ATLAS highlights: Recent results from ATLAS

Petr Balek for the ATLAS Collaboration

3 June 2024

Petr Balek

introduction

- we use heavy-ion collisions to learn about QGP
- we also use p+p collisions to learn about (lack of) QGP
- large systems: Pb+Pb, Xe+Xe
 - what phenomena are driving jet quenching? is it sub-structure?
 - how do heavy-flavour quark interact with QGP?
 - what can we deduct from anisotropies and fluctuations?
- small systems: p+Pb, p+p
 - are jets modified?
 - what is the origin of flow?
 - how are quarkonia formed?
- UPC: $\gamma + \gamma$ or $\gamma + Pb$
 - are there QGP-like signatures?
 - is there beyond-standard-model physics?
- all ATLAS heavy-ion results
 - → https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HeavyIonsPublicResults

introduction

- we use heavy-ion collisions to learn about QGP
- we also use p+p collisions to learn about (lack of) QGP
- large systems: Pb+Pb, Xe+Xe
 - what phenomena are driving jet quenching? is it sub-structure?
 - how do heavy-flavour quark interact with QGP?
 - what can we deduct from anisotropies and fluctuations?
- small systems: p+Pb, p+p
 - are jets modified?
 - what is the origin of flow?
 - 🕨 how are quarkonia formed? 🗲
- UPC: $\gamma + \gamma$ or $\gamma + Pb$
 - are there QGP-like signatures?
 - is there beyond-standard-model physics?
- all ATLAS heavy-ion results
 - → https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HeavyIonsPublicResults

ATLAS detector

- \bullet tracker: $|\eta| < 2.5$
- EM and hadronic calorimeters: $|\eta| < 3.2$
- forward calorimeters: $3.1 < |\eta| < 4.9 ~_{\rm 25m} < 1000$ used for centrality
- muon spectrometers: $|\eta| < 2.7$

• ZDC: $|\eta| > 8.3$

electron muon b-tagged jet non-b-tagged jets

arXiv:2405.05078

Petr Balek

- using 165 nb⁻¹ of p+Pb data recorded at $\sqrt{s_{NN}} = 8.16$ TeV in 2016
- in single-lepton channel, we require:
 - ▶ 1 lepton
 - at least 4 jets, with at least 1 b-tagged jet
 - ★ b-tagging efficiency = 85%
 - ★ c-quark rejection factor = 2.9
 - ★ light quarks rejection factor = 40
- in di-lepton channel, we require:
 - 2 opposite-sign leptons (Z candidates discarded)
 - at least 2 jets, with at least 1 b-tagged jet

- H_T scalar sum of leptons' and jets' p_T
- \bullet events with 2 b-tagged jets have the signal fraction higher than events with 1 b-tagged jet
- extracted signal strength using profile-likelihood fit

- H_T scalar sum of leptons' and jets' p_T
- \bullet events with 2 b-tagged jets have the signal fraction higher than events with 1 b-tagged jet
- extracted signal strength using profile-likelihood fit

- good agreement with MC predictions and previous CMS measurement
- \bullet enhancement of ${\it R}_{\rm pPb}=1.09\pm0.10$ (tot.)
 - relative uncertainty amounts to 9%
 - $t\bar{t}$ cross section in p+p at $\sqrt{s} = 8$ TeV extrapolated to the same \sqrt{s} as p+Pb

arXiv:2405.05078

Petr Balek

charged particles muons

arXiv:2308.16652

Petr Balek

ATLAS highlights

• pedestal + flow modulation

pedestal + Breit-Wigner

Petr Balek

arXiv:2308 16652 3 June 2024 10 / 20

- almost independent on centrality
- similar for p+p and Pb+Pb
- described quite well by Pythia with $b\bar{b}$ and $c\bar{c}$

• described quite well by Pythia with $b\bar{b}$ and $c\bar{c}$

• both $b\bar{b}$ and $c\bar{c}$ are needed to described data

• σ : standard deviation of C_{corr} in $0 < \Delta \phi < 2\pi$

• almost independent on centrality, similar for p+p

• $\sigma:$ standard deviation of $\mathit{C_{corr}}$ in 0 $<\Delta\phi<2\pi$

• $\sigma_{int}^2 = \sigma_{\rm Pb+Pb}^2 - \sigma_{p+p}^2 \dots$ additional broadening

• model-independent limits on *b*-quarks deflection

Petr Balek

- $[p_{\rm T}]$: mean $p_{\rm T}$ of tracks within an event
- $\langle [p_{\rm T}] \rangle$: mean $[p_{\rm T}]$ within many events of the same multiplicity

ATLAS-CONF-2023-061

- assuming stochastic sources of the fluctuations:
 - $k_2 \propto N_{part}^{-1} \propto (N_{ch}^{rec})^{-1}$ • $k_3 \propto N_{part}^{-2} \propto (N_{ch}^{rec})^{-2}$
- true for mid-central to central collisions
- not true for peripheral and very central collisions

ATLAS-CONF-2023-061

collectivity in small systems

• the decorrelation with η is stronger for Xe+Xe than for p+p

 \Rightarrow the mechanism of additional particle production is different

- in p+p, no correlations between particles from jet and underlying event, however there are correlations among particles from underlying event
- flow can be observed in photo-nuclear collisions

→ see talk by Blair Seidlitz, Tuesday, 8:50

summary

- ATLAS offers a whole palette of heavy-ion-related results
- in 2023 Pb+Pb data-taking, we approx. doubled our statistics compared to Run 2
- this year, we expect additional $2-3 \text{ nb}^{-1}$

- all ATLAS heavy-ion results
 - → https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HeavyIonsPublicResults
- all ATLAS results:
 - → https://twiki.cern.ch/twiki/bin/view/AtlasPublic/Publications

Research partly supported by program "Excellence initiative - research university" for the AGH University in Krakow, application #9041.