

PHENIX highlights: Recent results from PHENIX

Maya SHIMOMURA for the PHENIX Collaboration

Nara Women's University

June 3rd, 2024

The 21st International Conference on Strangeness in Quark Matter (SQM 2024) Palais de la Musique et des Congrès

THE PHENIX EXPERIMENT

- Data with 9 collision species and 9 collision energies have been obtained
- Data taking is completed in 2016
- Collaboration is actively working for data analysis _____

$\sqrt{S_{NN}}$ [GeV]	••		Au			Cu ^{Cu}	CAU	Au	00
510									
200	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark
130								\checkmark	
62.4	\checkmark			\checkmark		\checkmark		\checkmark	
39				\checkmark				\checkmark	
27								\checkmark	
20				\checkmark		\checkmark		\checkmark	
14.5								\checkmark	
7.7								\checkmark	

PHENIX results are in HEPData!!

- 212 papers are in the database and ready to use!

In this talk

Recent publications from **PHENIX**

(1) [PRC 109, 044907 (2024)] Charm and bottom quark production in AuAu collisions at $\sqrt{s_{NN}} = 200$ GeV

(2) [PRC 109, 044912 (2024)] Non-prompt direct-photon production in Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV

(3) [PRC 109, 054910 (2024)] Identified charged-hadron production in *p*+Al, 3He+Au, and Cu+Au collisions at $\sqrt{s_{NN}} = 200$ GeV and in U+U collisions at $\sqrt{s_{NN}} = 193$ GeV

(4) [PRC107,014907 (2023)] Measurement of ϕ -meson production in Cu+Au collisions at $\sqrt{s_{NN}} = 200$ GeV and U+U collisions at $\sqrt{s_{NN}} = 193$ GeV

(5) [arXiv:2303.12899] Disentangling centrality bias and final-state effects in the production of high-p_T π^0 using direct γ in d+Au collisions at $\sqrt{s_{NN}} = 200$ GeV

Contents

- (1)Heavy flavor at mid and forward rapidity
- (2) Direct photon with large statistics
- (3)PID Charged hadron measurement at various collision systems
 - $\pi^0 R_{AA}$ with experimental N_{coll} at small system

(1)Heavy flavor at mid and forward rapidity

Details will be discussed at

L.Bichon III's Talk (Track2-HF) on 6/5 (Wed)

Heavy flavor (c, b)

PHENIX, PRC 109, 044907 (2024)

• c hadron and b hadron p_T spectra in Au+Au are measured in MB, 0-10, 10-20, 20-40, 40-60% compared with p+p scaled by T_{AA}

PHENIX, PRC 109, 044907 (2024)

Centrality dependence of $R_{AA}(b \rightarrow e) \& R_{AA}(c \rightarrow e)$

- In 0-10%, bottom and charm suppression are clearly seen while in 40-60%, bottom and charm are similar and less suppressed
- Centrality dependence is clearly seen

PHENIX highlights/ Maya S

HF v_2 in Au+Au

- HF v₂ is positive both at forward and mid rapidity and mostly consistent
- Hadron $v_2 > HF v_2$ and $v_{2c} > v_{2b}$,
- Heavier quarks has less flow as expected

Forward J/ ψ v_2 compared with LHC

L.Bichon III's Talk (Track2-HF) on Wed

PHENIX, PRC 84, 054912 (2011)

- Forward J/ ψ v₂ at RHIC is consistent with zero, while it's non-zero at LHC energy
- -> Consistent to the regeneration scenario of charm and anti-charm at LHC energy

(2)Direct photon with large statistics

- External conversion method and large statistics give precise measurement for wider p_T ranges for all centrality bins
 - The scaling of yields holds for various large systems

Direct photon enhancement with system size

- Larger system has more enhancement at low p_{T} compared with N_{coll} scaled pp \rightarrow seems to relate to QGP size?
- Yield enhancement at low p_T and large v_2 at high p_T • \rightarrow might be due to hadronization photons ??

T_{eff} of non-prompt photons

 T_{eff} of non-prompt photons has p_T dependence but no-clear multiplicity dependence

PHENIX highlights/ Maya S

(3)PID Charged hadron measurement at various collision systems

Details will be discussed at

R.Nouicer's Talk (Track1-LF) on 6/4 (Tue)

R.Nouicer's Talk (Track1-LF) on Tue

PID Charged hadrons

PHENIX, PRC 109, 054910 (2024)

The systematic study of various collision systems are preformed

$R_{AB}\xspace$ in Large systems

PHENIX, PRC 109, 054910 (2024)

R_{AA} in large system depends on collision overlap size (N_{part}) but not collision systems

 R_{AB} in small systems

R.Nouicer's Talk (Track1-LF) on Tue

PHENIX, PRC 109, 054910 (2024)

- Small system also has dependence of the collision overlap size (N_{part})
- Proton R_{AB} at high p_T is not ordering of N_{part}
 - d+Au is imbalanced most

 $\gamma^{\rm dir}$ and π^0 spectra in d+Au

Since γ^{dir} is not suppressed, N_{coll} can be redefined by γ^{dir} ratio of d+Au to pp experimentally

$$N_{\rm coll}^{\rm EXP}(p_T) = \frac{Y_{d\rm Au}^{\gamma^{dir}}(p_T)}{Y_{pp}^{\gamma^{\rm dir}}(p_T)}$$

. .

Redefined R_{dAu} with experimental N_{coll}

PHENIX, arXiv:2303.12899

Clear suppression can be seen at central in d+Au while it's consistent to 1 at peripheral

Summary

- Heavy flavor
 - c/b separated HF R_{AA} and v_2 are successfully measured at various centrality bins and clear mass dependence can be seen at central.
 - Measurement of the forward J/ ψ v₂ are also performed and it's consistent to zero unlike LHC result.
- Direct photons
 - External conversion method and large statistics give precise measurement for wide p_T ranges and all centrality bins, and the scaling of yields holds for various large systems.
 - Non-prompt direct photon are extracted and show the T_{eff} has the dependences of the p_T
- Charged hadrons
 - PHENIX measured charged hadron production at small to large various collision systems and found mostly R_{AA} only depends on overlap volume(N_{part}).
 - Experimental N_{coll} gives non-GL biased $R_{dAu,}$ and $\,$ indicates the clear yield suppression at central.

Recent publications in this talk from PHENIX

(1) [PRC 109, 044907 (2024)] Charm and bottom quark production in AuAu collisions at sqrt(sNN)=200GeV

(2) [PRC 109, 044912 (2024)] Non-prompt direct-photon production in Au+Au collisions at $\sqrt{s_{\rm NN}}$ =200 GeV

(3) [PRC 109, 054910 (2024)] Identified charged-hadron production in *p*+Al, 3He+Au, and Cu+Au collisions at $\sqrt{s_{NN}}$ =200GeV and in U+U collisions at $\sqrt{s_{NN}}$ =193GeV

(4)[PRC107,014907 (2023)] Measurement of ϕ -meson production in Cu+Au collisions at $\sqrt{s_{NN}}$ =200 GeV and U+U collisions at $\sqrt{s_{NN}}$ =193 GeV

(5)[arXiv:2303.12899] Disentangling centrality bias and final-state effects in the production of high-pT $\pi 0$ using direct γ in d+Au collisions at $\sqrt{s_{NN}} = 200 \text{ GeV}$

PHENIX is active. New results are coming. Stay tune!

L.Bichon III's Talk (Track2-HF) on 6/5 (Wed)

R.Nouicer's Talk (Track1-LF) on 6/4 (Tue)

PHENIX highlights/ Maya S

Additional materials (Back Up)

Why heavy flavor, bottom & charm ?

- Mainly created at early stage of the collision
 - Production can be calculated by pQCD
- Passing through QGP

```
\frac{Mc \sim 1.3 \text{GeV}}{Mb \sim 4.5 \text{GeV}} \xrightarrow{T_{QGP} \sim 400 \text{MeV}} \Lambda_{QCD} \sim 200 \text{MeV}
```

- Suffer energy loss and flow effects – p_T and angular distributions can be modified in QGP

Modification of Heavy flavor is good tool to study property of QGP

 $R_{AA}(b \rightarrow e) \& R_{AA}(c \rightarrow e) \text{ in } Au + Au 200 GeV$

PHENIX, PRC 109, 044907 (2024)

- Nuclear modification factor R_{AA}
 - Broad p_T range : 1 8 GeV/c
 - Small uncertainty with new p+p baseline

- Mid $p_T : R_{AA}(b -> e) > R_{AA}(c -> e)$
- High p_T : $R_{AA}(b\rightarrow e) \sim R_{AA}(c\rightarrow e) < 1$
- Bottom suppression is different from charm
 - Clear p_T dependence

PHENIX, PRC 109, 044907 (2024)

Charm and Bottom R_{AA} vs N_{part}

Clear centrality and p_T dependence are observed

(1)Rachid Nouicer Jun 4 11:00AM Track1-LF

Scaling Properties of ϕ -Meson and Light Charged Hadron Production in Small and Large Systems at PHENIX

(2)Luis Bichon III Jun 5 9:30 AM Track2-HF

Forward rapidity elliptic flow measurements in PHENIX Au+Au collisions at 200 GeV

Time evolution

The matter produced in the high energy heavy ion collision is expected to undergo several stages from the initial hard scattering to the final hadron emission.

Need a comprehensive understanding from initial hard scattering to final freeze out.

$R_{AA}(b \rightarrow e) \& R_{AA}(c \rightarrow e)$ comparison with STAR 0-80%

PHENIX, PRC 109, 044907 (2024)

 PHENIX MB and STAR 0-80% are in good agreement within uncertainties

29

PHENIX, PRC 109, 044907 (2024)

Comparison with Models

- Compared with 3 models
 - DGLV (Phys. Rev. C 90 034910)
 - E-loss + plasma w/ static potentials
 - SUBATECH (Phys. Rev. C 78 014904)
 - : E-loss + running coupling
 - T-Matrix + diffusion (2πTD=4) (Phys. Rev. Lett. 100 192301)
 - Strongly coupled QGP
- Models qualitatively consistent with data
 - Mass dependent energy loss agree with the mass dependent suppression
 - Bottom models underestimates the data
 - Charm models slightly higher than data

$v_2^{c}(c \rightarrow e)$ and $v_2^{b}(b \rightarrow e)$ in Au+Au 200GeV

- c \rightarrow e v₂ is positive with ~3.5 sigma
- A hint of positive $b \rightarrow e \; v_2$ with 1.1 sigma

• Final v_2 result with improved yield unfolding coming soon

Rγ of direct photons

Small system RAA before.

 $R_{AA}(pt) = \frac{\frac{dN_{AA}}{dp_T}}{\langle N_{coll} \rangle \frac{dN_{pp}}{dp_T}}$

The enhancement in peripheral collisions has no clear explanation. Is the centrality dependence real ? <Ncoll> in GM has bias.

arXiv:2404.17660 is Denis's paper which indicates that initial fluctuation also could give the suppression of π^0 in d + Au