

Study of ν_e samples in ND280 with GUNDAM

Ulysse VIRGINET

Hyper Kamiokande Collaboration Meeting

Ulysse VIRGINET

HK LBL+ND Joint Physics Pre-meeting

2) The u_e selection in highland

3) The u_e samples implementation in GUNDAM

4 Results obtained

The context of my work

- ND280 ν_{μ} ($\overline{\nu}_{\mu}$) samples used to constrain Φ and x-section of ν ($\overline{\nu}$)
- Correlation matrix propagated to the fit performed at the Far Detector
- No ν_e samples selected at ND280 :
 - ► The same model of x-sec for v_e (v
 _e) and v_µ (v
 _µ) is put in the Far Detector fit
 - ► $\sigma(\nu_e)/\sigma(\nu_\mu)$ $(\sigma(\overline{\nu}_e)/\sigma(\overline{\nu}_\mu))$ and their correlations only constrained with the theory
- Couldn't we put experimental constraints, especially thanks to the upgrade of ND280?

The ν_e production

Particle	Decay Products	Branching Fraction (%)	
π^+	$\rightarrow \mu^+ \nu_\mu$	99.9877	
	$ ightarrow e^+ u_e$	$1.23 imes10^{-4}$	
K^+	$\rightarrow \mu^+ \nu_\mu$	63.55	
	$ ightarrow \pi^{0}\mu^{+}\nu_{\mu}$	3.353	
	$ ightarrow \pi^0 e^+ \nu_e$	5.07	
K_L^0	$\rightarrow \pi^- \mu^+ \nu_\mu$	27.04	
	$\rightarrow \pi^- e^+ \nu_e$	40.55	
μ^+	$ ightarrow e^+ \overline{ u}_\mu u_e$	100	

• ν_e represent pprox 1% of the total u flux at ND280

2 The ν_e selection in highland

3) The u_e samples implementation in GUNDAM

4 Results obtained

The ν_e selection procedure in the current ND280

- The selection is available in *highland*
- Consists in 17 different cuts that are applied with 2 main ideas :
 - Select electrons among the other charged particles (protons, muons, pions) thanks to the energy deposit information as a function of momentum
 - Distinguish the electrons originating from ν_e from the ones that are coming from $\gamma \rightarrow e^+e^-$ conversions thanks to pair tracking, invariant mass measurement and cut on low energy events

Ulysse VIRGINET

HK LBL+ND Joint Physics Pre-meeting

Introduction

2 The u_e selection in highland

3 The ν_e samples implementation in GUNDAM

4 Results obtained

The samples

Preliminary results obtained with current ND280

Pre-fit/Post-fit comparison for Cross-Section Systematics

Results of the fit

- First, All FHC data ν_e were added to the fit and nue_numu parameter was enabled
- Only flux and xsec parameters were enabled for this fit
- A \approx 6% constraint on nue_numu parameter was obtained

Adding γ , $\overline{\nu}_e$ and All RHC data

• Next idea was to add also γ and $\overline{\nu}_e$ samples in order to enable nuebar_numubar parameter ($\approx 11\%$ constraint)

ν_e and $\overline{\nu}_e$ samples as a function of true energy

- Next idea is to separate each of nue numu and nuebar numubar fit parameters in three different ranges of energy :
 - [0,1.2] GeV, which corresponds to the range of energy used for the oscillation analysis at SK
 - [1.2, 2.5] GeV, which ends the main peak of initial ν_e energy spectrum
 - [2.5, 16] GeV, for rarer high energy events

Constraints obtained in the different bins

Energy [GeV]	[0, 1.2]	[1.2, 2.5]	[2.5, 16]
nue_numu	#0	#1	#2
nuebar_numubar	#3	#4	#5

Pre-fit/Post-fit comparison for nue_numu Parameters

Introduction

2 The u_e selection in highland

3) The u_e samples implementation in GUNDAM

4 Results obtained

Study as a function of POT weight

- The statistic will increase in the future thanks to the more powerful proton beam, more massive and effictient near and far detectors
- The idea is to study the impact of this increasing statistic by multiplying the 1.15×10^{21} current POT with different weights
- In addition to these higher statistics the SuperFGD ν_e samples will have 92% purity (for more details see A.Eguchi's slides), as opposed to the 54% we have with current FGD1 and FGD2

Different upgrade scenarios considered

Evolution as a function of years of HK

• The constraints are improving as current POT is manually increased)

- To do this I consider a purity of 73% for ND280Upgrade and 92% for the so called ND280Upgrade++
- But the impact of these parameters on the sensitivity of HK depends a lot on the fraction of (anti-)correlation between ν_e and $\overline{\nu}_e$, that's why next idea is to evaluate this!

Fraction of (anti-)correlation between ν_e and $\overline{\nu}_e$

• We take the covariance matrices of ν_e/ν_μ and $\overline{\nu}_e/\overline{\nu}_\mu$ parameters • And use them to generate 1000 toys per POT value

16 / 23

The procedure to exploit the toys

• We take : 1 + Param.value(toy) × Param.constraint in order to get normal distribution centered at 1

Ulysse VIRGINET

HK LBL+ND Joint Physics Pre-meeting

17 / 23

Distributions obtained for each parameter

The $rac{
u_e/
u_\mu}{\overline{
u}_e/\overline{
u}_\mu}$ ratio

HK LBL+ND Joint Physics Pre-meeting

The $\frac{\nu_e/\nu_{\mu}}{\overline{\nu}_e/\overline{\nu}_{\mu}}$ ratio in the [0, 1.2] GeV range • In order to get the $\frac{\nu_e/\nu_{\mu}}{\overline{\nu}_e/\overline{\nu}_{\mu}}$ ratio, I've taken :

• In order to get the $\frac{\frac{\nu_e/\nu_{\mu}}{\overline{\nu_e}/\overline{\nu_{\mu}}}}{(1 + Param.value(toy)_{\nu_e} \times Param.constraint_{\nu_e}) \times Stat._{\nu_e}} \frac{(1 + Param.value(toy)_{\nu_e} \times Param.constraint_{\overline{\nu_e}}) \times Stat._{\overline{\nu_e}}}{(1 + Param.value(toy)_{\overline{\nu_e}} \times Param.constraint_{\overline{\nu_e}}) \times Stat._{\overline{\nu_e}}}$

$\nu_e/\overline{\nu}_e$ correlation

• The very good news is that there's no anti-correlation between $\nu_{\rm e}$ and $\overline{\nu}_{\rm e}\,!$

21/23

Next steps

- Use these constraints in P-Theta (see previous talk of D.Carabadjac)
- I considered the new purities of the samples but I didn't change the efficiency of sample selection
- Therefore even better results should be obtained after having taken that into account !

– Thank you –

– Backup –

Exclusion of CP symmetry conservation

Ulysse VIRGINET