
Code complexity Software Architecture Concept-based programming Standardization Advanced C++ Conclusions

Zero-Cost Abstractions in C++20

Vincent Reverdy
[vincent.reverdy@lapp.in2p3.fr]

Researcher in Computer Science and Numerical Cosmology
CNRS - French National Centre for Scientific Research
LAPP - Laboratoire d’Annecy de Physique des Particules

July 11th, 2023

LUTH

Gray-Scott Battle CNRS Summer School - Vincent Reverdy - July 11th, 2023 - LAPP, Annecy, France 1CC0 1.0 Universal - Public Domain Dedication

mailto:vincent.reverdy@lapp.in2p3.fr

Code complexity Software Architecture Concept-based programming Standardization Advanced C++ Conclusions

Table of contents

1 Code complexity

2 Software Architecture

3 Concept-based programming

4 Standardization

5 Advanced C++

6 Conclusions

Gray-Scott Battle CNRS Summer School - Vincent Reverdy - July 11th, 2023 - LAPP, Annecy, France 2CC0 1.0 Universal - Public Domain Dedication

Code complexity Software Architecture Concept-based programming Standardization Advanced C++ Conclusions

Code complexity

1 Code complexity

2 Software Architecture

3 Concept-based programming

4 Standardization

5 Advanced C++

6 Conclusions

Gray-Scott Battle CNRS Summer School - Vincent Reverdy - July 11th, 2023 - LAPP, Annecy, France 3CC0 1.0 Universal - Public Domain Dedication

Code complexity Software Architecture Concept-based programming Standardization Advanced C++ Conclusions

Why do we want better and better supercomputers?

Keep the same physics

Better resolution
Better accuracy
Better statistics

Keep the same resolution

Improve physical modeling
Multiphysics

Gray-Scott Battle CNRS Summer School - Vincent Reverdy - July 11th, 2023 - LAPP, Annecy, France 4CC0 1.0 Universal - Public Domain Dedication

Code complexity Software Architecture Concept-based programming Standardization Advanced C++ Conclusions

Usual code limitations

Runtime performance

Limitations on execution time or energy consumption

Memory

Limitations on memory usage

Gray-Scott Battle CNRS Summer School - Vincent Reverdy - July 11th, 2023 - LAPP, Annecy, France 5CC0 1.0 Universal - Public Domain Dedication

Code complexity Software Architecture Concept-based programming Standardization Advanced C++ Conclusions

The most problematic code limitation

Structural code complexity

Codes only exist if humans can write them in the first place

Gray-Scott Battle CNRS Summer School - Vincent Reverdy - July 11th, 2023 - LAPP, Annecy, France 6CC0 1.0 Universal - Public Domain Dedication

Code complexity Software Architecture Concept-based programming Standardization Advanced C++ Conclusions

The wall of software complexity

C
o
m

p
le

x
it
y

Time

Scientists

Scientific
applications

Gray-Scott Battle CNRS Summer School - Vincent Reverdy - July 11th, 2023 - LAPP, Annecy, France 7CC0 1.0 Universal - Public Domain Dedication

Code complexity Software Architecture Concept-based programming Standardization Advanced C++ Conclusions

Corollary

Side-effect for the perfect software
If code complexity grows faster than the availability of better CPU and memory. . .⇒ one can design code as if
computational resources were infinite

In practice
If you expect your code to be in full production in 10 years, design it with the computational resources available
at that time in mind, as well as the availability of better compiler optimizations.

Gray-Scott Battle CNRS Summer School - Vincent Reverdy - July 11th, 2023 - LAPP, Annecy, France 8CC0 1.0 Universal - Public Domain Dedication

Code complexity Software Architecture Concept-based programming Standardization Advanced C++ Conclusions

What was special about this game?

Gray-Scott Battle CNRS Summer School - Vincent Reverdy - July 11th, 2023 - LAPP, Annecy, France 9CC0 1.0 Universal - Public Domain Dedication

Code complexity Software Architecture Concept-based programming Standardization Advanced C++ Conclusions

The role of abstraction

Complexity reduction

C = O
∏
i
αi

 ⇒ C = O
∑
i
αi


C: structural complexity
i: concept
αi: number of instances of that concept

Gray-Scott Battle CNRS Summer School - Vincent Reverdy - July 11th, 2023 - LAPP, Annecy, France 10CC0 1.0 Universal - Public Domain Dedication

Code complexity Software Architecture Concept-based programming Standardization Advanced C++ Conclusions

The critical role of software architecture

Gray-Scott Battle CNRS Summer School - Vincent Reverdy - July 11th, 2023 - LAPP, Annecy, France 11CC0 1.0 Universal - Public Domain Dedication

Code complexity Software Architecture Concept-based programming Standardization Advanced C++ Conclusions

Software Architecture

1 Code complexity

2 Software Architecture

3 Concept-based programming

4 Standardization

5 Advanced C++

6 Conclusions

Gray-Scott Battle CNRS Summer School - Vincent Reverdy - July 11th, 2023 - LAPP, Annecy, France 12CC0 1.0 Universal - Public Domain Dedication

Code complexity Software Architecture Concept-based programming Standardization Advanced C++ Conclusions

Starting from an example

A navigation code used to actually fly airplanes
1
2 void xXY_Brg_Rng(double X_1 , double Y_1 , double X_2 , double Y_2 , double ∗Bearing , double ∗Range);
3
4 void DistanceBearing(double lat1 , double lon1 ,
5 double lat2 , double lon2 ,
6 double ∗Distance , double ∗Bearing);
7
8 double DoubleDistance(double lat1 , double lon1 ,
9 double lat2 , double lon2 ,

10 double lat3 , double lon3);
11
12 void FindLatitudeLongitude(double Lat , double Lon ,
13 double Bearing , double Distance ,
14 double ∗lat_out , double ∗lon_out);
15
16 double CrossTrackError(double lon1 , double lat1 ,
17 double lon2 , double lat2 ,
18 double lon3 , double lat3 ,
19 double ∗lon4 , double ∗lat4);
20
21 double ProjectedDistance(double lon1 , double lat1 ,
22 double lon2 , double lat2 ,
23 double lon3 , double lat3 ,
24 double ∗xtd , double ∗crs);
25
26 void LatLon2Flat(double lon , double lat , int ∗scx , int ∗scy);

Gray-Scott Battle CNRS Summer School - Vincent Reverdy - July 11th, 2023 - LAPP, Annecy, France 13CC0 1.0 Universal - Public Domain Dedication

Code complexity Software Architecture Concept-based programming Standardization Advanced C++ Conclusions

A few guiding principles

Small functions

Write small functions when possible (less than 30 lines)

Few parameters

Try to minimize the number of parameters (less than 4 most of the time)

Keep the same pattern

Keep the same pattern of parameters for similar functions

Type everything!

Encode as much information as possible in types

Bikeshedding

Finding good names for things is hard, but critical

Gray-Scott Battle CNRS Summer School - Vincent Reverdy - July 11th, 2023 - LAPP, Annecy, France 14CC0 1.0 Universal - Public Domain Dedication

Code complexity Software Architecture Concept-based programming Standardization Advanced C++ Conclusions

Core idea

Structure matters

Encode application domain information in the structure of the program itself

Aside note

Programs can be seen as mathematical structures on which mathematical metrics can be computed (eg:
the abstract shape or the topology of a program)

Gray-Scott Battle CNRS Summer School - Vincent Reverdy - July 11th, 2023 - LAPP, Annecy, France 15CC0 1.0 Universal - Public Domain Dedication

Code complexity Software Architecture Concept-based programming Standardization Advanced C++ Conclusions

Software stack

Machine layer, assembly instructions
Compilers, mostly written in C and C++ (GCC, LLVM…)

Compiled, native, low level languages (C, C++...)
Virtual machines (JVM)Interpreters (Python, R…)Optimized libraries

JavaWrappers and bindings Python R
High level libraries

Applications

Gray-Scott Battle CNRS Summer School - Vincent Reverdy - July 11th, 2023 - LAPP, Annecy, France 16CC0 1.0 Universal - Public Domain Dedication

Code complexity Software Architecture Concept-based programming Standardization Advanced C++ Conclusions

Conceptual propagation

Conceptual approximations

Conceptual approximations propagate from the bottom up and gets amplified

Data structures are key

Data structures generally sit at the bottom
Worth spending time on it

Gray-Scott Battle CNRS Summer School - Vincent Reverdy - July 11th, 2023 - LAPP, Annecy, France 17CC0 1.0 Universal - Public Domain Dedication

Code complexity Software Architecture Concept-based programming Standardization Advanced C++ Conclusions

The GPE Principle

The Holy Triad

Genericity
Performance
Expressivity

Genericity: Optimize for the library’s author lines of code

How many special cases can I cover with my code?

Performance: Optimize for runtime

How fast my code is?

Expressivity: Optimize for the library’s user lines of code

How much can I express in a single line of code?

Gray-Scott Battle CNRS Summer School - Vincent Reverdy - July 11th, 2023 - LAPP, Annecy, France 18CC0 1.0 Universal - Public Domain Dedication

Code complexity Software Architecture Concept-based programming Standardization Advanced C++ Conclusions

The GPE Principle

Genericity

ExpressivityPerformance

Gray-Scott Battle CNRS Summer School - Vincent Reverdy - July 11th, 2023 - LAPP, Annecy, France 19CC0 1.0 Universal - Public Domain Dedication

Code complexity Software Architecture Concept-based programming Standardization Advanced C++ Conclusions

Zero-cost abstractions

Everything at the same time

C++ does not make you choose between genericity, performance, and expressivity
High-levels of abstraction are compatible with high-levels of performance

Warning

Possible does not necessarily means easy to write

Gray-Scott Battle CNRS Summer School - Vincent Reverdy - July 11th, 2023 - LAPP, Annecy, France 20CC0 1.0 Universal - Public Domain Dedication

Code complexity Software Architecture Concept-based programming Standardization Advanced C++ Conclusions

Concept-based programming

1 Code complexity

2 Software Architecture

3 Concept-based programming

4 Standardization

5 Advanced C++

6 Conclusions

Gray-Scott Battle CNRS Summer School - Vincent Reverdy - July 11th, 2023 - LAPP, Annecy, France 21CC0 1.0 Universal - Public Domain Dedication

Code complexity Software Architecture Concept-based programming Standardization Advanced C++ Conclusions

Software Architecture in C++20

Concept and constraints

Concepts as constrained generic programming
A way to formalize and specify abstractions and software architecture in C++

Gray-Scott Battle CNRS Summer School - Vincent Reverdy - July 11th, 2023 - LAPP, Annecy, France 22CC0 1.0 Universal - Public Domain Dedication

Code complexity Software Architecture Concept-based programming Standardization Advanced C++ Conclusions

Concepts and constraints in C++20

Concept

Named set of requirements
Must appear at namespace scope

1 template </∗template−parameter−list∗/>
2 concept /∗concept−name∗/ = /∗ constraint−expression ∗/;

Constraints

Sequence of logical operations and operands
Requirements on template arguments
3 types: conjunctions / disjunctions / atomic constraints

Gray-Scott Battle CNRS Summer School - Vincent Reverdy - July 11th, 2023 - LAPP, Annecy, France 23CC0 1.0 Universal - Public Domain Dedication

Code complexity Software Architecture Concept-based programming Standardization Advanced C++ Conclusions

Example of concepts

A simple arithmetic concept

1 // Concept definition
2 template <class T>
3 concept arithmetic = std:: is_arithmetic_v <T>;
4
5 // Constrained function v1
6 template <arithmetic T>
7 void print_v1(T x) {
8 std::cout << x << std::endl;
9 }

10
11 // Constrained function v2
12 template <class T>
13 requires arithmetic <T>
14 void print_v2(T x) {
15 std::cout << x << std::endl;
16 }
17
18 // Constrained function v3
19 void print_v3(arithmetic auto x) {
20 std::cout << x << std::endl;
21 }

Gray-Scott Battle CNRS Summer School - Vincent Reverdy - July 11th, 2023 - LAPP, Annecy, France 24CC0 1.0 Universal - Public Domain Dedication

Code complexity Software Architecture Concept-based programming Standardization Advanced C++ Conclusions

Example of constraints

Constraints on addability

1 template <class T>
2 concept addable = requires {std::declval <T>() + std::declval <T >();};
3
4 template <class T>
5 concept addable = requires (T x) {x + x;};
6
7 template <class T1, class T2>
8 concept addable2 = requires (T1 x, T2 y) {x + y;};
9

10 template <class T>
11 concept addable_and_multiplicable = addable <T> && requires (T x) {x ∗ x;};
12
13 template <class T>
14 requires requires (T x) {x + x;}
15 T add(T x, T y) {
16 return x + y;
17 }

Gray-Scott Battle CNRS Summer School - Vincent Reverdy - July 11th, 2023 - LAPP, Annecy, France 25CC0 1.0 Universal - Public Domain Dedication

Code complexity Software Architecture Concept-based programming Standardization Advanced C++ Conclusions

Subsumption of concepts (1/3)

Subsumption as partial ordering

1 template <class T>
2 concept addable = requires (T x) {x + x;};
3
4 template <class T>
5 concept shiftable = requires (T x) {x << 1;};
6
7 template <class T>
8 concept addable_and_shiftable = addable <T> && shiftable <T>;
9

10 template <addable T>
11 void f(T x) {std::cout << "only addable" << std::endl;}
12
13 template <addable_and_shiftable T>
14 void f(T x) {std::cout << "addable and shiftable" << std::endl;}
15
16 f(5.1); // only addable
17 f(5); // addable and shiftable

Gray-Scott Battle CNRS Summer School - Vincent Reverdy - July 11th, 2023 - LAPP, Annecy, France 26CC0 1.0 Universal - Public Domain Dedication

Code complexity Software Architecture Concept-based programming Standardization Advanced C++ Conclusions

Subsumption of concepts (2/3)

Works only with concepts

1 template <class T, class = void >
2 struct is_addable: std:: false_type {};
3 template <class T>
4 struct is_addable <T, std::void_t <decltype(
5 std::declval <T>() + std::declval <T>()
6)>>: std:: true_type {};
7 template <class T>
8 inline constexpr bool is_addable_v = is_addable <T>:: value;
9

10 template <class T, class = void >
11 struct is_shiftable: std:: false_type {};
12 template <class T>
13 struct is_shiftable <T, std::void_t <decltype(
14 std::declval <T>() << std::declval <std::size_t >()
15)>>: std:: true_type {};
16 template <class T>
17 inline constexpr bool is_shiftable_v = is_shiftable <T>:: value;

Gray-Scott Battle CNRS Summer School - Vincent Reverdy - July 11th, 2023 - LAPP, Annecy, France 27CC0 1.0 Universal - Public Domain Dedication

Code complexity Software Architecture Concept-based programming Standardization Advanced C++ Conclusions

Subsumption of concepts (3/3)

Works only with concepts

1 template <class T>
2 concept addable = is_addable_v <T>;
3
4 template <class T>
5 concept shiftable = is_shiftable_v <T>;
6
7 template <class T>
8 concept addable_and_shiftable = is_addable_v <T> && is_shiftable_v <T>;
9

10 template <addable T>
11 void f(T x) {std::cout << "only addable" << std::endl;}
12
13 template <addable_and_shiftable T>
14 void f(T x) {std::cout << "addable and shiftable" << std::endl;}
15
16 f(5.1); // ambiguous
17 f(5); // ambiguous

Gray-Scott Battle CNRS Summer School - Vincent Reverdy - July 11th, 2023 - LAPP, Annecy, France 28CC0 1.0 Universal - Public Domain Dedication

Code complexity Software Architecture Concept-based programming Standardization Advanced C++ Conclusions

C++ concepts vs Rust traits

C++ concepts

Structural typing
A type may accidentally satisfy a concept
No coupling between concepts (architecture) and types (implementation)
Concepts are optional
Constraints work on allowed expression for the whole language
Subsumption and logical expressions of constraints (&&, ||, !)

Rust traits

Nominal typing
impl Trait for Type explicitly indicates that a type satisfy a trait
Coupling between traits (architecture) and types (implementation)
Traits are mandatory
Traits can only check for a subset of the language

Gray-Scott Battle CNRS Summer School - Vincent Reverdy - July 11th, 2023 - LAPP, Annecy, France 29CC0 1.0 Universal - Public Domain Dedication

Code complexity Software Architecture Concept-based programming Standardization Advanced C++ Conclusions

C++ concepts can do nominal typing

Nominal typing implementation
1 template <class Trait >
2 struct implements_trait {};
3
4 template <class T, class Trait , class = void >
5 struct is_implementing: std:: false_type {};
6
7 template <class T, class Trait >
8 struct is_implementing <T, Trait , std:: enable_if_t <
9 std:: is_base_of_v <implements_trait <Trait >, T>

10 >>: std:: true_type {};
11
12 template <class T, class Trait >
13 concept implements = is_implementing <T, Trait >:: value;
14
15 struct mytrait {};
16
17 struct mytype: implements_trait <mytrait > {};
18
19 template <implements <mytrait > T>
20 void f(T x) {}
21
22 f(mytype {}); // OK
23 f(3); // ERROR

Gray-Scott Battle CNRS Summer School - Vincent Reverdy - July 11th, 2023 - LAPP, Annecy, France 30CC0 1.0 Universal - Public Domain Dedication

Code complexity Software Architecture Concept-based programming Standardization Advanced C++ Conclusions

Combining concepts and contraints with if constexpr

With an external concept
1 template <class T>
2 concept shiftable = requires {std::declval <T>() << std::declval <int >();};
3
4 template <class T>
5 void is_shiftable () {
6 if constexpr (shiftable <T>) {std::cout << "shiftable" << std::endl;}
7 else {std::cout << "not shiftable" << std::endl;}
8 }
9

10 // is_shiftable <int >() −> "shiftable"
11 // is_shiftable <double >() −> "not shiftable"

With an inline requires clause
1 template <class T>
2 void is_shiftable () {
3 if constexpr (requires {std::declval <T>() << std::declval <int >();}) {std::cout << "shiftable" << std::endl;}
4 else {std::cout << "not shiftable" << std::endl;}
5 }

With an inline requires clause with a parameter list
1 template <class T>
2 void is_shiftable () {
3 if constexpr (requires (T x, int y) {x << y;}) {std::cout << "shiftable" << std::endl;}
4 else {std::cout << "not shiftable" << std::endl;}
5 }

Gray-Scott Battle CNRS Summer School - Vincent Reverdy - July 11th, 2023 - LAPP, Annecy, France 31CC0 1.0 Universal - Public Domain Dedication

Code complexity Software Architecture Concept-based programming Standardization Advanced C++ Conclusions

Checking if a function exists

The traditional way: the preprocessor
1 #ifdef __SUPPORTS_THEFUNCTION
2 /∗ Doing something here ∗/
3 #endif

The metaprogramming way
1 //void thefunction(int x);
2
3 template <class T, class = decltype(thefunction(std::declval <T>()))>
4 std:: true_type supports_thefunction_for(T);
5 template <class T, class ... X>
6 std:: false_type supports_thefunction_for(T, X...);
7
8 inline constexpr bool supports_thefunction
9 = decltype(supports_thefunction_for(std::declval <int >())):: value;

10 // true if thefunction(int x) is active
11 // false if thefunction(int x) is commented out

The concept-based way
1 //void thefunction(int x);
2
3 template <class T = int >
4 concept supports_thefunction_for
5 = requires (T x) {thefunction(x);};

Gray-Scott Battle CNRS Summer School - Vincent Reverdy - July 11th, 2023 - LAPP, Annecy, France 32CC0 1.0 Universal - Public Domain Dedication

Code complexity Software Architecture Concept-based programming Standardization Advanced C++ Conclusions

Checking if a function exists: forcing template dependency

Leveraging alias templates
1 //void thefunction(int x);
2
3 // The concept checks for a particular type provided by the user
4 template <class T>
5 concept supports_thefunction_for
6 = requires (T x) {thefunction(x);};
7
8 // Alias template keeping only the first type
9 template <class T, class ...>

10 using first_type = T;
11
12 // The concept ignores its template parameter and tests only the relevant type
13 template <class ... Dummy >
14 concept supports_thefunction
15 = requires {thefunction(std::declval <first_type <int , Dummy ... > >());};

Gray-Scott Battle CNRS Summer School - Vincent Reverdy - July 11th, 2023 - LAPP, Annecy, France 33CC0 1.0 Universal - Public Domain Dedication

Code complexity Software Architecture Concept-based programming Standardization Advanced C++ Conclusions

Constexpr if and requires clauses

The problem of undefined symbols
1 /∗
2 void thefunction(int) {
3 std::cout << "thefunction" << std::endl;
4 }∗/
5
6 template <class T>
7 void check(T x) {
8 if constexpr (requires (T y) {thefunction(y);}) {
9 thefunction(x); // OK

10 thefunction (3); // ERROR
11 []<class U>(U x){ thefunction(x);}(3); // OK
12 } else {
13 std::cout << "not thefunction" << std::endl;
14 }
15 }
16
17 check (1); //

Gray-Scott Battle CNRS Summer School - Vincent Reverdy - July 11th, 2023 - LAPP, Annecy, France 34CC0 1.0 Universal - Public Domain Dedication

Code complexity Software Architecture Concept-based programming Standardization Advanced C++ Conclusions

Coming back to the problem of printing

Better than std::enable_if

1 // For numbers
2 template <printable T>
3 void print(const T& x) {
4 std::cout << x << std::endl;
5 }
6
7 // For container of numbers
8 template <range R>
9 requires printable <decltype (∗std::begin(std::declval <R>()))>

10 void print(const R& range) {
11 for (auto it = std::begin(container); it != std::end(container); ++it) {
12 std::cout << ∗it << " ";
13 } std::cout << std::endl;
14 }

Gray-Scott Battle CNRS Summer School - Vincent Reverdy - July 11th, 2023 - LAPP, Annecy, France 35CC0 1.0 Universal - Public Domain Dedication

Code complexity Software Architecture Concept-based programming Standardization Advanced C++ Conclusions

Software architecture with concepts

Solves the problems of metaprogramming-based approaches

Easy to read
Easy to implement
Nice error messages

Contrast with Object Oriented Programming

Types are not stuck in a fixed hierarchy
Types come first, abstractions second
No runtime overhead, pure compile-time check

Important notes

A way to guide the compiler in the compilation process
Bottom-up approach
Designing concepts can be crazy hard

Gray-Scott Battle CNRS Summer School - Vincent Reverdy - July 11th, 2023 - LAPP, Annecy, France 36CC0 1.0 Universal - Public Domain Dedication

Code complexity Software Architecture Concept-based programming Standardization Advanced C++ Conclusions

Standardization

1 Code complexity

2 Software Architecture

3 Concept-based programming

4 Standardization

5 Advanced C++

6 Conclusions

Gray-Scott Battle CNRS Summer School - Vincent Reverdy - July 11th, 2023 - LAPP, Annecy, France 37CC0 1.0 Universal - Public Domain Dedication

Code complexity Software Architecture Concept-based programming Standardization Advanced C++ Conclusions

The C++ Standard

The standard

Link: N4950
Only a specification, not an implementation

Gray-Scott Battle CNRS Summer School - Vincent Reverdy - July 11th, 2023 - LAPP, Annecy, France 38CC0 1.0 Universal - Public Domain Dedication

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/n4950.pdf

Code complexity Software Architecture Concept-based programming Standardization Advanced C++ Conclusions

The C++ Standards Committee

SG1
Concurrency

SG2
Modules

SG3
Filesystem

SG4
Networking

SG5
Transactional Memory

SG6
Numerics

SG7
Reflection

SG8
Concepts

SG9
Ranges

SG10
Feature Test

SG11
Databases

SG12
Undefined Behavior

SG13
HMI, I/O

SG14
Low Latency, HPC,

Embedded

SG15
Tooling

SG16
Text

SG17
EWG Incubator

SG18
LEWG Incubator

EWG
Language Evolution

Core
Core Language Wording

LWG
Library Wording

LEWG
Library Evolution

Admin Group

Security Review
Group

Direction Group

ABI Review Group

WG21 – The C++ Standards Committee

SC22 – Programming Languages

JTC1 – Information Technology

ISO/IEC

W
or

ki
ng

 G
ro

up
s

St
ud

y
G

ro
up

s (
SG

)
Ad

vi
so

ry
 G

ro
up

s

Library track
Core language track

Domain specific investigations
Completed or inactive

National Representatives

Research
Incubation
High-level design
Domain specific review

Design & Target

Wording & Consistency

Internal Approval

CD & PDTS Approval

FDIS Approval

SG19
Machine Learning

SG20
Education

SG21
Contracts

SG22
C/C++ Liaison

SG23
Safety and Security

Gray-Scott Battle CNRS Summer School - Vincent Reverdy - July 11th, 2023 - LAPP, Annecy, France 39CC0 1.0 Universal - Public Domain Dedication

Code complexity Software Architecture Concept-based programming Standardization Advanced C++ Conclusions

Going beyond

Why is it so complicated to standardize anything?

Backward compatibility
No ABI break
Bad past decisions
Insane levels of requirements
Achieving Genericity, Performance, and Expressivity at the same time

Better than the standard library

Still possible to do better than the standard and the standard library
Implementers are not doing black magic and do not have infinite resources

Gray-Scott Battle CNRS Summer School - Vincent Reverdy - July 11th, 2023 - LAPP, Annecy, France 40CC0 1.0 Universal - Public Domain Dedication

Code complexity Software Architecture Concept-based programming Standardization Advanced C++ Conclusions

An improved tuple: the overloaded log-tuple trick

Straightforward approach
get<N>(tuple) has to iterate over the first N types.

Advanced approach
There is a way to exploit overload resolution to have O (log (N)) compile-time access.

Indexing
1 // Index constant type
2 template <std:: size_t I>
3 struct index_constant: std:: integral_constant <std::size_t , I> {};
4
5 // Index constant variable template
6 template <std:: size_t I>
7 inline constexpr index_constant <I> index = {};

Gray-Scott Battle CNRS Summer School - Vincent Reverdy - July 11th, 2023 - LAPP, Annecy, France 41CC0 1.0 Universal - Public Domain Dedication

Code complexity Software Architecture Concept-based programming Standardization Advanced C++ Conclusions

Log-tuple trick: elements

Element wrappers
1 // A basic element wrapper
2 template <class T>
3 struct tuple_element_wrapper {
4 constexpr tuple_element_wrapper(const T& x): value(x) {}
5 // Other constructors to be defined
6 T value;
7 };
8
9 // An indexed tuple element

10 template <std:: size_t I, class T>
11 struct tuple_element: tuple_element_wrapper <T> {
12 constexpr tuple_element(const T& x): tuple_element_wrapper <T>(x) {}
13 constexpr T& operator [](index_constant <I>) {
14 return static_cast <wrapper <T>&>(∗ this).value;
15 }
16 constexpr const T& operator [](index_constant <I>) const {
17 return static_cast <const wrapper <T>&>(∗ this).value;
18 }
19 };

Gray-Scott Battle CNRS Summer School - Vincent Reverdy - July 11th, 2023 - LAPP, Annecy, France 42CC0 1.0 Universal - Public Domain Dedication

Code complexity Software Architecture Concept-based programming Standardization Advanced C++ Conclusions

Log-tuple trick: tuple

Tuple
1 // Base class declaration
2 template <class Sequence , class ... T>
3 struct tuple_base;
4
5 // Base class specialization for index sequence
6 template <std:: size_t ... I, class ... T>
7 struct tuple_base <std:: index_sequence <I...>, T...>
8 : tuple_element <I, T>... {
9 using index_sequence = std:: index_sequence <I...>;

10 using tuple_element <I, T>:: operator []...;
11 constexpr tuple_base(const T&... x): tuple_element <I, T>(x)... {}
12 // Other constructors to be defined
13 };
14
15 // Actual tuple implementation
16 template <class ... T>
17 struct tuple: tuple_base <std:: index_sequence_for <T...>, T...> {
18 using base = tuple_base <std:: index_sequence_for <T...>, T...>;
19 using base::base;
20 using base:: operator [];
21 };
22 template <class ... T>
23 tuple(const T&...) −> tuple <T...>;

Result
mytuple[index<3>] leverages overload resolution to access the element at compile-time.

Gray-Scott Battle CNRS Summer School - Vincent Reverdy - July 11th, 2023 - LAPP, Annecy, France 43CC0 1.0 Universal - Public Domain Dedication

Code complexity Software Architecture Concept-based programming Standardization Advanced C++ Conclusions

Taking C++ to another level of genericity

Genericity in C++

C++ is type-generic but NOT kind-generic

C++ is type-generic
1 template <class T>
2 struct wrapper {};
3
4 template <>
5 struct wrapper <int > {};
6
7 template <>
8 struct wrapper <double > {};

C++ is NOT kind-generic
1 template <class T>
2 struct wrapper1 {};
3
4 template <auto X>
5 struct wrapper2 {};
6
7 template <template <class ...> class F>
8 struct wrapper3 {};

Gray-Scott Battle CNRS Summer School - Vincent Reverdy - July 11th, 2023 - LAPP, Annecy, France 44CC0 1.0 Universal - Public Domain Dedication

Code complexity Software Architecture Concept-based programming Standardization Advanced C++ Conclusions

Problem with higher-order metafunctions

The problem

1 // Metafunction hierarchy
2 template <class T>
3 struct metafunction_wrapper_0 {};
4 template <template <class ...> class F>
5 struct metafunction_wrapper_1 {};
6 template <template <template <class...> class...> class F>
7 struct metafunction_wrapper_2 {};
8 template <template <template <template <class...> class ...> class...> class F>
9 struct metafunction_wrapper_3 {};

10 template <template <template <template <template <class ...> class > class...> class...> class F>
11 struct metafunction_wrapper_4 {};
12
13 // Use cases
14 metafunction_wrapper_1 <metafunction_wrapper_0 > x1; // OK
15 metafunction_wrapper_2 <metafunction_wrapper_1 > x2; // OK
16 metafunction_wrapper_3 <metafunction_wrapper_2 > x3; // OK
17 metafunction_wrapper_4 <metafunction_wrapper_3 > x4; // OK

Proposal

Currently no way of collapsing the hierarchy
Introducing a new mechanism to make C++ kind-generic

Gray-Scott Battle CNRS Summer School - Vincent Reverdy - July 11th, 2023 - LAPP, Annecy, France 45CC0 1.0 Universal - Public Domain Dedication

Code complexity Software Architecture Concept-based programming Standardization Advanced C++ Conclusions

Advanced C++

1 Code complexity

2 Software Architecture

3 Concept-based programming

4 Standardization

5 Advanced C++

6 Conclusions

Gray-Scott Battle CNRS Summer School - Vincent Reverdy - July 11th, 2023 - LAPP, Annecy, France 46CC0 1.0 Universal - Public Domain Dedication

Code complexity Software Architecture Concept-based programming Standardization Advanced C++ Conclusions

Symbolic calculus in C++

Unique identifiers for symbols

1 template <class T>
2 struct symbol_id {
3 static constexpr auto singleton = []{};
4 };

Symbol definition

1 template <class T = void , auto Id = symbol_id <decltype ([]{}) >{} >
2 struct symbol {
3 static constexpr auto symbol_id = Id;
4 };

Gray-Scott Battle CNRS Summer School - Vincent Reverdy - July 11th, 2023 - LAPP, Annecy, France 47CC0 1.0 Universal - Public Domain Dedication

Code complexity Software Architecture Concept-based programming Standardization Advanced C++ Conclusions

Unique symbols

Symbol definition

1 template <class T = void , auto Id = symbol_id <decltype ([]{}) >{} >
2 struct symbol {
3 static constexpr auto symbol_id = Id;
4 };

In practice

1 int main() {
2 symbol x;
3 symbol y;
4 std::cout << std::is_same_v <decltype(x), decltype(y)> << std::endl; // 0
5 }

Gray-Scott Battle CNRS Summer School - Vincent Reverdy - July 11th, 2023 - LAPP, Annecy, France 48CC0 1.0 Universal - Public Domain Dedication

Code complexity Software Architecture Concept-based programming Standardization Advanced C++ Conclusions

Need a total ordering on symbol identifiers

Modifying the definition of the symbol identifiers

1 template <class T>
2 struct symbol_id {
3 static constexpr auto singleton = []{};
4 static constexpr const void∗ address = static_cast <const void∗>(& singleton);
5 };
6
7 template <class Lhs , class Rhs >
8 constexpr std:: strong_ordering operator <=>(symbol_id <Lhs >, symbol_id <Rhs >) {
9 // Using the standard function object that defines a total order on pointers

10 return std:: compare_three_way {}(
11 symbol_id <Lhs >:: address ,
12 symbol_id <Rhs >:: address
13);
14 }
15
16 int main() {
17 symbol x;
18 symbol y;
19 std::cout << (x.id < y.id)= << std::endl;
20 }

Gray-Scott Battle CNRS Summer School - Vincent Reverdy - July 11th, 2023 - LAPP, Annecy, France 49CC0 1.0 Universal - Public Domain Dedication

Code complexity Software Architecture Concept-based programming Standardization Advanced C++ Conclusions

Introducing some concepts

Specializable type traits

1 template <class >
2 struct is_symbolic: std:: false_type {};
3
4 template <class T, auto Id >
5 struct is_symbolic <symbol <T, Id >>: std:: true_type {};
6
7 template <class T>
8 inline constexpr bool is_symbolic_v = is_symbolic <T>:: value;

Symbolic concept

1 template <class T>
2 concept symbolic = is_symbolic_v <T>;

Gray-Scott Battle CNRS Summer School - Vincent Reverdy - July 11th, 2023 - LAPP, Annecy, France 50CC0 1.0 Universal - Public Domain Dedication

Code complexity Software Architecture Concept-based programming Standardization Advanced C++ Conclusions

Symbolic operators

Assignment

1 struct assignment_operator {
2 template <class Rhs , class Lhs >
3 constexpr decltype(std::declval <Rhs >() = std::declval <Lhs >())
4 operator ()(Rhs&& rhs , Lhs&& lhs)
5 noexcept(noexcept(std::forward <Rhs >(rhs) = std::forward <Lhs >(lhs))) {
6 return std::forward <Rhs >(rhs) = std::forward <Lhs >(lhs);
7 }
8 };

Addition

1 struct addition_operator {
2 template <class Rhs , class Lhs >
3 constexpr decltype(std::declval <Rhs >() + std::declval <Lhs >())
4 operator ()(Rhs&& rhs , Lhs&& lhs)
5 noexcept(noexcept(std::forward <Rhs >(rhs) + std::forward <Lhs >(lhs))) {
6 return std::forward <Rhs >(rhs) + std::forward <Lhs >(lhs);
7 }
8 };

Gray-Scott Battle CNRS Summer School - Vincent Reverdy - July 11th, 2023 - LAPP, Annecy, France 51CC0 1.0 Universal - Public Domain Dedication

Code complexity Software Architecture Concept-based programming Standardization Advanced C++ Conclusions

Symbolic expressions

Expressions

1 template <class ... Args >
2 struct symbolic_expression {
3 };
4
5 template <class ... Args >
6 struct is_symbolic <symbolic_expression <Args...>>: std:: true_type {};
7
8 template <symbolic Lhs , symbolic Rhs >
9 constexpr symbolic_expression <decltype(

10 []()−> std::tuple <operator_symbol <assignment_operator >, Lhs , Rhs >{ return {};}
11)>
12 operator +(Lhs , Rhs) noexcept {
13 return {};
14 }

Gray-Scott Battle CNRS Summer School - Vincent Reverdy - July 11th, 2023 - LAPP, Annecy, France 52CC0 1.0 Universal - Public Domain Dedication

Code complexity Software Architecture Concept-based programming Standardization Advanced C++ Conclusions

Expression templates are not dead

Application

1 int main(int argc , char∗ argv []) {
2 symbol x;
3 symbol y;
4 symbol z;
5 auto f = x + y + z; // Contains the AST
6 }

Gray-Scott Battle CNRS Summer School - Vincent Reverdy - July 11th, 2023 - LAPP, Annecy, France 53CC0 1.0 Universal - Public Domain Dedication

Code complexity Software Architecture Concept-based programming Standardization Advanced C++ Conclusions

Full symbolic language with AST manipulation

Basic application

1 int main(int argc , char∗ argv []) {
2 // Real symbols
3 symbol <real > a;
4 symbol <real > b;
5 symbol <real > c;
6 symbol <real > d;
7
8 // Symbolic function
9 auto f = (a + b) ∗ (c + d);

10
11 // Computation
12 f(a = 5., b = 13., c = 50., d = 12.)
13 }

Gray-Scott Battle CNRS Summer School - Vincent Reverdy - July 11th, 2023 - LAPP, Annecy, France 54CC0 1.0 Universal - Public Domain Dedication

Code complexity Software Architecture Concept-based programming Standardization Advanced C++ Conclusions

For linear algebra

With matrices

1 int main(int argc , char∗ argv []) {
2 // Real symbols
3 symbol <matrix <real >> a;
4 symbol <matrix <real >> b;
5 symbol <matrix <real >> c;
6
7 // Symbolic function
8 auto f = (a + b) ∗ c;
9

10 // Computation
11 f(
12 a = std:mdspan (...),
13 b = std:mdspan (...),
14 c = std:mdspan (...)
15);
16 }

Gray-Scott Battle CNRS Summer School - Vincent Reverdy - July 11th, 2023 - LAPP, Annecy, France 55CC0 1.0 Universal - Public Domain Dedication

Code complexity Software Architecture Concept-based programming Standardization Advanced C++ Conclusions

Going beyond

A full symbolic language

AST manipulation (simplification, . . .)
Solving equations
Expressing parallelism
Custom optimizer

Gray-Scott Battle CNRS Summer School - Vincent Reverdy - July 11th, 2023 - LAPP, Annecy, France 56CC0 1.0 Universal - Public Domain Dedication

Code complexity Software Architecture Concept-based programming Standardization Advanced C++ Conclusions

Take-home lesson

Expressivity
Start from what users would like to write

Another example
std::ndarray<double, shape[4]()[3][5]> myarray;

Gray-Scott Battle CNRS Summer School - Vincent Reverdy - July 11th, 2023 - LAPP, Annecy, France 57CC0 1.0 Universal - Public Domain Dedication

Code complexity Software Architecture Concept-based programming Standardization Advanced C++ Conclusions

Conclusions

1 Code complexity

2 Software Architecture

3 Concept-based programming

4 Standardization

5 Advanced C++

6 Conclusions

Gray-Scott Battle CNRS Summer School - Vincent Reverdy - July 11th, 2023 - LAPP, Annecy, France 58CC0 1.0 Universal - Public Domain Dedication

Code complexity Software Architecture Concept-based programming Standardization Advanced C++ Conclusions

Conclusion

Architecture is important. Please abstract things. Thanks.

Gray-Scott Battle CNRS Summer School - Vincent Reverdy - July 11th, 2023 - LAPP, Annecy, France 59CC0 1.0 Universal - Public Domain Dedication

Code complexity Software Architecture Concept-based programming Standardization Advanced C++ Conclusions

Thank you for your attention

Any question?

Gray-Scott Battle CNRS Summer School - Vincent Reverdy - July 11th, 2023 - LAPP, Annecy, France 60CC0 1.0 Universal - Public Domain Dedication

	Code complexity
	Software Architecture
	Concept-based programming
	Standardization
	Advanced C++
	Conclusions

