{\partial p_i} \left(A_i - \frac{1}{2} \frac{\partial}{\partial p_j} B_{ij} \right) f_Q = \left(\hat{\mathcal{C}} + \hat{\mathcal{D}} \right) f_Q$$

perturbative processes:

• elastic scattering:

•

non-perturbative processes:

$$\Delta \vec{x_i} = \frac{p_i}{E} \Delta t \qquad \Delta \vec{p_i} = -\eta_D \, \vec{p_i} \, \Delta t + \Delta t \, \vec{\xi_i}(t)$$

- •
- W. Ke, Y. Xu & S.A. Bass: Phys. Rev. C98 (2018) 064901

Fochler et al. PRD88 014018

gluon radiation **and** absorption implemented to conserve detailed balance

treated in a Langevin equation with isotropic random force

Einstein relation connects random force to drag coefficient to ensure proper equilibrium

Heavy Quark Transport: full collision dynamics

parameterized initial **QGP** state initial HQ production

Trento:

- based on simple phenomenological ideas for entropy deposition
- constrained by global model to data fit

Heavy Quarks:

PYTHIA to generate initial HQ ensemble

viscous hydrodynamics

- EbE 2+1D viscous RFD
- describes QGP dynamics & hadronization - Lattice QCD EoS

HQ interaction & transport:

- 1. D_s from Lattice QCD 1. Langevin dynamics
- 2. Boltzmann dynamics T-Matrix approach 2.
- 3. Bayesian calibration 3. Hybrid approaches

Hadronic afterburner:

- non-equilibrium evolution of an interacting hadron gas
- separation of chemical and kinetic freeze-out
- hadron gas shear & bulk viscosities are implicitly contained in calculation

Heavy Quark Transport: comparison to data

- Y. Xu, J.E. Bernhard, S.A. Bass, M. Nahrgang & G-Y. Qin: Phys. Rev. C97 (2018) 014907
- L. Oliva, S. Plumari and V. Greco, JHEP 05 (2021) 034
- M.L. Sambataro, V. Minissale, S.Plumari, V.Greco, Phys.Lett.B 849 (2024) 138480
- M.L. Sambataro, Y. Sun, V. Minissale, S. Plumari, V.Greco, Eur. Phys. J.C 82 (2022) 9, 833

Collaborative research: key to advancement

PHYSICAL REVIEW C 99, 054907 (2019)

Toward the determination of heavy-quark transport coefficients in quark-gluon plasma

Shanshan Cao,¹ Gabriele Coci,^{2,3} Santosh Kumar Das,^{4,2} Weiyao Ke,⁵ Shuai Y. F. Liu,⁶ Salvatore Plumari,² Taesoo Song,⁷ Yingru Xu,⁵ Jörg Aichelin,⁸ Steffen Bass,⁵ Elena Bratkovskaya,^{9,10} Xin Dong,¹¹ Pol Bernard Gossiaux,⁸ Vincenzo Greco,^{2,3} Min He,¹² Marlene Nahrgang,⁸ Ralf Rapp,⁶ Francesco Scardina,^{2,3} and Xin-Nian Wang^{13,11,*} ¹Department of Physics and Astronomy, Wayne State University, Detroit, Michigan 48201, USA ²Department of Physics and Astronomy, University of Catania, Via Santa Sofia 64, 1-95125 Catania, Italy ³Laboratori Nazionali del Sud, INFN-LNS, Via Santa Sofia 62, I-95123 Catania, Italy ⁴School of Physical Science, Indian Institute of Technology Goa, Ponda, Goa, India ⁵Department of Physics, Duke University, Durham, North Carolina 27708, USA ⁶Cyclotron Institute and Department of Physics and Astronomy, Texas A&M University, College Station, Texas 77843, USA ⁷Institut für Theoretische Physik, Universität Gießen, Germany ⁸SUBATECH, IMT Atlantique, Université de Nantes, CNRS-IN2P3, Nantes, France ⁹Institute for Theoretical Physics, Johann Wolfgang Goethe Universität, Frankfurt am Main, Germany ¹⁰GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany ¹¹Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94740, USA ¹²Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094, China ¹³Key Laboratory of Quark and Lepton Physics (MOE) and Institute of Particle Physics, Central China Normal University, Wuhan 430079, China

(Received 24 September 2018; published 28 May 2019)

Several transport models have been employed in recent years to analyze heavy-flavor meson spectra in high-energy heavy-ion collisions. Heavy-quark transport coefficients extracted from these models with their default parameters vary, however, by up to a factor of 5 at high momenta. To investigate the origin of this large theoretical uncertainty, a systematic comparison of heavy-quark transport coefficients is carried out between various transport models. Within a common scheme devised for the nuclear modification factor of charm quarks in a brick medium of a quark-gluon plasma, the systematic uncertainty of the extracted drag coefficient among these models is shown to be reduced to a factor of 2, which can be viewed as the smallest intrinsic systematical error band achievable at present time. This indicates the importance of a realistic hydrodynamic evolution constrained by bulk hadron spectra and of heavy-quark drag coefficient. The transverse transport coefficient is less constrained due to the influence of the underlying mechanism for heavy-quark medium interaction. Additional constraints on transport models such as energy loss fluctuation and transverse-momentum broadening can further reduce theoretical uncertainties in the extracted transport coefficients.

DOI: 10.1103/PhysRevC.99.054907

Transport as discovery tool:

• The goal of constructing a transport model is to test its underlying assumptions via a comparison to data and gaining physics insight from such a comparison

provides access to quantities that are not directly accessible by experiment:

- structure of the initial state
- probe the underlying physics of observed phenomena
 - jet energy-loss
 - dynamics of thermalization & hadronization

• QCD transport coefficients (viscosities, diffusion coefficients etc.) & relaxation times

Model to Data Comparison: Parametric Nightmare

Transport Models have multiple parameters encoding its underlying physics that are sensitive to experimental data

Model Parameter: eqn. of state shear viscosity initial state pre-equilibrium dynamics thermalization time quark/hadron chemistry particlization/freeze-out

experimental data: π/K/P spectra yields vs. centrality & beam elliptic flow HBT charge correlations & BFs density correlations

Model to Data Comparison: Parametric Nightmare

Model Parameter:

eqn. of state shear viscosity initial state pre-equilibrium dynamics thermalization time quark/hadron chemistry particlization/freeze-out

Transport Models have multiple parameters encoding its underlying physics that are sensitive to experimental data

experimental data:

π/K/P spectra yields vs. centrality & beam elliptic flow **HBT** charge correlations & BFs

density correlations

Model to Data Comparison: Parametric Nightmare

Model Parameter:

particlization/freeze-out

- large number of interconnected parameters w/ non-factorizable data dependencies
- data have correlated uncertainties
- develop novel optimization techniques: Bayesian Statistics and MCMC methods
- transport models require too much CPU: need new techniques based on emulators
- general problem, not restricted to RHIC Physics

Transport Models have multiple parameters encoding its underlying physics that are sensitive to experimental data

experimental data:

π/K/P spectra yields vs. centrality & beam elliptic flow HBT charge correlations & BFs

density correlations

→collaboration with Statistical Sciences

State of the Art for model to data comparisons: Bayesian inferen

Each computational model relies on a set of physics parameters to describe the dynamics and properties of the syst These physics parameters act as a representation of the information we wish to extract from comparison to data.

Model Parameters - System Properties

- initial state
- temperature-dependent viscosities
- hydro to micro switching temperature

Experimental Data

ALICE flow & spectra

lce	
tem.	

State of the Art for model to data comparisons: Bayesian inferen

Each computational model relies on a set of physics parameters to describe the dynamics and properties of the syst These physics parameters act as a representation of the information we wish to extract from comparison to data.

Model Parameters - System Properties

- initial state
- temperature-dependent viscosities
- hydro to micro switching temperature

Experimental Data

ALICE flow & spectra

lce	
tem.	

State of the Art for model to data comparisons: Bayesian inference

Each computational model relies on a set of physics parameters to describe the dynamics and properties of the system. These physics parameters act as a representation of the information we wish to extract from comparison to data.

Model Parameters - System Properties

- initial state
- temperature-dependent viscosities
- hydro to micro switching temperature

Experimental Data

ALICE flow & spectra

- determine parameter values such that the model best describes experimental observables
- extract the probability distributions of all parameters

• Bayesian analysis allows us to simultaneously calibrate all model parameters via a model-to-data comparison

Bayesian analysis: heavy flavor transport coefficient

- comparison shows large variability in D_s between different heavy quark transport/interaction models
- Lattice results favor data-driven extraction (within large uncertainties)
- Lido vs. radiation improved Langevin:
 - large overlap in extracted D_s band
 - Lido trends to larger D_s values (influence of pQCD contribution in model)
- Y. Xu, J.E. Bernhard, S.A. Bass, M. Nahrgang & G-Y. Qin: Phys. Rev. C97 (2018) 014907
- W. Ke, Y. Xu & S.A. Bass: Phys. Rev. C98 (2018) 064901

T-Matrix formalism for heavy quark interactions (TAMU)

- K. Huggins & R. Rapp: Nucl. Phys. A896 (2012) 24-45
- S.Y.F. Liu & R. Rapp: Phys. Rev. C106 (2022) 055201
- Z. Tang, S. Mukherjee, P. Petreczky & R. Rapp: Eur. Phys. Journal A60 (2024) 92

Transport as bridge between theory and data

Two methods for establishing a connection between theory and experiment: 1. Theory to Data: calculate transport coefficients, run evolution model, compare prediction to data 2. Data to Theory: parametrize transport coefficient, perform Bayesian calibration on data

- comparison of theory-calculated transport coefficient to the calibration extraction allows for a quick assessment on whether the theory will be able to describe the data
- HEFTY collaboration: manuscript in preparation

The Jetscape framework

- provide a tool (modular software library) to study the physics of energy-loss
- collaboration of theoretical and experimental physicists, computer scientists and statisticians

- their own energy-loss kernel (e.g. Tequila)

JETSCAPE: Jet Energy Loss Tomography with a Statistically and Computationally Advanced Program Envolope

• large area of research, many different approaches exist, no single group or PI has the capability to do them all

- Trento (2+1) + free Streaming
- Medium evolution:
 - MUSIC (2+1, 3+1),
 - external reader
 - brick
 - Gubser
- Pythia8 (parton gun, string) fragmentation)
- MATTER
- Martini
- AdS/CFT
- LBT
- Cooper Frye
- SMASH
- Custom and HepMC output

• JETSCAPE package interfaces with leading community tools that are publicly available and well-tested • additional functions and codes can be linked as external modules (e.g. Lido) or utilize the framework for

Heavy-Flavor Theory for QCD Matter (HEFTY)

Ralf Rapp, Steffen A. Bass, Thomas Mehen, Swagato Mukherjee, Peter Petreczky, Jianwei Qiu, Mike Strickland, Ivan Vitev, Ramona Vogt, Yen-Jie Lee, Xin Dong and Anthony Frawley

Concluding remarks

- Transport models are versatile tools to connect final state data to underlying physics phenomena and to extract physical quantities not directly accessible via measurements
- Transport theory provides a rich set of concepts to design models for the different epochs and regimes of excited QCD matter created in (relativistic) heavy-ion collisions
- Statistical tools (Bayesian analysis, ML) are crucial for model calibration and uncertainty quantification
- The future is bright many more exciting applications, analyses and results to come!

The End

Transport Model vs. Monte-Carlo:

- case for a Monte-Carlo
- pre-determined distribution.
- •The goal of constructing a transport model is to test its underlying assumptions via a Carlo often is utilized as a stand-in for real data.

• A transport model is based on some underlying physics model - this is not necessarily the

•A Monte-Carlo is designed to describe data under some specific contraints/assumptions. The way it accomplishes this does not necessarily rely on an underlying physics model, instead it can directly parametrize the desired output and/or generate it from sampling some

comparison to data and gaining physics insight from such a comparison whereas a Monte-

• A transport model may utilize monte-carlo techniques for sampling of its physics processes.

Macro + Micro Hybrid: hadronic afterburner comparison

• D. Everett et al.: Phys Rev C103 (2021) 054904

Energy-Loss in Matter/LBT

• W. Fan et al.: Phys. Rev. C107 (2023) 054901

Setup of a Baysian Statistical Analysis:

Model Parameters - System Properties

Calibration

Bayes' Theorem: $P(x_{\star} | X, Y, y_{exp}) \propto P(X, Y, y_{exp} | x_{\star})P(x_{\star})$

• $P(X, Y, \mathbf{y}_{exp} | \mathbf{x}_{\star}) = likelihood$ \Rightarrow probability of observing (X,Y,**y**_{exp}) given proposed **x**_{\star}

• $P(\mathbf{x} \star | \mathbf{X}, \mathbf{Y}, \mathbf{y}_{exp}) = posterior$ \Rightarrow probability of \mathbf{x}_{\star} given observations (X,Y, \mathbf{y}_{exp})

Calibration

Markov-Chain Monte-Carlo:

- random walk through parameter space weighted by posterior
- large number of samples \Rightarrow chain equilibrates to posterior distribution
- flat prior within design range, zero outside
- likelihood: $\log[P(X, Y, \mathbf{y}_{exp} | \mathbf{x}_{\star})] \sim -(\mathbf{y}(\mathbf{x}_{\star}) \mathbf{y}_{exp})^2/(2\sigma^2)$
 - $\sigma=0.1$ on principal components (includes correlations)
- posterior ~ likelihood within design range, zero outside

Bayes' Theorem: $P(x_{\star} | X, Y, y_{exp}) \propto P(X, Y, y_{exp} | x_{\star})P(x_{\star})$

• $P(X, Y, \mathbf{y}_{exp} | \mathbf{x}_{\star}) = likelihood$ \Rightarrow probability of observing (X,Y,**y**_{exp}) given proposed **x**_*

```
• P(\mathbf{x} \star | \mathbf{X}, \mathbf{Y}, \mathbf{y}_{exp}) = posterior
\Rightarrow probability of \mathbf{x}_{\star} given observations (X,Y,\mathbf{y}_{exp})
```

Initial Conditions: Soft - Hard Correlations

QGP medium: Trento

- effective, parametric, description of entropy production prior to thermalization
- entropy deposition dS/dy parmeterized in terms of T_A, T_B:

d

choose p=0: EKRT & IP-Glasma scaling

Heavy Quarks:

- initial spatial production probability: $\propto T_A T_B$, consistent with soft QGP medium
- momentum space: use PYTHIA to generate HQ momenta

$$|S/dy|_{\tau=\tau_0} \propto T_R(p;T_A,T_B) \equiv 0$$

$$\left(\frac{T_A^p + T_B^p}{2}\right)^{1/p}$$

в, consistent with soft QGP medium te HQ momenta