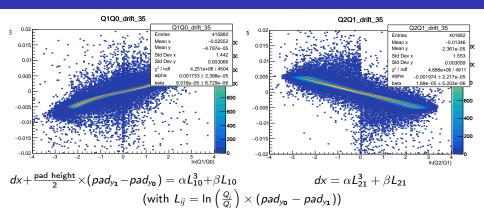
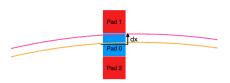
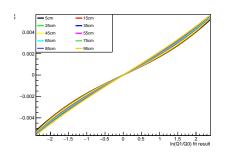

Bias on track fitting with $\log \left(\frac{Q_1}{Q_0} \right)$

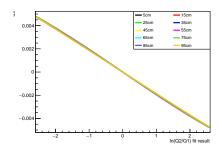
Ulysse VIRGINET


LPNHE-T2K group

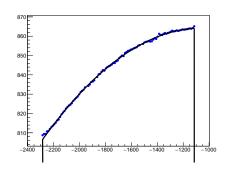

The Method

- The charge collected in the pad 1 (pad 2) decreases (increases) when the track gets close to the center of the pad 0
- We hence have a better accuracy with $\log\left(\frac{Q_1}{Q_0}\right)\left(\log\left(\frac{Q_2}{Q_1}\right)\right)$ when the track is at the frontier (center) of the pad 0.

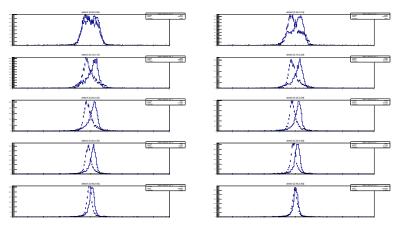



Parameterization with DESY test beam data

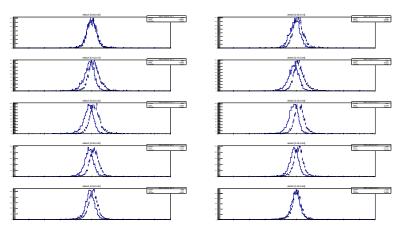
Drift distance dependance of parameterization



• By hand I've calculated a shift of $\approx 500\,\mu\text{m}$ ($\approx 125\,\mu\text{m}$) between the 2 extreme cases of $\ln(Q1/Q0)$ ($\ln(Q2/Q1)$).

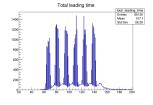

Impact of this shift on the spatial resolution with $\ln(Q1/Q0)$

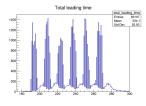
- The parameterization gives the shift wrt to the center of the main pad as a function of $\ln(Q1/Q0)$ (For this study, I forced hatRecon to use only this ratio)
- The track shift wrt the center of the main pad is under-(over-)estimated if the drift distance is higher (lower) than the one expected by the parameterization

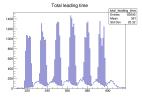

 y_{reco} - y_{fit} shifted on one side or the other depending on track position wrt center of the main pad

Lower drift than expected

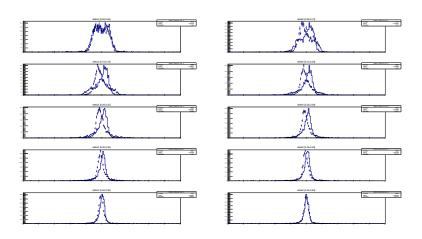
Comparison of $x_{reco} - x_{fit}$ for vertical tracks on the right (histogram) or on the left (dots with error bars) side of the main pad \rightarrow shift is overestimated because drift distance is lower than the one expected by the parameterization

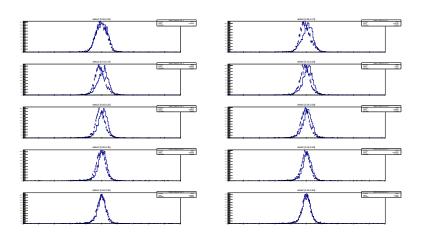

Higher drift than expected




Opposed effect for higher drift

t_{max} as an estimator of the drift distance


- The t_{max} time corresponding to the maximum of the waveform in the main pad is positively correlated with the drift distance
- But neutrinos are produced in series of bunches and the time reference is the beginning of the first bunch
- \bullet Therefore, without the precise time which will be given by the SuperFGD, we can only have a $\approx 600 \text{ns}$ time window
- We can nevertheless obtain 3 well separated drift distance ranges



Results obtained with parameters adapted to low drift distance

Results obtained with parameters adapted to large drift distance

Conclusions/perspectives

- Bias due to not knowing the drift distance
- Possible to distinguish three drift distance regions thanks to t_max
- Bias slightly reduced, especially in the frontier of the pad which is the region of interest when we use Q1/Q0
 - For horizontal and vertical tracks we mostly use Q2/Q1 when we are at the center of main pad, but for diagonal tracks the cluster multiplicity in not sufficient
 - Currently studying the evolution of the bias and spatial resolution as a function of drift distance and track angle
- Still not perfect but should improve thanks to the precise time information given by SuperFGD

– Thank you! –

Backup –