
A brief introduction to experimental heavy-ion physics - SQM2024 - D.D. Chinellato 1

A brief introduction to

Experimental heavy-ion physics
Strangeness in Quark Matter 2024

David Dobrigkeit Chinellato

2024

Thanks for discussions and materials: 
Francesca Bellini, Auguste Besson, 

Pol-Bernard Gossiaux, Antonin Maire, 
Jean-Yves Ollitraut



Constituents of matter Fundamental interactions

6 quarks

6 leptons

→ Quarks carry color charge:
 Red, green, blue 
→ Antiquarks carry anticolor : 
 cyan, magenta, yellow
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Electromagnetic interaction

Weak interaction

Strong interaction

→ Interactions occur via 
the exchange of force 

carriers: photons, Z/W, 
gluons and the Higgs

→ Quarks may ordinarily 
only be found confined 

into colorless hadrons

→ Can we understand 
confinement and hadronization?

proton proton

Gravity

The standard model of 
particle physics
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Understanding confinement
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Properties of the QCD vacuum:
• Gluon-gluon self-interaction (non-abelian)
• QCD field lines compressed in flux tube (or “string”)

The q-qbar potential is of the form (Cornell potential):

• The potential grows with distance
• If pulled apart, the energy in the string increases
• A new q-qbar pair is created once the energy is above production threshold
• No free quark can be obtained by breaking a flux tube → confinement

Source: http://www.physics.adelaide.edu.au/ 

http://www.physics.adelaide.edu.au/
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The phase diagram of QCD matter
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How can this be studied?
• High baryonic density: cosmology, neutron stars

• Actually not easy to study!
• High temperature: heavy-ion collisions at the LHC

• Evolution: cool-down back into ordinary matter!
• High temperature, non-zero net baryonic density:

• Lower-energy heavy-ion collisions (RHIC, …)
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Which QCD energy regime are we dealing with?

Having in mind:
- ΛQCD(mZ, Nf = 3) = 244 MeV  

In addition, At T = 200 MeV, the typical kinetic energy 
• for a non-relativistic particle is E = 3/2 kBT = 300 MeV
• for a relativistic particle is E = 3kBT = 600 MeV

Low Q → 𝛼s is not small! 
→ The QCD transition is a non-perturbative QCD problem

- Need models to deal with (phenomenology)
- Use Lattice QCD for calculations from first principles Source: Particle Data Group (2021)

https://pdg.lbl.gov/2021/reviews/rpp2021-rev-qcd.pdf


QCD on the lattice (LQCD): non-perturbative QCD calculations
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Source: www.physics.adelaide.edu

Wittig, U. Mainz LQCD, sl.14

LQCD
→Wikipedia - LQCD
→ Wittig, U. Mainz LQCD
(If theoretical interest for LQCD, R. Gupta, 150 pages, Introduction to LQCD)

Fluctuating quark / gluon fields 
in discrete space-time lattice

http://www.physics.adelaide.edu/
http://www.gk-eichtheorien.physik.uni-mainz.de/Dateien/Wittig.pdf
http://en.wikipedia.org/wiki/Lattice_QCD
http://www.gk-eichtheorien.physik.uni-mainz.de/Dateien/Wittig.pdf
http://arxiv.org/abs/hep-lat/9807028
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So far, so good…

The QGP is a state of strongly-interacting matter resulting 
from the phase transition of nuclear/hadronic (color-neutral) 
matter under extreme conditions of pressure or temperature

→ the universe up to O(1-10µs) after the Big Bang

→ the properties of the QGP (have to!) emerge from the 
fundamental properties of the strong interaction 
                       More is different! – P.W. Anderson

→ physics of condensed QCD matter

The basic question to this point: 

How do I do measurements about the QGP and QCD at high densities? 
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https://www.science.org/doi/10.1126/science.177.4047.393
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Heavy-ion physics worldwide: present / high energy

Brookhaven RHIC 
• Operating since 2000
• Circumference 3.83 km, 2 rings
• Superconducting magnets
• √sNN = 3 - 200 GeV in Au-Au 
• Beam energy scan I: 2010-11
• Beam energy scan II: 2019-22
• Ongoing exp: STAR

Relativistic Heavy Ion Collider, Brookhaven (USA)

AGS
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Heavy-ion physics worldwide: present / high energy

Brookhaven RHIC 
• Operating since 2000
• Circumference 3.83 km, 2 rings
• Superconducting magnets
• √sNN = 3 - 200 GeV in Au-Au 
• Beam energy scan I: 2010-11
• Beam energy scan II: 2019-22
• Ongoing exp: STAR

Geneva

Super Proton Syncrotron and Large Hadron Collider,
CERN (Switzerland/France)

CERN SPS
• Operating since 1986 
• Circumference 6.9 Km
• max p = 450 A/Z GeV 
• √sNN < 20 GeV
• Ongoing: NA61/Shine

CERN LHC
• Operating since 2009
• Run III: started in 2022
• Circumference: 27 km
• B-field: 8 T, superconducting
• pp √s = 0.9 – 13.6 TeV
• Pb-Pb √sNN = 2.76-5.5 TeV
• Main ongoing: ALICE, ATLAS, CMS, LHCb

Relativistic Heavy Ion Collider, Brookhaven (USA)

AGS

LHC

CERN Meyrin site
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Characterising a heavy-ion collision
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We can control a posteriori the geometry of the collision by selecting in centrality.

Centrality = fraction of the total hadronic cross section of a nucleus-nucleus collision, typically expressed in 
percentile, and related to the impact parameter (b)

Other variables related to centrality:
• Ncoll, number of binary nucleon-nucleon collisions
• Npart number of participating nucleons

Collision 
overlap zone

spectators

participants

b
beam axis



Centrality selection in heavy-ion collisions
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More peripheral collision
→ larger impact parameter
→ smaller overlap region
→ less participants
→ fewer particles produced

Centrality is determined by counting the number of particles
(multiplicity) or measuring the energy deposition in a region of phase
space independent from the measurement, to avoid
biases/autocorrelations in the results.

ALICE, PRL 106 (2011) 032301, PRC 91 (2015) 064905

PbPb

More central, ie. “head-on” collisions
→ smaller impact parameter
→ larger overlap region
→ more participants
→ more particles produced



The standard model of heavy-ion collisions
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Initial state

Pb     Pb     

QGP formation Hydrodynamic 
expansion

Detection

ALICE

Hadronization and 
freeze-out

Credits: MADAI project

Hard 
scatterings

Time 𝝉 = 0 𝝉 ~ 1 fm/c 𝝉 ~ 10 fm/c 𝝉 > 10 pm/c

Temperature T ~ 200-800 MeV [1]

Tc, lQCD ~ 155-159 MeV [2,3]

T ~ 155-100 MeV [4]

[1] F. Gardim et al. Nature Phys. 16 (2020) 6, 615-619
[2] A. Bazavov et al., Phys. Lett. B 795 (2019)
[3] Borsaniy et al. PRL 125 (2020) 5, 052001
[4] A. Andronic et al., Nature 561 (2018) 7723, 321-330

No direct observation of the QGP is possible 
à rely on emerging particles as “probes”

http://madai.phy.duke.edu/indexaae2.html?page_id=503


The hadron gas phase and freeze-outs
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Hadronisation
Tc = (155 - 159) MeV
from lQCD
 

Chemical f.o.

Kinetic f.o.

After hadronisation, the system is a hot (T< 155 
MeV) and dense gas of hadrons and 
resonances.

Chemical freeze-out
• Inelastic collisions stop
• Relative particle abundances are fixed

Kinetic freeze-out
• (pseudo)elastic collisions stop
• Momentum distributions are fixed



The “standard model” of quark-gluon plasma physics: 

Key experimental features of a QGP in the soft sector
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Soft regime: 
non-perturbative, low pT (a few GeV/c) physics
Information regarding hard scatterings mostly 

not recoverable / not relevant



The “standard model” of quark-gluon plasma physics: 

Key experimental features of a QGP in the soft sector
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Thermal particle production
• Particle species are determined exclusively due to mass and quantum 

numbers of each species (‘thermal’ chemical/species spectrum)
• The proportion of states (species) conveys information about basic 

thermodynamic properties of the system, such as temperature
• Broadly measured via identified particle yield measurements 
• Broadly described via statistical hadronization models (‘thermal models’) 

Soft regime: 
non-perturbative, low pT (a few GeV/c) physics
Information regarding hard scatterings mostly 

not recoverable / not relevant



Measuring identified particle production rates

π., K and p are the most abundant hadronic 
species produced in the collision 
→ Integrate d2N/(dydpT) spectra over pT to 
extract yields: dN/dy.

(N.B.: “dy” often denotes measurments at |y|<0.5)
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charged
kaons

charged
pions

protons everything else



Particle abundances are obtained from the partition function 
of a Grand Canonical (GC) ensemble

where chemical potentials for quantum numbers are constrained with 
conservation laws. 

q Predict yields (see right figure) at a given temperature
q Fit measured particle yields (or ratios) to extract µB, Tch, V. 

Thermal particle production: statistical hadronization models

… serve to model an ideal relativistic gas of hadrons and resonances in chemical equilibrium 
(as the result of the hadronization of a QGP in thermodynamical equilibrium)

A brief introduction to experimental heavy-ion physics - SQM2024 - D.D. Chinellato

A. Andronic et al., Nature 561, 321 (2018
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Chemical freeze-out temperature

Production of (most) light-flavour hadrons (and anti-nuclei) is described (χ2/ndf ~ 2) by thermal models with a 
single chemical freeze-out temperature, Tch ≈ 156 MeV 
→ Approaches the critical temperature roof from lattice QCD: limiting temperature for hadrons!
→ the success of the model in fitting yields over 10 orders of magnitude supports the picture of a system in local 
thermodynamical equilibrium

A brief introduction to experimental heavy-ion physics - SQM2024 - D.D. Chinellato 16

Nature volume 561, pages 321–330 (2018)

https://www.nature.com/
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Strangeness production
• One of the original traces of the QGP

• Thermal production via gluon fusion in a QGP scenario

• K0S, Λ (1s), Ξ (2s) and Ω (3s) in Pb-Pb at 5.02 TeV: 
• Production wrt to 𝜋 enhanced
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Strangeness production
• One of the original traces of the QGP

• Thermal production via gluon fusion in a QGP scenario

• K0S, Λ (1s), Ξ (2s) and Ω (3s) in Pb-Pb at 5.02 TeV: 
• Production wrt to 𝜋 enhanced

• Also studied in p-Pb and pp 
• Strangeness increases with multiplicity: a universal trend!
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Strangeness production
• One of the original traces of the QGP

• Thermal production via gluon fusion in a QGP scenario

• K0S, Λ (1s), Ξ (2s) and Ω (3s) in Pb-Pb at 5.02 TeV: 
• Production wrt to 𝜋 enhanced

• Also studied in p-Pb and pp 
• Strangeness increases with multiplicity: a universal trend!

• Not described by event generators when published

[1] Comput. Phys. Commun. 178 (2008) 852–867

[1]
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A major milestone from the past decade in the 
understanding of high-density QCD physics

Oh!



The “standard model” of quark-gluon plasma physics: 

Key experimental features of a QGP in the soft sector

A brief introduction to experimental heavy-ion physics - SQM2024 - D.D. Chinellato 18

Collectively expanding medium
• The formation of a new state of strongly interacting matter will lead 

to many particles emitted with common properties (‘collectively’)
• The intensity of collective expansion encodes properties of the 

medium, e.g. energy density ⇆ pressure 
• Broadly measured via momentum measurements 
• Broadly described via hydrodynamic expansion models (‘hydro’), 

particle transport models

Thermal particle production
• Particle species are determined exclusively due to mass and quantum 

numbers of each species (‘thermal’ chemical/species spectrum)
• The proportion of states (species) conveys information about basic 

thermodynamic properties of the system, such as temperature
• Broadly measured via identified particle yield measurements 
• Broadly described via statistical hadronization models (‘thermal models’) 

Soft regime: 
non-perturbative, low pT (a few GeV/c) physics

 ph

Information regarding hard scatterings mostly 
not recoverable / not relevant



A collective motion is superimposed to the thermal motion of 
particles → the system as a medium

Radial flow: radial expansion of a medium in the vacuum under a 
common velocity field
→ Affects the low pT distribution of hadrons and their ratios in a 
mass-dependent way 
→ higher mass leads to higher momentum if velocity similar!

A collectively expanding fluid: radial flow
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R. Snellings



Radial flow in the proton spectra
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At low pT, radial flow “pushes” particles to higher momenta
→ spectra get “harder” for more central collisions
→ mass dependence

A simplified hydrodynamical model, the Boltzmann-Gibbs blast-wave 
model is used to quantify radial flow and the kinetic freeze-out 
temperature.

20

Increasing radial flow

More central (higher
multiplicity) events have: 
• lower Tkin
• higher flow velocity

Tkin~ 100-140 MeV

Centrality/multiplicity



Initial geometrical anisotropy (”almond” shape) in non-
central HI collisions → eccentricity 

Pressure gradients develop → more and faster particles 
along the reaction plane than out-of-plane

Scatterings among produced particles convert anisotropy 
in coordinate space into an observable momentum 
anisotropy
→ anisotropic flow 
→ quantified by a Fourier expansion in azimuthal angle 𝜑

An expanding medium and anisotropic flow

A brief introduction to experimental heavy-ion physics - SQM2024 - D.D. Chinellato 21

vn = harmonics 𝜑 - ΨRP



Anisotropic flow measurements
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ALICE, PLB 784 (2018) 82-95

v2

v3
v4

The strong centrality dependence of v2  reflects the degree of  “anisotropy” in initial geometry. 

Fluctuations of the initial state energy-density lead to different shapes of the overlap region 
→ non-zero higher-order flow coefficients (“harmonics”)

22

PRC 101, 024906 (2020)

Li Yan 2018 Chin. Phys. C 42 042001

Xe-Xe Pb-Pb

Non-flow removed



Hydrodynamical modeling
Ideal hydrodynamics 
- applies to a system in local equilibrium (e.g. thermodynamical) 
- requires energy and charge conservation 
- system is described by energy density 𝜺, pressure P, velocity u𝜐, and charge n and by 5 equation of motion, 

closed by one equation-of-state (EOS) 𝜺 = 𝜺(P)
- The response of the system to external influence is controlled by the EOS

Viscous hydrodynamics
- Includes corrections for dissipative effects: 

bulk 𝜁 and shear viscosity 𝜂, charge diffusion, 𝜅

A brief introduction to experimental heavy-ion physics - SQM2024 - D.D. Chinellato

Figs. from Rezzolla and Zanotti, 2013
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Characterizing the QGP using multiple measurements
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𝜂/s min
𝜂/s slope

𝜁/s width

𝜁/s max

Tc

Diagonals: prob. distrib. of each param.
Off-diagonal: shows parameter interdependence

24

J. E. Bernhard et al, Nature Physics 15 (2019) 1113

dN/dy vn

<pT> δpT/pT

Bayesian analysis of yields, mean pT, flow harmonics
measured by ALICE has been used to extract QGP 
properties



Elliptic flow across systems
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• Collective expansion can also be measured by correlating two particles in ∆𝜂 
(difference in rapidity) and ∆𝜑 (difference in azimuthal angle). 

Collective expansion

Peak at ∆𝜂 ~ 0: 
• short-range correlations → jets

Broad ’’ridge’’ in a wide ∆𝜂 range:
• long-range correlations emerging from early 

times (causality) → anisotropic flow



Elliptic flow across systems
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Collective expansion

• Also observed in p-Pb and pp 
• Initial condition not necessarily elliptic
• Experimental: under which conditions does this not happen?
• Pheno/theory: collective expansion also at play? Or some other (common?) phenomenon? 

• Collective expansion can also be measured by correlating two particles in ∆𝜂 
(difference in rapidity) and ∆𝜑 (difference in azimuthal angle). 

Oh!
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Key experimental features of a QGP in the hard sector
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Hard regime: 
perturbative, high pT (many GeV/c) physics

Hard scattering-dominated, but could be modified 
due to presence of medium



The “standard model” of quark-gluon plasma physics: 

Key experimental features of a QGP in the hard sector
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Hard regime: 
perturbative, high pT (many GeV/c) physics

Hard scattering-dominated, but could be modified 
due to presence of medium

Jet physics 
• Physics of high-momentum particles coming from hard scatterings 
• Serve as probes of the QGP: energy loss marks interaction intensity and 

thus transport properties of the QGP
• In-medium modification of the strong force and fragmentation 
• Broadly measured via jet reconstruction and particle correlations
• Broadly described by more elementary QCD (leading order any 

beyond, PYTHIA / Jetscape / others) + transport models
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ATLAS, pp collision event display

In the early stages of the collision, hard 
scatterings produce back-to-back recoiling
partons, which fragment into collimated
‘’sprays’’ of hadrons.
→ in-vacuum fragmentation

Jets



In the early stages of the collision, hard 
scatterings produce back-to-back recoiling
partons, which fragment into collimated
‘’sprays’’ of hadrons.
→ in-vacuum fragmentation

When a QGP is formed, the colored partons
traverse and interact with a colored medium. 
→ in-medium fragmentation
→ jet ‘’quenching’’ (energy loss)

A brief introduction to experimental heavy-ion physics - SQM2024 - D.D. Chinellato 28

Goal: understand the nature of 
this energy loss to characterize
the strongly-interacting QGP

Jets



The nuclear modification factor: RAA

If a AA collision is a incoherent superposition of independent pp 
collisions, the pT spectra in AA collisions can be obtained by 
scaling the pT spectra in pp collisions by the number of nucleon-
nucleon collisions, Ncoll :

and RAA = 1 at high pT
→ the medium is transparent to the passage of partons

NB: at low pT, soft, non perturbative regime → RAA not a good
observable
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Tpp

TAA

coll
TAA dpdN

dpdN
N

pR
/
/1)( =

no QGP effects TppcollTAA pNNpN d/dd/d ´=
Parton energy 
loss in QGP

If RAA< 1 at high pT
→ the medium is opaque to the passage of partons
→ parton-medium final state interactions, energy loss, 
modification of fragmentation in the medium



p-Pb

Periph. Pb-Pb

Central Pb-Pb

Evidence of parton energy loss in QGP

A strong suppression of high-pT hadrons and jets is observed in central Pb-Pb collisions.
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Charged particles

JHEP 11 (2018) 013

Tpp

TAA

coll
TAA dpdN
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N
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/
/1)( =

Inclusive jets

PLB 790 (2019) 108



p-Pb

Periph. Pb-Pb

Central Pb-Pb

Evidence of parton energy loss in QGP

A strong suppression of high-pT hadrons and jets is observed in central Pb-Pb collisions.
No suppression observed in p-Pb collisions, nor for the color-less Z bosons and photons.
→ Jet quenching is explained as parton energy loss in a strongly interacting plasma

A brief introduction to experimental heavy-ion physics - SQM2024 - D.D. Chinellato 30

Charged particles EW bosons

JHEP 11 (2018) 013

Tpp

TAA

coll
TAA dpdN

dpdN
N

pR
/
/1)( =

Inclusive jets

PLB 790 (2019) 108



The “standard model” of quark-gluon plasma physics: 

Key experimental features of a QGP in the hard sector
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Hard regime: 
perturbative, high pT (many GeV/c) physics

Hard scattering-dominated, but could be modified 
due to presence of medium

Jet physics 
• Physics of high-momentum particles coming from hard scatterings 
• Serve as probes of the QGP: energy loss marks interaction intensity and 

thus transport properties of the QGP
• In-medium modification of the strong force and fragmentation 
• Broadly measured via jet reconstruction and particle correlations
• Broadly described by more elementary QCD (leading order any 

beyond, PYTHIA / Jetscape / others) + transport models

Heavy flavour quarks: charm, beauty and quarkonia
• Flavour dependence of medium interactions 
• Ideal probes of the QGP: production only via hard scattering since mass 

much larger than medium temperature
• N.B.: not necessarily ‘hard’ in terms of final momentum
• Broadly measured via heavy-flavour particle identification / tagging
• Broadly described by  more elementary QCD (leading order any 

beyond, PYTHIA / Jetscape / others) + transport models



Charm and beauty
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Heavy flavour quarks:
m(charm) ~ 1.3 GeV/c2
m(beauty) ~ 4.7 GeV/c2

are ideal probes of the QGP at the LHC:

• large production cross sections
• Produced in initial hard parton scatterings
• controlled values of mass and colour charge of the 

propagating parton
• “brownian” motion through the medium, diffusion
• sensitive to QGP hadronisation (baryon/meson)



Energy loss of charm and beauty

Charm and beauty lose energy via gluon radiation + elastic collisions

Due to the large masses, radiative energy loss is subject to the 
dead cone effect = suppression of the gluon radiation emitted by a (slow) heavy 
quark at small angles, J < JDC ~ mq/Eq  

→ hierarchy in energy loss: DEg > DEc > DEb

→ radiative energy loss reduced by 25% (c) and 75% (b) [µ = 1 GeV/c2]
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Nuclear modification of charm and beauty
A strong suppression is observed in the RAA of D mesons J/psi from b decay.
J/ψ from beauty is less suppressed than D mesons from charm → ΔEc > ΔEb
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JHEP 11 (2015) 205

charged particles

π

D

D mesons 

J/𝜓 from B

D mesons 

EPJC 77 (2017) 252

Open charm and beauty



Collisional energy loss

It depends on
• path length through the medium, L (linearly)
• parton type
– For light quarks 

– For heavy quarks      +

• temperature of the medium, T
• mass of the heavy quark M
• average transverse momentum transfer µ in the medium

35A brief introduction to experimental heavy-ion physics - SQM2024 - D.D. Chinellato

PLB 819 (2021) 136437

both coll. and rad. Eloss

only rad. Eloss

µ from c, b

→Data are well described by models that include both 
collisional and radiative Eloss



And beyond … 
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Photon measurements
• Reveal information about QGP temperature

Event-by-event / correlation measurements 
• Correlations in flow reveal more about origin of collectivity
• Quantum number correlations shed light on QGP dynamics 

Hadron physics 
• Femtoscopy as tool to study hadron-hadron interactions
• Characterisation (and formation) of heavy nuclei
• Strong connections to astrophysics and other fields

Relating traditional heavy-ion and particle physics
• Small systems studies: how do different views relate? 



Where do we go from here?





LHC Runs 3 and 4: massive data samples
+ RHIC Beam energy scan 
+ FAIR (GSI/Germany)
+ NICA (Dubna/Russia)
+ HIAF (Lanzhou/China)
+ J-Parc (Tokai/Japan)
+ this conference! Enjoy!

LS3 Run 4 LS4 Run 5
Commissioning

Physics run

Run 3
ITS2 ITS3 ALICE 3

A bright future ahead !

2023 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 20352022

Thank you!

SQM2024
Vous êtes ici 39
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Extras
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( Intermezzo: kinematic variables in collider physics ) 
Momentum and transverse momentum:

Transverse mass: 

Rapidity (generalizes longitudinal velocity βL = pL/ E):
- In a collider where 2 beams of different ions:
- In fixed-target mode:

The rapidity can be approximated by pseudorapidity in the ultra-relativistic 
limit (p>>m):

where 𝜗 is the angle between the direction of the beam and the particle.
In general y ≠ 𝜂, especially at low momenta.

midrapidity

Forward 
(pseudo)rapidity

Backward 
(pseudo)rapidity
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Heavy-ion physics worldwide: future / low energy

F. Bellini | SSL 2023 | Heavy Ions 56

UNILAC

P-LINAC SIS18 SIS100

CBM

Facility for Antiproton and Ion Research, GSI, Germany

Japan Proton Accelerator Research Complex, Japan

MPD
(2020) 

Nuclotron (c=251,5 m)

Collider (2022)

Booster (2019)

BM@N

Nuclotron-based Ion Collider fAcility, JINR, Dubna

Superconducting 
Linac

Booster Ring

Spectrometer 
Ring

High Energy 
Fragment Separator

High-Intensity Heavy Ion Accelerator 
Facility, Lanzhou, China
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Origins of collectivity and role of system evolution 

Time

Hard scat.

Pb-Pb

pp

Pre-eq. Hydro(-like) evolution Hadronization

CGC / initial 
momentum correlations

“classic” collectivity

• Classical collectivity is from system evolution 
and final state effects: QGP 
• Other options? String shoving? 

• Momentum correlations in the initial state 
could also lead to similar signatures

p-Pb?

?

→ distinction? 
𝑒!𝑒", 𝛾𝐴
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Origins of collectivity and role of system evolution 

Time

Hard scat.

Pb-Pb

pp

Pre-eq. Hydro(-like) evolution Hadronization

CGC / initial 
momentum correlations

“classic” collectivity

• Classical collectivity is from system evolution 
and final state effects: QGP 
• Other options? String shoving? 

• Momentum correlations in the initial state 
could also lead to similar signatures

Experimentally, community focus on: 
1. In-depth study of flow correlations
2. Rapidity as a tool for 3D dynamics 
3. Look for extremes: 𝐞!𝐞", 𝛄𝐀, BES / low E
4. Understanding the hard/soft interplay 

p-Pb?

?

𝑒!𝑒", 𝛾𝐴



Observation of non-zero flow in photo-nuclear events
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Pb-Pb 
Ultraperipheral

pp

p-Pb

ATLAS, Phys. Rev. C 104, 014903

§ Ultra-peripheral collisions: photonuclear processes
§ High-multiplicity events selected for analysis
§ Non-zero v2, 
        …but lower than hadron-hadron collisions!

§ Similar to result by CMS [2] in 𝛾p interactions (in p-Pb)

§ Can be explained using CGC predictions [1]
§ Caveat: v2 coefficients vulnerable to (residual) non-flow

§ Begs the question: can we characterize these collisions? 
§ What about other QGP signatures? 

[1] Phys. Rev. D 103, 054017
[2] https://arxiv.org/abs/2204.13486 

https://arxiv.org/abs/2204.13486
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• Indications of radial flow in UPC collisions
• In backward pseudorapidity region
• Excess not described well by AMPT 

→ radial flow?

Search for QGP signatures in photo-nuclear events



Measuring jets and hadron correlations

Search for QGP signatures in photo-nuclear events

61

• Indications of radial flow in UPC collisions
• In backward pseudorapidity region
• Excess not described well by AMPT 

• Backward η 𝑝#  matches p-Pb at the same 
multiplicities

→ radial flow?



What about 𝑒'𝑒( collisions? 
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Phys. Rev. Lett. 123, 212002 (2019) 

• Minimum-bias 𝑒!𝑒" collisions: exhibit no near-side ridge 
• However: 𝑒!𝑒"	provides access to various processes



What about 𝑒'𝑒( collisions? 
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Phys. Rev. Lett. 123, 212002 (2019) 

• Minimum-bias 𝑒!𝑒" collisions: exhibit no near-side ridge 
• However: 𝑒!𝑒"	provides access to various processes
–High-multiplicity 𝑒!𝑒" enriched with 𝑒!𝑒" 	→ 𝑊!𝑊": a two-string 

system
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Phys. Rev. Lett. 123, 212002 (2019) 

• Minimum-bias 𝑒!𝑒" collisions: exhibit no near-side ridge 
• However: 𝑒!𝑒"	provides access to various processes
–High-multiplicity 𝑒!𝑒" enriched with 𝑒!𝑒" 	→ 𝑊!𝑊": a two-string 

system



What about 𝑒'𝑒( collisions? 
• Minimum-bias 𝑒!𝑒" collisions: exhibit no near-side ridge 
• However: 𝑒!𝑒"	provides access to various processes
–High-multiplicity 𝑒!𝑒" enriched with 𝑒!𝑒" 	→ 𝑊!𝑊": a two-string 

system
–Results at high multiplicity similar to pp collisions!

Measuring jets and hadron correlations 65

Phys. Rev. Lett. 123, 212002 (2019) 



Flow in individual jets?

• Elliptic flow with respect to jet axis anomalously high for high 𝑁$%
&

• Possibly a sign of collectivity in jets? 
66

✓ Flow correlations 
✓ Hard/soft interplay

→  See talk by Parker Gardner

Correlation measured wrt jet axis

Measuring jets and hadron correlations

https://indico.cern.ch/event/1139644/contributions/5541541/


Hyperon polarization and collectivity

67

• Hydrodynamic flow impinges polarization to hyperons

Measuring jets and hadron correlations



Hyperon polarization and collectivity

68

• Hydrodynamic flow impinges polarization to hyperons
• Now: first observation of polarization wrt third-order event plane
• Other directions of polarization studies being explored: hard/soft 

interplay and jet quenching
Measuring jets and hadron correlations



Studying how particles are emitted with respect to each other
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Let’s attempt something slightly different:
• Let’s try to look into how each particle is laid out 

with respect to others in η − ϕ space! 
• This allows us to study jets from a different, 

complementary point of view
• …and look at a few other phenomena as well

Particle 1

Particle 2

𝜟𝜼

𝜟𝝓

x
y

z

Important 
variables:
Δη
Δϕ

Your favorite cylindrical collider-
based detector goes here

(Disclaimer: the squares on the 
cylindrical detector do not denote 
constant-𝛥𝜂 slices and are meant 

for illustrative purposes only)
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Two-particle correlation measurements: the basic calculation
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0
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 = 2.76 TeVNNsPb-Pb at 
PYTHIA ANGANTYR + UrQMD

Centrality 40-50%

) < 10.0c (GeV/trigger
T
p2.0 < 

) < 4.0c (GeV/assoc
T
p2.0 < 

Same-event correlation function: 
𝐶'()* Δη, Δϕ

How many times a certain associated 
particle was found in a certain position 

with respect to a trigger particle
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Two-particle correlation measurements: the basic calculation
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T
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) < 4.0c (GeV/assoc
T
p2.0 < 

Same-event correlation function: 
𝐶'()* Δη, Δϕ

How many times a certain associated 
particle was found in a certain position 

with respect to a trigger particle

(is this a 
jet?...)

Why the 
triangle?
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Two-particle correlation measurements: the basic calculation
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T
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Same-event correlation function: 
𝐶'()* Δη, Δϕ

How many times a certain associated 
particle was found in a certain position 

with respect to a trigger particle

(is this a 
jet?...)

Why the 
triangle?

Turns out this is an acceptance effect. 
• Whenever you have a trigger, a certain region of 

pseudorapidity will be removed because you ran out of 
detector to measure it. 

• This is an effect you do not want! → correction needed
• And it is probabilistic (meaning: multiplicative…)

source: wikipedia

https://en.wikipedia.org/wiki/Convolution
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Two-particle correlation measurements: the basic calculation
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Same-event correlation function: 
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How many times a certain associated 
particle was found in a certain position 
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(is this a 
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Mixed-event correlation function: 
𝐶)+,*- Δη, Δϕ

What is the probability you will miss the 
associated particle at a given ∆𝜂?

Interesting: normalized to 1 at ∆𝜂 = ∆𝜙=0
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Two-particle correlation measurements: the basic calculation
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𝐶)+,*- Δη, Δϕ

What is the probability you will miss the 
associated particle at a given ∆𝜂?

Interesting: normalized to 1 at ∆𝜂 = ∆𝜙=0
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Corrected correlation function: 

𝐶 Δη, Δϕ =
𝐶'()* Δη, Δϕ
𝐶)+,*- Δη, Δϕ

→ ok, that’s the one!
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( Correlation function

Near-side (NS) jet
Away-side (AS) jet

Underlying Event (UE)

PYTHIA ANGANTYR
| < 1.0η∆ = 2.76 TeV, |NNsPb-Pb at 

Centrality 40-50%

) < 10.0c (GeV/trigger
T
p2.0 < 

) < 4.0c (GeV/assoc
T
p2.0 < 

The ‘standard’ components of a correlation

• Near-side jet: particles emitted in the same direction as 
your trigger particle. 

• Away-side jet: particles emitted in exactly the opposite 
direction as your trigger. Needed for momentum 
conservation. 

• Underlying event: a certain number of particles that is in 
the event but are seemingly unrelated (any random Δ𝜙) 
to your trigger particle. 

Fantastically useful already! 

Underlying event

Near-side jet

Away-side jet
tri
gg
er

→ in the absence of collective expansion, a correlation will be comprised of:
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| < 1.0η∆ = 2.76 TeV, |NNsPb-Pb at 

Centrality 40-50%

) < 10.0c (GeV/trigger
T
p2.0 < 

) < 4.0c (GeV/assoc
T
p2.0 < 

The ‘standard’ components of a correlation

• Near-side jet: particles emitted in the same direction as 
your trigger particle. 

• Away-side jet: particles emitted in exactly the opposite 
direction as your trigger. Needed for momentum 
conservation. 

• Underlying event: a certain number of particles that is in 
the event but are seemingly unrelated (any random Δ𝜙) 
to your trigger particle. 

o Warning 1: this is an average emission function effectively 
calculated for many jet-like particle structures

o Warning 2: the underlying event is not free of jets!
o Warning 3: Many resonances decay into two particles…

Fantastically useful already! But … 

Underlying event

Near-side jet

Away-side jet
tri
gg
er

→ in the absence of collective expansion, a correlation will be comprised of:



The STAR observation of jet quenching (> 20 years ago!)
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STAR Collab, Phys.Rev.Lett.91 (2003) 072304

pp Au+Au

This simple picture breaks down in AA: 
• The away side is missing! 
• It has been “quenched” by the medium 
• QCD matter is opaque to high momentum particles
• not present in d+Au: ‘cold’ matter is transparent
• An example of complementarity with yesterday’s 

nuclear modification factor RAA !



The STAR observation of jet quenching (> 20 years ago!)

Measuring jets and hadron correlations 78

STAR Collab, Phys.Rev.Lett.91 (2003) 072304

pp Au+Au

This simple picture breaks down in AA: 
• The away side is missing! 
• It has been “quenched” by the medium 
• QCD matter is opaque to high momentum particles
• not present in d+Au: ‘cold’ matter is transparent
• An example of complementarity with yesterday’s 

nuclear modification factor RAA !

However: in order to do this measurement, some 
background effects and correlations unrelated to 
jets had to be accounted for … 

→ What are those effects? 


