

STAR Highlights: Recent results from STAR

3-7 June 2024, Strasbourg, France

- Qian Yang (杨 钱) for the STAR Collaboration
 - Shandong University

The 21st International Conference on Strangeness in Quark Matter

RHIC-STAR experiment

Physics to be explored in heavy-ion collisions:

- Onset of deconfinement ${\color{black}\bullet}$
- Nature of QCD phase diagram ullet
- High baryon density matter
- QGP properties ... ${\bullet}$

Recent data recorded and future plan

2018 - Isobars (Ru/Zr), Au+Au 27 GeV, FXT: 3.0, 7.2

2019 - 19.6, 14.6, 200 GeV, FXT 3.2

2020 - 11.5, 9.2, FXT: 3.5, 3.9, 4.5, 5.2, 6.2, 7.7

- 2021 7.7, 17.3, O+O, d+Au, FXT: 3.0, 9.2, 11.5, 13.7
- 2022 p+p 510

2023 - Au+Au 200

2024/25 - Au+Au 200, p+p 200 and p+Au 200

BES-II detector Upgrades

- **iTPC:** Extended η acceptance and improved tracking and PID
- eTOF: Extended PID coverage
- EPD: Improved EP resolution

Fixed Target

QCD phase diagam

CEP, Collectivity, and EoS, HBT, Strangeness, Dielectron lacksquare

Particle production

Light (hyper-)nuclei production, HBT and Baryon Junction ullet

QGP properties

Collectivity, Vorticity, D⁰ tagged-jet, D⁰-hadron HBT, CNM, Strangeness lacksquare

Detector upgrades and future plan

Outline

QCD phase diagam

CEP, Collectivity, and EoS, HBT, Strangeness, Dielectron

Particle production

Light (hyper-)nuclei production, HBT and Baryon Junction

QGP properties

Collectivity, Vorticity, D⁰ tagged-jet, D⁰-hadron HBT, CNM, Strangeness

Detector upgrades and future plan

Search for CEP: Net-proton cumulants

- New high precision BES-II Measurement from 7.7-27 GeV
- C_4/C_2 shows minimum around ~20 GeV comparing to models without CP, 70-80% data

Qian Yang @ SQM 2024, Jun. 3rd - Jun. 7th 2024

Yifei Zhang 06/06 08:30AM

Light and strange hadron elliptic flow at high μ_B

The equation of state (EoS) of the medium and degrees of freedom

v₂ NCQ scaling breaks at 3.2 GeV and gradually restores towards 4.5 GeV

pt dependence of directed flow slope at high μ_R

• Anti-flow of π^+ and K_S^0 , K^{\pm} at low p_T

Anti-flow could be explained by shadowing effect from spectators

Strangeness production at high- μ_R region

- Grand Canonical Ensemble (GCE) fails with $\sqrt{s_{NN}} < 4$ GeV
- Canonical Ensemble (CE) with strangeness correlation length 2.9-3.9 fm, simultaneously describes data
- Change of medium properties at the high-baryon-density region

Femtoscopy of two-kaon at high μ_B region

Spatial and temporal extent of the emission source

 Fitting to CF to extract source radii and correlation strength

- Bowler-Sinyukov method to includes FSI (Coulomb effect) Coulomb effect QS effect $CF(q_{inv}) = N[(1 - \lambda) + K_{coul}(q_{inv}, R_G)\lambda(e^{-[R_G^2 q_{inv}^2]} + 1)]$ R_G : source radii parameter; λ : correlation strength; N: normalization factor;
- Lednicky-Lyuboshitz approach to includes FSI(Strong interaction) QS effect Strong interaction through f₀(980) /a₀(980) resonances $CF(q_{inv}) = 1 + \lambda \left(e^{-[R_{G}^{2}q_{inv}^{2}]} + \frac{1-\epsilon^{2}}{2} \left[\left| \frac{f(k^{*})}{R_{G}} \right|^{2} + \frac{4Re[f(k^{*})]}{\sqrt{\pi}R_{G}}F_{1}(q_{inv}R_{G}) - \frac{2Im[f(k^{*})]}{R_{G}}F_{2}(q_{inv}R_{G})] \right]$ • Kaon's source radii do not follow m_T-scaling

• Kaon source size smaller than pion at freeze-out

Thermal dielectron measurements

Direct access to temperature of QGP phase and partonic + hadron phase transition

STAR: arXiv: 2402.01998

- TLMR is close to both T_{ch} and T_{pc}
- TIMR is higher than TLMR -> QGP phase

Qian Yang @ SQM 2024, Jun. 3rd - Jun. 7th 2024

The integrated excess yield shows a hint of decreasing trend with decreasing $\sqrt{s_{NN}}$

QCD phase diagam

CEP, Collectivity, and EoS, HBT, Strangeness, Dielectron

Particle production

Light (hyper-)nuclei production, HBT and Baryon Junction

QGP properties

Collectivity, Vorticity, D⁰ tagged-jet, D⁰-hadron HBT, CNM, Strangeness

Detector upgrades and future plan

11

Light (hyper-)nuclei production

Thermal model over-predicts t/p and 3 He/p and ${}^{3}_{\Lambda}$ H/ Λ ratios ullet

 $\Rightarrow^{3}_{\Lambda}$ H, t, and 3 He not in equilibrium at hadron chemical freeze out at RHIC

Hyper-nuclei $\langle p_T \rangle$ slope vs energy

 $\langle p_T \rangle$ vs mass follows a linear mass scaling for $\sqrt{s_{NN}} = 3.0, 3.2, 3.5$ GeV

Consistent with coalescence production of hyper-nuclei at mid-rapidity

Chenlu Hu 05/06 9:10 AM

Directed flow of light and hyper nuclei at high μ_R

• Current measurements (particle yield ratio, $\langle p_T \rangle$ slope, and directed flow slope) support coalescence picture of light (hyper-)nuclei production

$p-\Xi^-$ correlation function

Hyperon-nucleon(Y-N) interaction

- CFs show enhancement at low k*

Boyang Fu 05/06 9:10 AM

The first experimental measurements of strong interaction parameters (f_0, d_0) in p- Ξ^- pairs • The f_0 is consistent with HAL QCD predictions within 1σ Weak attractive interaction in $p-\Xi^-$ pairs

Baryon number carrier

What carries the baryon number?

Valence Quarks:

• $Q \sim B \times Z/A$

2024/06/03

Junctions:

• $Q < B \times Z/A$

$\langle B \rangle / \Delta Q \times \Delta Z / A$ vs. centrality

 $\langle B \rangle / \Delta Q \times \Delta Z / A \sim 2$ in central collisions →higher than model calculations with valence quarks carrying baryon number

QCD phase diagam

CEP, Collectivity, and EoS, HBT, Strangeness, Dielectron

Particle production

Light (hyper-)nuclei production, HBT and Baryon Junction

QGP properties

Collectivity, Vorticity, D⁰ tagged-jet, D⁰-hadron HBT, CNM, Strangeness

Detector upgrades and future plan

Qian Yang @ SQM 2024, Jun. 3rd - Jun. 7th 2024

Charge-dependent directed flow in U+U

Consistent with observation in Au+Au

Qian Yang @ SQM 2024, Jun. 3rd - Jun. 7th 2024

Global spin polarization of Λ

Global polarization splitting and magnetic filed

Qiang Hu 05/06 9:10 AM

• No splitting between Λ and $\overline{\Lambda}$ global polarization within uncertainties

Qian Yang @ SQM 2024, Jun. 3rd - Jun. 7th 2024

Local spin polarization of Λ

• Hint of sign change of $P_{2,z}$ at 7.7 GeV, measurement at lower energies underway

2024/06/03

Qiang Hu 05/06 9:10 AM

ϕ global spin alignment

• Probe the origin of ϕ global spin alignment

Higher precision and first differential measurements with BES-II

D^0 tagged jet in heavy-ion collisions in Au+Au 200 GeV

Energy loss mechanism in medium

- Suppression for hard fragmented charm jets in central collisions \bullet
- Consistent radial profile from central to peripheral collisions

D^{0} -hadron femtoscopic correlations in Au+Au 200 GeV

Freeze-out dynamics and final state interaction of charmed mesons

Strange hadrons production in d+Au collisions

Cold Nuclear Matter Effects

Cronin like enhancement is observed for K_s^0 , Λ , and Ξ at intermediate p_T

d+Au @ 200 GeV

- Rapidity asymmetry for K_s^0 , Λ , and Ξ
 - More noticeable in higher rapidity region and with heavier particles

K^{*0} in Ru+Ru/Zr+Zr collisions

Re-scattering and regeneration effects at late stages of hadronic interactions

Evidence of late stage hadronic lacksquarere-scattering effect

Subhash Singha Poster ID: 191

- K^{*0} <pt> is consistent with that of protons (anti-proton)
 - Radial flow

Strangeness production at high energy

Strangeness production at high energies

Ishu Aggarwal 04/06 9:10 AM

Isobar @ 200 GeV **Dongsheng Li** 05/06 11:40 AM

Hyperon-to-pion yield ratio

• Strangeness production seems follow a global trend mainly driven by event multiplicity

Di-hadron in UPC

- Electromagnetic excitation of the vacuum
 - Higher excitation mode of $\gamma\gamma \rightarrow hh$?

Xin Wu Poster ID: 193

• Observed $\gamma\gamma \rightarrow p\bar{p}$ process in UPC

Detector upgrades and future plan

- Collectivity, Vorticity, D⁰ tagged-jet, D⁰-hadron HBT, CNM, Strangeness
- **QGP** properties
- Light (hyper-)nuclei production, HBT and Baryon Junction
- Particle production

QCD phase diagam

CEP, Collectivity, and EoS, HBT, Strangeness, Dielectron

Outline

Qian Yang @ SQM 2024, Jun. 3rd - Jun. 7th 2024

Forward upgrades

An event display at forward from 2023

2024/06/03

Forward detector data taking since 2022

• Forward Tracking System (FTS)

- Forward Silicon Tracker (FST)
- Forward Small-strip Thin Gap Chambers Tracker (FTT) Charge separation $\delta p_T/p_T \sim 20-30\%$ for 0.2 < pT< 2GeV/c

• Forward Calorimeter System (FCS)

- Electromagnetic Calorimeter
- Hadronic Calorimeter

Good e/h separation Photon, π^0 identification Ecal: ~10%/JE for pp and pA, ~20%/JE for AuAu Hcal: ~50%/for pp and pA

Future physics opportunities

Projections as plans for 2023-2025

√s _{NN} (GeV)	Species	Sampled Luminosity
200	Au+Au&p+Au	AuAu 32.7 nb ⁻¹ / pAu 0.69 pb ⁻¹
200	p+p	142 pb ⁻¹

Hot QCD physics: Explore the microstructure of QGP

- What is the Nature of the 3D Initial State?
- What is the Temperature of QGP and the Temperature Dependence of Viscosity?
- What can Charmonium Tell Us About Deconfinement?
- What are the Electrical, Magnetic, and Chiral Properties of the Medium?
- What are the Underlying Mechanisms of Jet Quenching?
- What is the Nature of the Phase Transition Near $\mu_{\rm B} = 0$?
- What Can We Learn About the Strong Interaction?

Cold QCD physics: Establish the validity and limits of factorization and universality to understanding of QCD

- Forward Transverse-Spin Asymmetries
- Sivers and Efremov-Teryaev-Qiu-Sterman Functions
- Transversely, Collins Function and Interference Fragmentation Function
- Ultra-Peripheral Collisions

Summary

Physics results from multiple perspectives (18 talks and 6 posters) Stay tuned for more to come from BES-II and future hot QCD and cold QCD studies!

SQM2024 STAR talks:

- 1. Proton-Xi correlation function: Boyang Fu, 05/06/24, 9:10AM
- 2. Strange hadron production: Hongcan Li, 05/06/24, 11:40AM
- 3. D0-meson tagged Jets: Ondrej Lomicky, 05/06/24, 8:30AM
- 4. D0 meson charged hadron femtoscopy, Priyanka Roy Chowdhbury, 04/06/24, 5:10PM
- 5. ${}^{4}_{\Lambda}$ **H** and ${}^{4}_{\Lambda}$ **He** yield measurement, Chenlu Hu, 05/06/24, 9:10AM
- 6. Hyperon and hypertriton yield in Isobar system, Dongsheng Li, 05/06/24, 11:40AM
- 7. Light nuclei production, Yixuan Jin, 05/06/24, 12:00PM
- 8. Kaon femtoscopy, Bijun Fan, 04/06/24, 5:30PM
- 9. CEP: net-proton cumulants, Yifei Zhang, 06/06/24, 8:30AM
- 10. Differential measurement of phi global spin alignment, Gavin Wilks, 05/06/24, 11:20AM
- 11. Charge-dependent directed flow, Muhammad Farhan Taseer, 04/06/24, 3:00PM
- 12. Lambda global and local spin polarization, Qiang Hu, 05/06/24, 9:10AM
- 13. Collective flow to explore QCD phase diagram, Shush Shi, 04/06/24, 11:20AM
- 14. Energy dependence of hypertriton production, Xiujun Li, 04/06/24, 4:30PM
- 15. Multi-strange hadrons production in d+Au collisions, Ishu Aggarwal, 04/06/24, 9:10AM
- 16. Lamba, H3L and H4L directed flow, Junyi Han, 04/06/24, 2:40PM
- 17. Bayon number carrier, Rongrong Ma, 04/06/24, 2:00 PM
- 18.QGP temperature from dielectron measurement, Zhen Wang, 04/06/24, 3:00PM

SQM2024 STAR posters:

19. K^0_s and $\Omega(ar{\Omega})$ production in 7.7, 14.6, 19.6 GeV, $$ Yi Fang, ID 102 $$
20. Heavy-flavor electron production in Au+Au 54.4 GeV, Veronica Prozorova, ID
21. K* meson measurement in isobar and BES-II, Subhash Singha, ID 191
22. Strangeness production in Au+Au 7.7-19.6 GeV, Weiguang Yuan, ID 192
23. Di-hadron production in UPC, Xin Wu, ID 193
24. ${}^4_\Lambda {f He}$ lifetime measurement, Xiujun Li, ID 194

1 I hank you!

