A brief introduction to Experimental heavy-ion physics

Strangeness in Quark Matter 2024 David Dobrigkeit Chinellato

Thanks for discussions and materials: Francesca Bellini, Auguste Besson, Pol-Bernard Gossiaux, Antonin Maire, Jean-Yves Ollitraut

 \mathbf{m}

Constituents of matter

o ieptoris

6 quarks

 → Quarks carry color charge: Red, green, blue
 → Antiquarks carry anticolor: cyan, magenta, yellow The standard model of particle physics

proton proton

Fundamental interactions

Electromagnetic interaction

Weak interaction

Strong interaction

Gravity

- → Interactions occur via the exchange of force carriers: photons, Z/W, gluons and the Higgs
- → Quarks may ordinarily only be found confined into colorless hadrons

 \rightarrow Can we understand confinement and hadronization?

Understanding confinement

Properties of the QCD vacuum:

- Gluon-gluon self-interaction (non-abelian)
- QCD field lines compressed in flux tube (or "string")

The q-qbar potential is of the form (Cornell potential):

$$V(r) = -\frac{a}{r} + \sigma r$$

- The potential grows with distance
- If pulled apart, the energy in the string increases
- A new q-qbar pair is created once the energy is above production threshold
- No free quark can be obtained by breaking a flux tube \rightarrow confinement

Source: http://www.physics.adelaide.edu.au/

Which QCD energy regime are we dealing with?

Having in mind:

- $\Lambda_{QCD}(m_{Z_{,}} N_{f} = 3) = 244 \text{ MeV}$

In addition, At T = 200 MeV, the typical kinetic energy

- for a non-relativistic particle is E = $3/2 k_B T = 300 MeV$
- for a relativistic particle is $E = 3k_BT = 600 \text{ MeV}$

Low $Q \rightarrow \alpha_s$ is not small! \rightarrow The QCD transition is a non-perturbative QCD problem

- Need models to deal with (phenomenology)
- Use Lattice QCD for calculations from first principles

Source: Particle Data Group (2021)

QCD on the lattice (LQCD): non-perturbative QCD calculations

Wittig, U. Mainz LQCD, sl. 14

$Minkowski space-time, continuum \longrightarrow Euclidean space-time, discretised$									
	Lattice sp Finite volu	$\begin{array}{ll} a, & a^{-1} \sim \Lambda_{\rm UV}, & x_\mu = n_\mu a \\ L^3 \cdot T, & N_s = L/a, & N_t = T/ \end{array}$					a T/a	ı	
	<u>،</u> +	+	+	+	-	+	+	+	
	+ N	+	+	+		1	+	+	
	+	\	+	+	+	+	+	+	
	, + ⊸	+	+	+ N.	+	+	+	+	
(anti)quarks: gluons: field tensor:	$\psi(x), \overline{\psi}$ $U_{\mu}(x) =$ $P_{\mu u}(x)$	$\overline{V}(x)$ = $e^{aA_{\mu}}$ = $U_{\mu}(x)$	$(x) \in (x)U_{\nu}$	SU(3) (x + a)	$(\hat{\mu})U^{\dagger}_{\mu}$	(x + a)	$(\hat{ u})U_{ u}^{\dagger}($	<i>x</i>)	lattice sites links "plaquettes"

LQCD → <u>Wikipedia - LQCD</u> → <u>Wittig, U. Mainz LQCD</u> (If theoretical interest for LQCD, R. Gupta, 150 pages, <u>Introduction to LQCD</u>) Fluctuating quark / gluon fields in discrete space-time lattice

Source: <u>www.physics.adelaide.edu</u>

So far, so good...

The QGP is a state of strongly-interacting matter resulting from the phase transition of nuclear/hadronic (color-neutral) matter under extreme conditions of pressure or temperature

 \rightarrow the universe up to O(1-10µs) after the Big Bang

 \rightarrow the properties of the QGP (have to!) emerge from the fundamental properties of the strong interaction <u>More is different</u>! – P.W. Anderson

 \rightarrow physics of condensed QCD matter

The basic question to this point:

How do I do **measurements** about the QGP and QCD at high densities?

A brief introduction to experimental heavy-ion physics - SQM2024 - D.D. Chinellato

Heavy-ion physics worldwide: present / high energy

Relativistic Heavy Ion Collider, Brookhaven (USA)

Brookhaven RHIC

- Operating since 2000
- Circumference 3.83 km, 2 rings
- Superconducting magnets
- $\sqrt{s_{NN}} = 3 200 \text{ GeV}$ in Au-Au
- Beam energy scan I: 2010-11
- Beam energy scan II: 2019-22
- Ongoing exp: STAR

Heavy-ion physics worldwide: present / high energy

Relativistic Heavy Ion Collider, Brookhaven (USA)

CERN SPS

- Operating since 1986
- Circumference 6.9 Km
- max p = 450 A/Z GeV
- $\sqrt{s_{NN}} < 20 \text{ GeV}$
- Ongoing: NA61/Shine

Super Proton Syncrotron and Large Hadron Collider, CERN (Switzerland/France)

LHC

- Operating since 2009
- Run III: started in 2022
- Circumference: 27 km
- B-field: 8 T, superconducting
- pp √s = 0.9 13.6 TeV
- Pb-Pb $\sqrt{s_{NN}} = 2.76-5.5 \text{ TeV}$
- Main ongoing: ALICE, ATLAS, CMS, LHCb

CERN Meyrin site

Brookhaven RHIC

- Operating since 2000
- Circumference 3.83 km, 2 rings
- Superconducting magnets
- $\sqrt{s_{NN}} = 3 200 \text{ GeV}$ in Au-Au
- Beam energy scan I: 2010-11
- Beam energy scan II: 2019-22
- Ongoing exp: STAR

A brief introduction to experimental heavy-ion physics - SQM2024 D.D. Chinellato

Characterising a heavy-ion collision

We can control a posteriori the geometry of the collision by selecting in centrality.

Centrality = fraction of the total hadronic cross section of a nucleus -nucleus collision, typically expressed in percentile, and related to the impact parameter (b)

Other variables related to centrality:

- N_{coll}, number of binary nucleon nucleon collisions
- N_{part} number of participating nucleons

Centrality selection in heavy-ion collisions

More **central**, ie. "head-on" collisions

- \rightarrow smaller impact parameter
- \rightarrow larger overlap region
- \rightarrow more participants
- \rightarrow more particles produced

More **peripheral** collision

- \rightarrow larger impact parameter
- \rightarrow smaller overlap region
- \rightarrow less participants
- \rightarrow fewer particles produced

Centrality is determined by counting the number of particles (multiplicity) or measuring the energy deposition in a **region of phase space independent from the measurement**, to avoid biases/autocorrelations in the results.

The standard model of heavy-ion collisions

The hadron gas phase and freeze-outs

After hadronisation, the system is a hot (T<155 MeV) and dense gas of hadrons and resonances.

Chemical freeze-out

- Inelastic collisions stop
- Relative particle abundances are fixed

Kinetic freeze-out

- (pseudo)elastic collisions stop
- Momentum distributions are fixed

The "standard model" of quark-gluon plasma physics: Key experimental features of a QGP in the soft sector

Soft regime:

non-perturbative, low p_T (a few GeV/c) physics Information regarding hard scatterings mostly not recoverable / not relevant

The "standard model" of quark-gluon plasma physics: Key experimental features of a QGP in the soft sector

Thermal particle production

- Particle species are determined exclusively due to mass and quantum numbers of each species ('thermal' chemical/species spectrum)
 - The proportion of states (species) conveys information about basic thermodynamic properties of the system, such as temperature
- Broadly measured via identified particle yield measurements
- Broadly described via statistical hadronization models ('thermal models')

Soft regime:

non-perturbative, low p_T (a few GeV/c) physics Information regarding hard scatterings mostly not recoverable / not relevant

Measuring identified particle production rates

Thermal particle production: statistical hadronization models

... serve to model an ideal relativistic gas of hadrons and resonances in **chemical equilibrium** (as the result of the hadronization of a QGP in thermodynamical equilibrium)

Particle abundances are obtained from the partition function of a Grand Canonical (GC) ensemble

$$n_i = N_i/V = -\frac{T}{V} \frac{\partial \ln Z_i}{\partial \mu} = \frac{g_i}{2\pi^2} \int_0^\infty \frac{p^2 \mathrm{d}p}{\exp[(E_i - \mu_i)/T] \pm 1}$$

where chemical potentials for quantum numbers are constrained with conservation laws.

$$\mu_{i} = \mu_{B}B_{i} + \mu_{S}S_{i} + \mu_{I_{3}}I_{3,i} + \mu_{C}C_{i}$$

Predict yields (see right figure) at a given temperature
 Fit measured particle yields (or ratios) to extract µ_B, T_{ch}, V.

A. Andronic et al., Nature 561, 321 (2018

Production of (most) light-flavour hadrons (and anti-nuclei) is described (χ^2 /ndf ~ 2) by thermal models with a single chemical freeze-out temperature, **T**_{ch} **≈ 156 MeV**

→ Approaches the critical temperature roof from lattice QCD: limiting temperature for hadrons!

→ the success of the model in fitting yields over 10 orders of magnitude supports the picture of a system in local thermodynamical equilibrium

Strangeness production

- One of the original traces of the QGP
 - Thermal production via gluon fusion in a QGP scenario •
 - K^{0}_{S} , Λ (1s), Ξ (2s) and Ω (3s) in Pb-Pb at 5.02 TeV:
 - Production wrt to π enhanced •

Strangeness production

- One of the original traces of the QGP
 - Thermal production via gluon fusion in a QGP scenario
- K^{0}_{S} , Λ (1s), Ξ (2s) and Ω (3s) in Pb-Pb at 5.02 TeV:
 - Production wrt to π enhanced
- Also studied in p-Pb and pp
 - Strangeness increases with multiplicity: a universal trend!

Strangeness production

- One of the original traces of the QGP
 - Thermal production via gluon fusion in a QGP scenario
- K^0_{S} , Λ (1s), Ξ (2s) and Ω (3s) in Pb-Pb at 5.02 TeV:
 - Production wrt to π enhanced
- Also studied in p-Pb and pp
 - Strangeness increases with multiplicity: a universal trend!
- Not described by event generators when published

A major milestone from the past decade in the understanding of high-density QCD physics

[1] Comput. Phys. Commun. 178 (2008) 852-867

The "standard model" of quark-gluon plasma physics: Key experimental features of a QGP in the soft sector

Soft regime:

non-perturbative, low $p_{\rm T}$ (a few GeV/*c*) physics Information regarding hard scatterings mostly not recoverable / not relevant

Thermal particle production

- Particle species are determined exclusively due to mass and quantum numbers of each species ('thermal' chemical/species spectrum)
 - The proportion of states (species) conveys information about basic thermodynamic properties of the system, such as temperature
- Broadly measured via identified particle yield measurements
- Broadly described via statistical hadronization models ('thermal models')

Collectively expanding medium

- The formation of a new state of strongly interacting matter will lead to many particles emitted with common properties ('collectively')
- Broadly measured via momentum measurements
- Broadly described via hydrodynamic expansion models ('hydro'), particle transport models

A collectively expanding fluid: radial flow

A collective motion is superimposed to the thermal motion of particles \rightarrow the system as a medium

Radial flow: radial expansion of a medium in the vacuum under a common velocity field

 \rightarrow Affects the low p_T distribution of hadrons and their ratios in a mass-dependent way

 \rightarrow higher mass leads to higher momentum if velocity similar!

Radial flow in the proton spectra

At low p_{T_i} radial flow "pushes" particles to higher momenta \rightarrow spectra get "harder" for more central collisions \rightarrow mass dependence

A simplified hydrodynamical model, the Boltzmann-Gibbs blast-wave model is used to **quantify radial flow and the kinetic freeze-out temperature.**

A brief introduction to experimental heavy-ion physics - SQM2024 - D.D. Chinellato

An expanding medium and anisotropic flow

Initial geometrical anisotropy ("almond" shape) in noncentral HI collisions \rightarrow eccentricity

Pressure gradients develop \rightarrow more and faster particles along the reaction plane than out-of-plane

Scatterings among produced particles convert anisotropy in coordinate space into an observable momentum anisotropy

 \rightarrow anisotropic flow

ightarrow quantified by a Fourier expansion in azimuthal angle arphi

$$v_n = \text{harmonics}$$

$$E\frac{d^3N}{dp^3} = \frac{1}{2\pi} \frac{d^2N}{p_{\rm T}dp_{\rm T}dy} (1 + 2\sum_{n=1}^{\infty} v_n^{\ell} \cos[n(\varphi - \Psi_n)]),$$

Anisotropic flow measurements

The strong centrality dependence of v_2 reflects the degree of "anisotropy" in initial geometry.

Fluctuations of the initial state energy-density lead to different shapes of the overlap region \rightarrow non-zero higher-order flow coefficients ("harmonics")

Hydrodynamical modeling

Ideal hydrodynamics

- applies to a system in local equilibrium (e.g. thermodynamical)
- requires energy and charge conservation
- system is described by energy density $\boldsymbol{\varepsilon}$, pressure P, velocity u^v, and charge n and by 5 equation of motion, closed by one equation-of-state (EOS) $\boldsymbol{\varepsilon} = \boldsymbol{\varepsilon}(P)$
- The response of the system to external influence is controlled by the EOS

Viscous hydrodynamics

- Includes corrections for dissipative effects: bulk ζ and shear viscosity η , charge diffusion, κ

$$\nabla_{\mu}T^{\mu\nu} = 0 \qquad \nabla_{\mu}J^{\mu}_{B} = 0$$

Characterizing the QGP using multiple measurements

Bayesian analysis of yields, mean p_T, flow harmonics measured by ALICE has been used to **extract QGP properties**

Elliptic flow across systems

Collective expansion

• Collective expansion can also be measured by correlating two particles in $\Delta \eta$ (difference in rapidity) and $\Delta \varphi$ (difference in azimuthal angle).
Elliptic flow across systems

Collective expansion

- Collective expansion can also be measured by correlating two particles in $\Delta \eta$ (difference in rapidity) and $\Delta \varphi$ (difference in azimuthal angle).
- Also observed in p-Pb and pp
 - Initial condition not necessarily elliptic
 - **Experimental**: under which conditions does this **not** happen?
 - Pheno/theory: collective expansion also at play? Or some other (common?) phenomenon?

MILESTO

Oh!

The "standard model" of quark-gluon plasma physics: Key experimental features of a QGP in the hard sector

Hard regime:

perturbative, high p_T (many GeV/*c*) physics Hard scattering-dominated, but could be modified due to presence of medium

The "standard model" of quark-gluon plasma physics: Key experimental features of a QGP in the hard sector

Jet physics

- Physics of high-momentum particles coming from hard scatterings
- Serve as probes of the QGP: energy loss marks interaction intensity and thus transport properties of the QGP
- In-medium modification of the strong force and fragmentation
- Broadly measured via jet reconstruction and particle correlations
- Broadly described by more elementary QCD (leading order any beyond, PYTHIA / Jetscape / others) + transport models

Hard regime:

perturbative, high p_T (many GeV/*c*) physics Hard scattering-dominated, but could be modified due to presence of medium

Jets

In the early stages of the collision, hard scatterings produce back-to-back recoiling partons, which fragment into collimated "sprays" of hadrons.

 \rightarrow in-vacuum fragmentation

ATLAS, pp collision event display

Jets

In the early stages of the collision, hard scatterings produce back-to-back recoiling partons, which fragment into collimated "sprays" of hadrons.

 \rightarrow in-vacuum fragmentation

When a QGP is formed, the colored partons traverse and interact with a colored medium.

- \rightarrow in-medium fragmentation
- \rightarrow jet "quenching" (energy loss)

Goal: understand the nature of this energy loss to characterize the strongly-interacting QGP

The nuclear modification factor: $\mathsf{R}_{\mathsf{A}\mathsf{A}}$

If a AA collision is a incoherent superposition of independent pp collisions, the p_T spectra in AA collisions can be obtained by scaling the p_T spectra in pp collisions by the number of nucleon-nucleon collisions, N_{coll} :

$$\mathrm{d}N_{AA} / \mathrm{d}p_T = N_{coll} \times \mathrm{d}N_{pp} / \mathrm{d}p_T$$

and $R_{AA} = 1$ at high $p_T \rightarrow$ the medium is transparent to the passage of partons

If $R_{AA} < 1$ at high p_T \rightarrow the medium is opaque to the passage of partons \rightarrow parton-medium final state interactions, energy loss, modification of fragmentation in the medium

Evidence of parton energy loss in QGP

$R_{AA}(p_T) =$	1	dN_{AA}/dp_T
	$\overline{\left\langle N_{coll} \right\rangle}$	dN_{pp}/dp_T

A strong suppression of **high-p_T hadrons** and **jets** is observed in central Pb-Pb collisions.

Evidence of parton energy loss in QGP

A strong suppression of **high-p_T hadrons** and **jets** is observed in central Pb-Pb collisions. No suppression observed in p-Pb collisions, nor for the color-less Z bosons and photons. \rightarrow Jet quenching is explained as **parton energy loss in a strongly interacting plasma** dN_{nn}/dp_T

 $R_{AA}(p_T) = -$

The "standard model" of quark-gluon plasma physics: Key experimental features of a QGP in the hard sector

Hard regime:

perturbative, high p_T (many GeV/c) physics Hard scattering-dominated, but could be modified due to presence of medium

Jet physics

- Physics of high-momentum particles coming from hard scatterings
- Serve as probes of the QGP: energy loss marks interaction intensity and thus transport properties of the QGP
- In-medium modification of the strong force and fragmentation
- Broadly measured via jet reconstruction and particle correlations
- Broadly described by more elementary QCD (leading order any beyond, PYTHIA / Jetscape / others) + transport models

Heavy flavour quarks: charm, beauty and quarkonia

- Flavour dependence of medium interactions
- Ideal probes of the QGP: production only via hard scattering since mass much larger than medium temperature
- N.B.: not necessarily 'hard' in terms of final momentum
- Broadly measured via heavy-flavour particle identification / tagging
- Broadly described by more elementary QCD (leading order any beyond, PYTHIA / Jetscape / others) + transport models

Charm and beauty

Heavy flavour quarks: m(charm) ~ 1.3 GeV/c² m(beauty) ~ 4.7 GeV/c²

are ideal probes of the QGP at the LHC:

- large production cross sections
- Produced in initial hard parton scatterings
- controlled values of mass and colour charge of the propagating parton
- "brownian" motion through the medium, diffusion
- sensitive to QGP hadronisation (baryon/meson)

Energy loss of charm and beauty

Charm and beauty lose energy via gluon radiation + elastic collisions

Due to the large masses, radiative energy loss is subject to the dead cone effect = suppression of the gluon radiation emitted by a (slow) heavy quark at small angles, $\vartheta < \vartheta_{DC} \sim m_q/E_q$

- \rightarrow hierarchy in energy loss: $\Delta E_g > \Delta E_c > \Delta E_b$
- \rightarrow radiative energy loss reduced by 25% (c) and 75% (b) [μ = 1 GeV/c²]

Average transverse momentum transfer

Mean free path ~1/density

Nuclear modification of charm and beauty

A strong suppression is observed in the R_{AA} of D mesons J/psi from b decay. J/ ψ from beauty is less suppressed than D mesons from charm $\rightarrow \Delta E_c > \Delta E_b$

A brief introduction to experimental heavy-ion physics - SQM2024 - D.D. Chinellato

Collisional energy loss

It depends on

• path length through the medium, L (linearly)

• parton type

– For light quarks

– For heavy quarks

- temperature of the medium, T
- mass of the heavy quark M
- average transverse momentum transfer $\boldsymbol{\mu}$ in the medium

\rightarrow Data are well described by models that include both collisional and radiative E_{loss}

And beyond ...

Photon measurements

• Reveal information about QGP temperature

Event-by-event / correlation measurements

- Correlations in flow reveal more about origin of collectivity
- Quantum number correlations shed light on QGP dynamics

Hadron physics

- Femtoscopy as tool to study hadron-hadron interactions
- Characterisation (and formation) of heavy nuclei
- Strong connections to astrophysics and other fields

Relating traditional heavy-ion and particle physics

• Small systems studies: how do different views relate?

Extras

A brief introduction to experimental heavy-ion physics - SQM2024 - D.D. Chinellato

(Intermezzo: kinematic variables in collider physics)

Momentum and transverse momentum: $p = \sqrt{p_L^2 + p_T^2}$

Transverse mass: $m_T := \sqrt{m^2 + p_T^2}$

Rapidity (generalizes longitudinal velocity $\beta_L = p_L/E$): $y := \operatorname{arctanh} \beta_L = \frac{1}{2} \ln \frac{1 + \beta_L}{1 - \beta_L} = \frac{1}{2} \ln \frac{E + p_L}{E - p_L}$ - In a collider where 2 beams of different ions: $y_{CM} = \frac{1}{2} \ln \frac{Z_1 A_2}{A_1 Z_2}$

- In fixed-target mode: $y_{CM} = (y_{\mathrm{target}} + y_{\mathrm{beam}})/2 = y_{\mathrm{beam}}/2$

The rapidity can be approximated by pseudorapidity in the ultra-relativistic limit (p>>m):

$$y = \frac{1}{2} \ln \frac{E + p \cos \vartheta}{E - p \cos \vartheta} \stackrel{p \gg m}{\approx} \frac{1}{2} \ln \frac{1 + \cos \vartheta}{1 - \cos \vartheta} = \frac{1}{2} \ln \frac{2 \cos^2 \frac{\vartheta}{2}}{2 \sin^2 \frac{\vartheta}{2}} = -\ln \left[\tan \frac{\vartheta}{2} \right] =: \eta$$
$$\cos(2\alpha) = 2 \cos^2 \alpha - 1 = 1 - 2 \sin^2 \alpha$$

where artheta is the angle between the direction of the beam and the particle. In general $y \neq \eta$, especially at low momenta.

Heavy-ion physics worldwide: future / low energy

Origins of collectivity and role of system evolution

Origins of collectivity and role of system evolution

Hydro(-like) evolution Hadronization "classic" collectivity Pb-Pb Classical collectivity is from system evolution ٠ and final state effects: QGP Other options? String shoving? Momentum correlations in the **initial state** • could also lead to similar signatures Experimentally, community focus on: In-depth study of flow correlations Rapidity as a tool for 3D dynamics Time Look for extremes: e^+e^- , γA , BES / low E 3. Understanding the hard/soft interplay

Observation of non-zero flow in photo-nuclear events

- Ultra-peripheral collisions: photonuclear processes
 - High-multiplicity events selected for analysis
 - Non-zero v₂,
 - ... but lower than hadron-hadron collisions!
- Similar to result by CMS [2] in γ p interactions (in p-Pb)
- Can be explained using CGC predictions [1]
- Caveat: v₂ coefficients vulnerable to (residual) non-flow
- Begs the question: can we characterize these collisions?
 - What about other QGP signatures?

[1] Phys. Rev. D 103, 054017
[2] <u>https://arxiv.org/abs/2204.13486</u>

Search for QGP signatures in photo-nuclear events

Search for QGP signatures in photo-nuclear events

What about e^+e^- collisions?

- Minimum-bias e^+e^- collisions: exhibit no near-side ridge
- However: e^+e^- provides access to various processes

What about e^+e^- collisions?

- Minimum-bias e^+e^- collisions: exhibit no near-side ridge
- However: e^+e^- provides access to various processes
 - -High-multiplicity e^+e^- enriched with $e^+e^- \rightarrow W^+W^-$: a two-string system

65

p_ (GeV)

MOD

LEP2, √s = 183-209 GeV

CMS pp 13 TeV, v^{sub}{2}

CMS pp 7 TeV, v^{sub}{2}

CMS pp 5 TeV, v^{sub}{2}

 $\Delta v_2 = v_2^{\text{data}} - v_2^{\text{MC}}$

pp

Flow in individual jets?

 \rightarrow See <u>talk by Parker Gardner</u>

- Elliptic flow with respect to jet axis anomalously high for high N_{ch}^{j}
- Possibly a sign of collectivity in jets?

Hyperon polarization and collectivity

TARGET

- Hydrodynamic flow impinges polarization to hyperons

TARGET

Studying how particles are emitted with respect to each other

FERMILAB-Conf-90/249-E [E-741/CDF]

Toward a Standardization of Jet Definitions

We propose to use a standard jet definition using cones in $\eta - \phi$ space. This has the advantage that it is related to the prescription for handling radiation in QCD introduced by Sterman and Weinberg [7]. The cone algorithms in

Let's attempt something slightly different:

- Let's try to look into how each particle is laid out with respect to others in $\eta-\varphi$ space!
- This allows us to study jets from a different, complementary point of view
- ...and look at a few other phenomena as well

based detector goes here

(Discialmer: the squares on the cylindrical detector do not denote constant- $\Delta\eta$ slices and are meant for illustrative purposes only)

Two-particle correlation measurements: the basic calculation

Same-event correlation function: $C_{same}(\Delta\eta, \Delta\varphi)$ How many times a certain associated particle was found in a certain position with respect to a **trigger** particle

Two-particle correlation measurements: the basic calculation

Same-event correlation function: $C_{same}(\Delta\eta, \Delta\varphi)$ How many times a certain associated particle was found in a certain position with respect to a **trigger** particle

Two-particle correlation measurements: the basic calculation

Same-event correlation function: $C_{same}(\Delta\eta, \Delta\phi)$ How many times a certain associated particle was found in a certain position with respect to a **trigger** particle

Turns out this is an acceptance effect.

- Whenever you have a trigger, a certain region of pseudorapidity will be removed because you ran out of detector to measure it.
- This is an effect you do not want! \rightarrow correction needed
- And it is probabilistic (meaning: multiplicative...)
Two-particle correlation measurements: the basic calculation

Same-event correlation function: $C_{same}(\Delta\eta, \Delta\phi)$ How many times a certain associated particle was found in a certain position with respect to a **trigger** particle

Mixed-event correlation function: $C_{mixed}(\Delta\eta, \Delta\phi)$ What is the probability you will miss the associated particle at a given $\Delta\eta$? **Interesting**: normalized to 1 at $\Delta\eta = \Delta\phi = 0$

Two-particle correlation measurements: the basic calculation

Same-event correlation function: $C_{same}(\Delta\eta, \Delta\phi)$ How many times a certain associated particle was found in a certain position with respect to a **trigger** particle

Mixed-event correlation function: $C_{mixed}(\Delta\eta, \Delta\phi)$ What is the probability you will miss the associated particle at a given $\Delta\eta$? **Interesting**: normalized to 1 at $\Delta\eta = \Delta\phi = 0$

Corrected correlation function: $C(\Delta \eta, \Delta \phi) = \frac{C_{same}(\Delta \eta, \Delta \phi)}{C_{mixed}(\Delta \eta, \Delta \phi)}$

 \rightarrow ok, that's the one!

The 'standard' components of a correlation

 \rightarrow in the absence of collective expansion, a correlation will be comprised of:

- **Near-side jet**: particles emitted in the same direction as your trigger particle.
- Away-side jet: particles emitted in exactly the opposite direction as your trigger. Needed for momentum conservation.
- **Underlying event**: a certain number of particles that is in the event but are seemingly unrelated (any random $\Delta \phi$) to your trigger particle.

Fantastically useful already!

The 'standard' components of a correlation

 \rightarrow in the absence of collective expansion, a correlation will be comprised of:

- **Near-side jet**: particles emitted in the same direction as your trigger particle.
- Away-side jet: particles emitted in exactly the opposite direction as your trigger. Needed for momentum conservation.
- **Underlying event**: a certain number of particles that is in the event but are seemingly unrelated (any random $\Delta \phi$) to your trigger particle.

Fantastically useful already! But ...

- Warning 1: this is an *average* emission function effectively calculated for many jet-like particle structures
- Warning 2: the underlying event is not free of jets!
- o Warning 3: Many resonances decay into two particles...

The STAR observation of jet quenching (> 20 years ago!)

STAR Collab, Phys.Rev.Lett.91 (2003) 072304

This simple picture breaks down in AA:

- The away side is missing!
- It has been "quenched" by the medium
- QCD matter is opaque to high momentum particles
- not present in d+Au: **'cold' matter is transparent**
- An example of **complementarity** with yesterday's nuclear modification factor R_{AA} !

The STAR observation of jet quenching (> 20 years ago!)

STAR Collab, Phys.Rev.Lett.91 (2003) 072304

This simple picture breaks down in AA:

- The away side is missing!
- It has been "quenched" by the medium
- QCD matter is opaque to high momentum particles
- not present in d+Au: **'cold' matter is transparent**
- An example of **complementarity** with yesterday's nuclear modification factor R_{AA} !

However: in order to do this measurement, some background effects and correlations unrelated to jets had to be accounted for ...

 \rightarrow What are those effects?