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Floating World

Revisiting “What Every Computer Scientist Should Know About Floating-point Arithmetic”

Numbers: real, decimal, binary, floating point...

When computations don’t turn out as expected...(why, how)

> global errors
P local errors
composing errors

Heuristics for accuracy:
how a rough estimate can save epsilons

How to reconcile adimensionalisation and performance
How to reconcile abstraction and accuracy: functions of a complex variable

Why are geometrical computations so hard

The hidden side of functional programming: towards total functions
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l'h Formats

Scientific notation:

significand x base significand € Z, exponent € Z
Standard form: mantissa, alias normalized significand

mantissa X base®P°nent mantissa € [1; base[, exponent € Z
Trick, for base 2: the most significant digit is always 1..

exponent

SIgne exposant (8 blts) mantisse (23 bits)
II||||||III|||||||HIIIIIIIIIIIII
31 30 23 22 (bit index)
exposant mantisse
signe (11 bits) (52 bits)
| I |
63 52 0
exposant mantisse
signe (15 bits) (1 bit) (63 bits)

In the registers, we widen mantissa with three bits:
@ guard bit
@ round bit
@ sticky bit
Problems
@ apparent: rounding = catastrophic cancelation
o apparent conversion. Goes unnoticed or percelved as minor.
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@
t Example float32

float= (—1)° x 2B-127 x (14 M), Me[0,1]

313029282726252423222120191817161514131211109 8 76 543210

S E M ) float= (1) x 287127 (1 4+ M)
0 0111 1111 000 0000 0000 0000 0000 0000 }1=20x (1+0)

0 1000 0000 000 0000 0000 0000 0000 0000 Ya—2lx (140)

0 1000 0000 100 0000 0000 0000 0000 0000 }3=2lx (14+1/2)

0 1000 0000 110 0000 0000 0000 0000 0000 }3.5=21x (14+1/2+1/4)

0 1000 0000 111 0000 0000 0000 0000 0000 }3.75=21x (1+1/2+1/4+1/8)
0 1000 0000 100 1001 0000 1111 1101 1011 b2l x(1+1/2+1/16+1/128+-)
1 0111 1111 000 0000 0000 0000 0000 0000 bo1=-20x (1+0)

0 0111 1110 000 0000 0000 0000 0000 0000 } 1/2=2"1x(1+0)

0 0111 1100 100 1100 1100 1100 1100 1101 }o.2=2"3x (1+1/2)x Zn 1/16™
0 0000 0000 000 0000 0000 0000 0000 0000 to special representation

1 0000 0000 000 0000 0000 0000 0000 0000 } 0_ special representation

0 1111 1111 000 0000 0000 0000 0000 0000 } 400 = Inf special representation

0 1111 1111 LXX XXXX XXXX XXXX XXXX XXXX } NalN special representation

0 1111 1111 XX XXXX XXXX XXXX XXXX XXXX }qNaN quiet special representation

0 1111 1111 01X XXXX XXXX XXXX XXXX XXXX } sNan signaling special representation

145

= exercise: using the link below, represent number such as V2, >, €, In2,..

https://www.h-schmidt.net/FloatConverter/IEEE754.html
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@
‘ Get HexaDecim

#include <stdio.h>
int main ()

float x = 1.0f;
printf ("%fu=>%a\n", x, x);

x = 2.0f;
printf ("%fu=%a\n", x, x);
x = 3.0f;

printf ("%fu=%a\n", x, x);
x = 3.141592653589793f;
printf ("%fu="%a\n", x, x);

}

1.000000 = 0x1p+0
2.000000 = Ox1p+1
3.000000 = 0x1.8p+1
3.141593 = 0x1.921fbép+1
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»

#include <iostream>

int main ()

W W N e

float x = 1.0f;
std ::cout << x <<
x = 2.0f;

std ::cout << x <<
x = 3.0f;

std ::cout << x << " =" <<
x = 3.141592653589793f;
std ::icout << x << "= <<

<<

<<

u=u

0x1p+0
Ox1p+1
= 0x1.8p+1

.14159 = 0x1.921fb6p+1

Get HexaDecim

std::
std:
std::

std ::

hexfloat <<

:hexfloat <<

hexfloat <<

hexfloat <<

X <<

X <<

X <<

X <<

std::

std :

std::

std ::

defaultfloat <<

cdefaultfloat <<

defaultfloat <<

defaultfloat <<

o
o
o
-
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@
” Get HexaDecim

program hexfloat

use, intrinsic :: iso_fortran_env, only: real32
implicit none

real (real32) :: x

x =1

write (*, "(F10.6,A,Z16)') x, 'v=u', x

x =2

write (*, '(F10.6,A,Z16)') x, 'v=u', x

x =3

write (*, '(F10.6,A,Z16)') x, 'u=.', x

x = acos (—1.0_real32)

write (*, '(F10.6,A,Z16)') x, 'v=u', x
end program hexfloat

1.000000 = 3F800000
2.000000 = 40000000
3.000000 = 40400000
3.141593 = 40490FDB

0 July 2023



Y=a+b="c¢ A=a+b—c

with
a=0.1 b=0.2 c=0.3

V. Lafage (1JCLab) 10 July 2023 8/55



0.1 il

with

0.3

a

b

= A

0.100000001
0.10000000000000001
0.100000000000000000001

0.200000003
0.20000000000000001
0.200000000000000000003

.300000012
-29999999999999999
.30000000000000000001 1

coo

0.300000012
0.30000000000000004

0
5.551--10 '7
0.300000000000000000011 0

July 2023




(J
W 01+02#03

with

a b e = A
0.100000001 0.200000003 0.300000012 0.300000012 0
0.10000000000000001 0.20000000000000001 0.29999999999999999 0.30000000000000004 5.551--1017
0.100000000000000000001 0.200000000000000000003 0.300000000000000000011 0.300000000000000000011 0

= D ¢ B: some decimal are not binary
= binary conversion needs some rounding
1 =0.2)5 = 0.001100, - © 13421773 x 2726 = 0.2 42,98 x 10~

God created the integers, all else is the work of man... KRONECKER

V. Lafage (lJCLab) _ 10 July 2023 1



® .
” Decimal vs. bin

D= {mLP‘ nez,pe [N} = Z[1/10] (decimal)
B= {2%’" cZ,pe IN} =Z[1/2] (binary)

BcD mais D¢ B: % eD, % ¢B=0.1+0.2+#0.3 (% = 0.0011002...) = not good for financial computations...

@ closure:
Y(z,y)€B2, z+yeB,
V(z,y)eB?, zxyeB
@ commutativity:
V(z,y)eB%, zt+y=y+ex,
V(z,y) €B2, zxy=yxxz
@ associativity:
V(w,y,2)€B, z+(y+2z)=(z+y)+2
V(z,y,z) B3, xx(yxz)=(xxy)xz
@ distributivity:
Y(z,y,2)€B3, xx(y+z)=zxyt+zxz
@ total order:

V(z,y,2)€B3, z<yandy<z=ax<z (transitivity) ;
V(z,y)€B?, z<yandy<z=z=y (antisymmetry) ;
Ve eB, z<zx (reflexivity) ;

V(z,y)€B%, z<yory<z (totality).

@ topology:
B C D C Q are dense in R = arbitrarily close approximations to the real numbers

10 July 2023



® .
” Decimal vs. bi

@ closure:
3z, y)€F?, @+y¢F,
El(m,y)e[rz, zxy gl
= rounding and extension F = [ U {+Inf} U {NaN} U{O_} overflow, underflow, inexact
@ commutativity:
V(w,y) €2, m+y=y+a,
V(z,y)€F2, zxy=yxx
@ associativity:
Aw,y,2) € P2, @+ (y+2)# (o
Hz,y,2)€F°, @x(yxz)#(z )Xz
@ distributivity:
Iz, y,2) €3, @x(y+2)#
@ total order:
Y(z,y,2) €3, z<yandy<z=z<z (transitivity) ;
V(z,y)eF?, z<yady<z=z=y (antisymmetry) ;
VrelF, z<=x (reflexivity) ;
V(z,y)€F2, z<yory<z (totality).
2
Jz,y)elF", z<yady<z (Nan).

TXYyt+tax Xz

@ topology:
B C D C Q are dense in R = arbitrarily close approximations to the real numbers
but
F: floating point numbers, finite parts of B (or D) are dense nowhere
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" Roundin

Vo € R, 3(x_, x,) € F2|x_ < 2 < x, (closest representable neighbours)

X +xy
m="3

X X X
I — I i+ |
k t T t 1

>
% ulp % ulp

lulp

= correct rounding requires at least 2 extra bits beyond target accuracy
or even more (table maker’s dilemma)
correct rounding, faithful rounding, happy-go-lucky rounding

rounding is non-linear but completely deterministic!

10 July 2023
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@
lh Conversion

@ D ¢ B: every decimal is not a binary
= conversion to binary relies on rounding £ =0.2;9 =0.0011005 -+ © 13421773 x 2726 = 0.2+ 2,98 x 10~°

4 byte float 25.4FE0 =25.399999619 -

8 byte double 25.4D0 = 25.39999999999999858 -

10 byte long-double 25.4T0 =25.399999999999999999653 -

16 byte quadruple 25.4Q0 = 25.3999999999999999999999999999999877 ---

@ B C D: every binary is a decimal
However, converting a binary, usually from a computation, usually for display or storage, is not toward the exactly
corresponding decimal: it would require too many meaningless decimal digits.
$=0.0015=0.125;5680.15¢
= conversion to decimal also relies on rounding

Can division by a constant be replaced by multiplication by this constant reciprocal?

This replacement can induce an extra uncertainty.

Counter-example: dividing by 2 (has an exact representation) induces no uncertainty, and the reciprocal of 2 having an exact
representation, multiplying by % induces no uncertainty either.

Example: dividing by 5 or by 10, or even by 3: one uncertainty coming from division operation, two uncertainties coming from
multiplication operation and misrepresentation of operand

Counter-example: dividing by 7 : the inexact representation of 7 induces one uncertainty, the inexact representation of its
reciprocal also induces one uncertainty (almost the same relative uncertainty: 0, 37 ulp and 0, 43 ulp respectively)

Lafage (1JCLab 10 July 2023



»

Addition

N
d1/n~InN+y

n=1

Table: Harmonic sum

fp N up sum down sum theoretical sum
fpl6 250 6.063 6.098 6.098
fp16 500 7.039 6.793 6.793
fp16 1000 7.086 7.4TT 7.484
fp16 2000 7.086 8.188 8.180
fpl6 4000 7.086 8.789 8.875
fpl6 8000 7.086 9.797 9.563
fpl6 16000 7.086 9.797 10.26
fpl6 32000 7.086 9.797 10.95
fp32 32000 10.95073 10.95072 10.95071
fp32 3200000 15.55911 15.55588 15.55588

10 July 2023
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M Hierarchy of ope

@ arithmetic: +, —, x, /, integer powers

algebraic: a2 fractional powers and roots of polynomials

@ elementary (transcendental) functions:
exp, In, sin, cos, irrational powers, all circular and hyperbolic trigonometry

@ higher transcendental functions a.k.a. special functions:
BESSEL, AIRY, Polylogarithm, elliptic integral, EULER I" function, RIEMANN ( function,...

Correct rounding is guaranted by the standard for:
@ arithmetic

@ square roots

10 July 2023



@
M The Table Maker's

transcendental functions
@ .. costly
@ .. correct rounding is not guaranted

to get correct rounding with n digits/bits...!

exp(0.5091077534282133) = 1.663806007261509 5000000000000000 49 ...
16 digits 16 digits

exp(0.7906867968553504) = 2.204910231771509 4999999999999999 16 ...
16 digits 16 digits

Double rounding (rounding from high precision to intermediate precision, then to low precision)

can also give worse final rounding than expected.

V. Lafage (lJCLab) _ 10 July 2023 1
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(J
M Catastrophic Cancell

By way of exception in base 10 (not in binary)! mantissa: 3 decimal digits
For a =3.34 and b= 3.33

@ a6b=0.01 = cancellation (réduction de la précision relative)
but a benign one (the floating point result is exact: a ©b=a —b)

o {a2b2 =0.0667 = 6.67 x 102
a®aSb®b =0.1=1.00x10"1
50% of relative error on the result, or 333 ulp, no digit is even correct: catastrophic
cancellation
@ When does this occur?
@ How many digits are lost?

Plus, there is an overflow risk
= Let’'s factorize this!

(a®b)®(a0b)=6.67®0.01 =6.67x 1072  exact

= The Right Way™

V. Lafage (lJCLab) _ 10 July 2023 1



® -
ih Variance ...

A difference...
..of squares...
..of sums...

..and sums...

..of squares...

e two passes approach

arbitrary data shift towards some expected average value

1-pass online Welford's algorithm (one more division per iteration)

V. Lafage (lJCLab) _ 10 July 2023 alyy



l'b Typical com

dot product
convolution product (“backwards” dot product)
Fourier transform

matrix product is a matrix of dot products

turns out to be a sum of simple products (quadratic in essence).
= we expect to encounter problems similar to difference of squares and variance computation.
But here we can't use the factorisation trick...

mixed precision
fma (fused multiply accumulate)
fma used to extract exact product

combined with Kahan or other compensated sums
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@ Quadratic

az?+br+c = 0 (a #0)
A = b?—4ac
—b+ VA
Ty = oo

2 possible catastrophic cancelation (« compensation calamiteuse»)
@ between —b and VA

=q = —b—sgn(b)VA =—sgn(b)(|b| +VA)
T] = oh
T2 = 271‘: - ‘1;1
@ discriminant A = b2 — 4ac = fma

4 possible overflow:
@ b2 : spurious overflow (if |b| > 101%, A = Int, |q| = Inf while |q| ~ 2 x 1019)
@ ac
@ b/a
@ ¢/b

V. Lafage (I1JCLab) i
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doi: 10.1145/609742.609746

@
M COMPTON

1 1
— ar 1 2( - -
0 accos[ +mec <E1 7, E2)}

V. Lafage (lJCLab) 10 July 2023 20/55



@
” CoMPTON S

1 1
— ar 1 2( - =
6 = arccos [ +mec (El E2 E2):|

@ en fait, 2 soustractions (de positifs)

1 1
0= 1— 2= - =—
arccos[ mec <E2 El +E2):|

10 July 2023 20 /55



@
‘ COMPTON

1 1
— ar 1 2( - =
6 = arccos [ +mec (El E2 E2):|

@ en fait, 2 soustractions (de positifs)
1 1
0= 1— 2= - =—
arccos [ mec <E2 Fop EQ)}

@ algebre de base:

’E
6 = arccos {1 MeC 21 ]

By (Ei +Ey)

V. Lafage (I1JCLab) i 10 July 2023 20/55



@
” COMPTON

1 1
— ar 1 2( - =
6 = arccos [ +mec (El E2 EQ):|

@ en fait, 2 soustractions (de positifs)

1 1
0 = arccos [1 —m,c? (— — 7”
¢ Ey, Ey+E;

@ algebre de base:
m,c?E
0 = arccos {1 - 571]
Ey (Ey + Ey)

@ ..reste 1 soustraction (de positifs)

. - 2 . 2 _
@ trigonométrie de base: cos2a =1 —2sin” o < sin”® § = 1=90s6

V. Lafage (I1JCLab) B B

10 July 2023
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@
” CoMPTON OC

1 1
— ar 1 2( - =
6 = arccos [ +mec (El E, Ez)}

@ en fait, 2 soustractions (de positifs)
1 1
6 = arccos |1 — e
[ fee <E2 E1+E2>]

@ algebre de base:
m.c?E; ]

6 = arccos {1 -
E, (Eq + E5)

@ ..reste 1 soustraction (de positifs)

. . L2 .2
@ trigonométrie de base: cos2a =1 — 2sin” a < sin g =

m.c?E;

0 =2arcsiny| ——%———
2B, (By + B;)

@ ..reste O soustraction (de positifs)

V. Lafage (I1JCLab) T

1—cos 6
2

10 July 2023
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o Compound

A=P(1+%)nt

1:P(1+—)M—P

V. Lafage (lJCLab) 10 July 2023 21/55
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o Compound

a=p(i+5)"
r=r(1+ )" -
r=pl(1+0)" -]
=Pleon ((145)m) 1]
1= forp (e (15 7)) 1]

V. Lafage (1JCLab) i 10 July 2023 21/55



Compoun

»

))-1]

I=P [exp (nt loglp (%)) — 1]

P [exp (ntln (1 +

I =

21 /55

)
o
=)
a
=
=
=
=)
—




Compoun

»

)]

T

n

))-1]

I=P [exp (nt loglp (%)) — 1]

n

P [expml (nt loglp (

P [exp (ntln (1 +

I=
1
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'M Area of trian

S=+/pp—a)p—>)p—-c) (HERON of ALEXANDRIA)
p= %b*'c half-perimeter
Symmetric, but numericaly unstable, for needle-like triangles (when large and small values meet
in the same formula)
KAHAN Re-labelling: a >b > c

Vet Gralle—(a bt (@ b]at®o]

Apparent Symmetry is lost, but the formula is way more robust
Originating from a determinantal expression

= exercise: code and test data from
https://people.eecs.berkeley. edu/~wkahan/Triangle.pdf

could also apply to cyclic quadrilateral area S = /{(p — a)(p — b)(p — €)(p — d) (BRAHMAGUPTA's formula) or more likely to BRETSCHNEIDER's formula for general non crossed quadrilateral

V. Lafage (lJCLab) 10 July 2023


https://people.eecs.berkeley.edu/~wkahan/Triangle.pdf

0 2
CL2

1

V=38

a
0
2 02
¢z B?
1 1

X=(c—A+b)(A+b+c)
Y=(a—B+c)(B+c+a)
Z=(b-C+a)(C+a+bd)

b2 2 1
c?2 B2 1
0 A% 1
A 0 1
1 1 0

z=(A—-b+c)(b—c+ A)
y=(B—c+a)(c—a+ B)
z=(C—a+b)(a—b+C)

E=VaYZ n=\yzZX (=VzXY A= 3yz
1
V:m\/(€+n+c—A)(/\+£+n—C)(n+C+/\—5)(C+>\+§—n)

V. Lafage (lJCLab)
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L

for (unsigned nbTot = NBITERMIN;

iter
10
11
12
13
14
15
16
17
18
19
20
21
22
23

float x = X0;

for (unsigned nblter = 0;

float bottomRadix = x;

for (unsigned nblter = 0;
printf ("%d %f %fu(%+e) Yof L(%ote)\n",

MNP NRONRONNMRONNONNDNN

X0

000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000

x
1.999958
2.000196
2.000196
2.000196
2.000196
1.996286
1.
1
1
1
1
1
1
1

988545

.988545
.988545
.988545
.868132
.648514
.648514
.000000

x — X0

(—4.184246e—05)
(+1.962185e—04)
(+1.962185e—04)
(+1.962185e—04)
(+1.962185e—04)
(—3.713965e—03)
(—1.145530e—02)
(—1.145530e—02)
(—1.145530e—02)
(—1.145530e—02)
(—1.318680e—01)
(—3.514862e—01)
(—3.514862e—01)
(—1.000000e+00)

nblter < nbTot;

nblter < nbTot;

el el e el e e

Testing precision with B A ST

nbTot < NBITERMAX;

nbTot,

btmRdx

000677
000339
000169
000085
000042
000021
000010
000005
000003
000001
000001
000000
000000
000000

nblter++) x =

nblter++) x
X0, x,

btmRdx — 1
(+6.771088e—04)
(+3.385544e—04)
(+1.692772e—04)
(+8.463860e—05)
(+4.231930e—05)
(+2.110004e—05)
(+1.049042e—05)
(+5.245209e—06)
(+2.622604e—06)
(+1.311302e—06)
(+5.960464e—07)
(+2.384186e—07)
(+1.192093e—07)
(+0.000000e+00)

nbTot++) {

sqrt (x);

= x * x;
x—X0, bottomRadix,

bottomRadix —1.0);
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@
t Elasticity and condition number

What is the relative sensitivity of a function with respect to input argument fluctuation?
= condition number or absolute value of elasticity

flzg)—f(x) flzg)—f(z)
IR o o O s O YA B XAV "
E=3 e | @) || din ]
xT

K is dimensionless, a pure number (doubly logarithmic derivative)

Power law z — C x z™ (with C and n real constants) are the functions with uniform condition
number: Vz, k (z) = n.

log, x: number of accuracy bits lost in the best case, with correct rounding

fix—oal=skr= 2;”—2‘” = 2: no singularity, relative error doubles on each iteration
frz=aVr=>kr= %: no singularity, relative error is halved on each iteration (but can't really
get below %ulp)

Very few uncertainty caused by iterations of VA still the last half ulp is responsible for losing
100% of accuracy

then iterations of = — =2 amplify this generaly negligible error to a macroscopic one.

Lafage (IJCLal 10 July 2023



@
M Elasticity and condition numbe

K’fog:K‘f X K’g

Kpxg = Kft kg

Iifn =TLF{/f

@ frxzorx—c=>K=

Z=¢: singularity « = c (catastrophic cancellation)
] f:m%lnaczwf(m):ﬁ: singularity x =1, f(x=1+h)=In(1+h)

h 1

~ h the i t f logl
(1+h)|n(1+h) o (1+h) ence € Importance O oglp

Kk (h) =

Texpx .

@ f:zxz—oexpr—1=k(z)= indeterminate form z =0, « (h) W o 1
—

expxr—1-°
hence the importance of expml
@ f:x—cosz—1=k(x)= gofgfvin_gf: indeterminate form = = 0, s (h) = h?osh% ~ 2
sin%  p—0

hence the importance of trigonometry

To bypass cleanly this « tower of roots» problem (even in single precision), one needs to change

the naive approach and use logip and expml = exercise: do it!

V. Lafage (lJCLab) _ 10 July 2023



@
” Elasticity and condition n

= higher degree polynomials can degrade high resolutions
P =333.75y% + 22 (1122y? — y® — 121y* — 2) + 5.59% + = /(2y)

with = 77617 and y = 33096 (coprime integers)

[S.M. Rump, 1983, “How reliable are results of computers”
https://www.tuhh.de/ti3/paper/rump/Ru83b.pdf]

V. Lafage (I1JCLab) i 10 July 2023 27/


https://www.tuhh.de/ti3/paper/rump/Ru83b.pdf

@
” Elasticity and condition n

= higher degree polynomials can degrade high resolutions
P =333.75y% + 22 (1122y? — y® — 121y* — 2) + 5.59% + = /(2y)

with = 77617 and y = 33096 (coprime integers)

[S.M. Rump, 1983, “How reliable are results of computers”
https://www.tuhh.de/ti3/paper/rump/Ru83b.pdf]

float: P = —6.33825300e + 29
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@
” Elasticity and condition nu

= higher degree polynomials can degrade high resolutions
P =333.75y% + 22(1122y? — y® — 121y* — 2) + 5.5¢% + z/(2y)

with = 77617 and y = 33096 (coprime integers)
[S.M. Rump, 1983, “How reliable are results of computers”
https://www.tuhh.de/ti3/paper/rump/Ru83b.pdf]

float: P = —6.33825300e + 29
double: P =—-1.1805916207174113e + 021
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@
” Elasticity and condition nu

= higher degree polynomials can degrade high resolutions
P =333.75y% + 22(1122y? — y® — 121y* — 2) + 5.5¢% + z/(2y)

with = 77617 and y = 33096 (coprime integers)

[S.M. Rump, 1983, “How reliable are results of computers”
https://www.tuhh.de/ti3/paper/rump/Ru83b.pdf]

float: P = —6.33825300e + 29
double: P =—-1.1805916207174113e + 021
long double: P = +45.76460752303423489188e + 17

V. Lafage (I1JCLab) T 10 July 2023
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@
” Elasticity and condition num

= higher degree polynomials can degrade high resolutions
P =333.75y% + 22(1122y? — y® — 121y* — 2) + 5.5¢% + z/(2y)

with = 77617 and y = 33096 (coprime integers)

[S.M. Rump, 1983, “How reliable are results of computers”
https://www.tuhh.de/ti3/paper/rump/Ru83b.pdf]

float: P = —6.33825300e + 29

double: P =—-1.1805916207174113e + 021

long double: P = +45.76460752303423489188e + 17

quad: P =+1.17260394005317863185883490452018380
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https://www.tuhh.de/ti3/paper/rump/Ru83b.pdf

@
M Elasticity and condition numb

= higher degree polynomials can degrade high resolutions
P =333.75y% + 22(1122y? — y® — 121y* — 2) + 5.5¢% + z/(2y)

with = 77617 and y = 33096 (coprime integers)

[S.M. Rump, 1983, “How reliable are results of computers”
https://www.tuhh.de/ti3/paper/rump/Ru83b.pdf]

float: P = —6.33825300¢ + 29
double: P =—-1.1805916207174113e + 021
long double: P = +5.76460752303423489188e + 17
quad: P =+41.17260394005317863185883490452018380
exact: P ~ —0.827396059946821368141165095479816292
P — _ 54767
66192

How to control rounding errors?

V. Lafage (lJCLab) _ 10 July 2023 P


https://www.tuhh.de/ti3/paper/rump/Ru83b.pdf

The art of nondime

nondimensionalizing a set of quantities from dimensional analysis equation, one can
@ link together characteristic scales of the different quantities
@ to make appear a set of dimensionless parameters (pure numbers) of the problem
(“shape parameters” as opposed to “scale parameters”)

for a set of quantities, there are generally many ways to scale it

we need to add other criteria to select one way:

| 4 symmetries of the problem,
P limit the complexity of the calculation,
P limit the exceptions of the calculation.

@ this scaling cannot solve all the problems
if the solution is not representable, the intermediate calculations are allowed not to be representable

@ the exceptions on B’ do not necessarily propagate correctly to the roots
the roots thus found are not necessarily relevant ; = asymptotic development (cf condition)
@ anticipate the overflows
@ qualify the asymptotic regimes of the function (x large.. but in front of what?)
@ evaluate the proximity to O (y small... but in front of what?)
A bit expensive...
@ 2 more roots and 2 more divisions
@ 3 more branches ((3\branchless paradigm: specific to floating point) (catch exception?)

@ naive double precision evaluation would solve it

10 July 2023



@
” Function of a complex vari

Dec. 16, 1991 re Dec. 16, 1951

m f/ﬁ J \\ \\\\\

1
LN
2B

vvvvvv

Eluding Flow past a Disk: f: Z+— (Z—1/Z)/2and g: Wi W —iViW — 1V/iW + 1

Do not "simplify” g(W) to W —iV—W?2 — 1 nor to W — /W2 + 1 since they behave differently. Though
YW, f(g(W))=W,V|Z|>1, g(f(Z)) = Z only, and some | Z| = 1; otherwise g(f(Z))=—1/Z.
Deducing where these identities hold is tricky.

Borda’s Mouthpiece: W i 1+ W2 + W/ W2 + 1 +In(W?2 4+ WyW2 1)

as W runs on radial straight lines through 0 in the right half-plane, including the imaginary axis.
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” Function of a complex va

n
1
By(p, my, mg) = 167"2Q47"/ g

2 n
i(2m) [q2 — m% + is] [(q —p)2 — m% +ie

! (1-2)m?+zm3—ax(l-x)p2—ic
= z 7/0 dxz In oz

2
= ¢-nm (%) ~fple) - fpla)

2 _ 2 2 _;
22 5 B s+4/s 4p?(m7 —ie)
=p ms+my, T

37 . fp) =mi-z)—zh(1-271)-1

= the (microscopic) difference of & induces a (macroscopic) difference of 27 on the imaginary part
= the analytic functions? of complex analysis are sharply discontinuous at the crossing of their branch cut

10 July 2023



Discrete Stochastic A)

[Vignes’04]

DSA

Random
rounding

Classic arithmetic A1eB v — R

R =3.14237654356891

A @B, T — Ry

A3 ® B3

P R3

Ve

R1 =3.141354786390989
R» =3.143689456834534
R3 =3.142579087356598

@ each operation executed 3 times with a random rounding mode

@ number of correct digits in the results estimated using Student’s test with
the confidence level 95%
@ operations executed synchronously
= detection of numerical instabilities
Ex: if (A>B) with A-B numerical noise
= optimization of stopping criteria

PSA cache-misses and precision analysis with CADNA

Lafage (I 10 July 202




implements stochastic arithmetic for C/C++ or Fortran codes
few code rewriting

all operators and mathematical functions overloaded

support for MPI, OpenMP, GPU, vectorised codes

supports emulated ou native half precision

in one CADNA execution: accuracy of any result, complete list of
numerical instabilities

CADNA cost

@ memory: 4

@ run time ~ 10

V. Lafage (1SCLab) 10 Juy 2033



(J
M Executing CADNA

Before modifying the precisions used, we want to explore the current
accuracy.
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(J
“ Executing CADNA

Before modifying the precisions used, we want to explore the current
accuracy.
To execute CADNA, we essentially change the types.

10 July 2023 33/55
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@
% Executing CADNA

Before modifying the precisions used, we want to explore the current
accuracy.

To execute CADNA, we essentially change the types.

This execution exposed multiple numerical instabilities that hide potential
massive loss of accuracy.

CADNA_C 3.1.11 software

CRITICAL WARNING: the self-validation detects major problem(s).
The results are NOT guaranteed.

There are 538393974 numerical instabilities
10409 UNSTABLE DIVISION(S)

40122229 UNSTABLE MULTIPLICATION(S)

267297 UNSTABLE BRANCHING(S)

448561143 UNSTABLE INTRINSIC FUNCTION(S)

266 UNSTABLE MATHEMATICAL FUNCTION(S)

49432630 LOSS(ES) OF ACCURACY DUE TO CANCELLATION(S)




2 of e, O%f 2
zH1+(x—-1)° = fle==xzg+h)=f(zg)+ h 5 + h<%»h+o(h )~ TAYLOR
— =
=0 at extremum
Forme Quadratique
1,0000018 s
. 1,0000013 .
.
t 1,0000008
trl 1,0000003 e
- EI . B [EEE
smiideasraniaas
2Ve
0,9999998
,0015 -0,001 -0,0005 0,0005 0,001 0,00:

afage (lJCLab)
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Neural Networ

Exploration of Machine learning for Polynomial Root Finding

< Los Alamos

Motivation

We are interested in application of Machine Learning (ML) for
improving numerical methods for solving partial differential equations
(PDES). One example of such an improvement s the optimization of
the parameters of artificial viscosity for Lagrangian and
arbitrary-Lagrangian-Eulerian methods. Another example is solving
the Riemann problem, which is at the core of many numerical methods
for computational gas and solid dynamics. To build confidence in ML
methods and understand their strengths and weaknesses we decided
o start by applying ML to solve simple quadratic equations of one
variable.

Consider a quadratic equation, ax? + bx + ¢ = 0, whose roots are r;
and ra. We would like to learn the function

(a.b.0) =+ (. ra)

without relying on our knowledge of the underlying processes. Instead
we will consider a number of observations observations (training set)

(d.b.¢) = (. 7h). (Y
From which we will try to predict
(@.0,0) = ({LH) = (dr).  J=N+1.. N+K

The goal is to minimize
COST = 3_( ~ 7)* + 3 (rh~ h)2.
7 7

Challenges

The quadratic equation was selected as a proxy for the following
reasons that are relevant to many complex practical problems:

= There are several branches in the solution: if a = 0, the quadratic
equation becomes a linear equation, which has one root ~ this is a
qualitative change from one regime to a different one; depending on
the discriminant the number of roots as well as the nature of the.
roots changes (real vs. complex).

Finding solution involves different arithmetic operations some of
‘which can be difficult to model by machine learning techniques. For
example, division and square root are a challenge for neural
networks to represent as activation functions.

Probably, the most significant challenge is that for a small range of
input parameters for which output values are increasingly large.

(T-5) Applied Mathematics & Plasma Physics, (XGP-4) Methods & Algorithms, (ISR-

Vitaliy Gyr ikhail Shashkov, Alexei Skurikhin

Machine Learning for Gomputational Fluid and Solid Dynamics
February 19-21, 2019

Feed-forward Neural Network

NN Architecture:

Input ~ Layer: 3 nodes

Hidden Layer 1 128 ReLU —
Hidden Layer 2: 64 RelLU

Output Layer: 2 Linear [N\ e 7|
Commecthys: s ey )
NN Training: 1 1

Batch size: 200

Training epochs:  under 500 ® ©
Oprimizer: ‘Adam (https:/arxiv.org/abs/1412.6980v8)

Gauss Process Regression (GPR)
* Probabilistic Bayesian generalization of inear regression approach.

= Built in model of uncertainty estimator.
* Need to specify a covariance kernel.
Our choice of kernel
ConstantKernel()+
Metern(length_scale - 2. nu
WhiteKernel(noise.evel 1

3/2)

—

Test & training sets

We considered a number of distributions for the coefficients (a. b. c). In
all these cased we assumed that

1. be[11) ce[-11) o=
and the roots (1, rn) are real, ie. D = £ — dac > 0.
We considered the following distributions for (a. b, c)
* Uniform random distribution.

= Regular distribution for (a, b,c), i.e. distribution on a grid.

= Regular distribution for (1/a. b, c), i.e. distribution on a grid.

The sizes of the training and test sets were approximately equal and
were on the order of 40K to 50K data points.

ae 20

GPR for large datasets

* GPR performance degrades quickly (scaling ~ N°).

* Depending on the machine the threshold of tractable training sets
was between 5K and 50K sample points.

* More advanced techniques are needed for larger data sets.

Space Data Science & Systems

[Adaptive sampling with GPR

Adaptation procedure:

= Consider the pool of uniformly distributed parameters (a'.b’.c').

= Select an inital training set of points (50) at random. Generated

GPR based on these points.

For the given GPR consider the “uncertainty” o at all of the sample

points. Find the triples (2. /. ¢') with the largest uncertainty and add

them to the training set.

= Generate a new GPR for the
updated training set.

= Repeat steps 3-4 untill stopping
criteria s statisfied, e.g. training set
reached predefined size. - ~—

Conclusions

= For small data sets ( 2K points) GPR is more accurate

= GPR can utilize adaptive sampling

= GPR does not scale well to larger data sets (~2K points)

= NN scales well for large data sets and has better accuracy over
GPR (more that 5K points) .




¢°b Floating Point

float and double are identified as simple or even primitive types, but they are much richer than
it seems.

Object point of view: do these types fit into a hierarchy of classes?

= Violation of the LISKOV's substitution principle (LSP)

if S subtypes T, what holds for T-objects holds for S-objects.

If S is a subtype of T, objects of type T in a program can be replaced by objects of type S without changing any of the desirable
properties of that program (e.g. correct results)

A poorly encapsulated abstraction (leaky): we can measure the smallest positive non-zero float, the largest one, the machine

epsilon, the base: we can access the implementation details




Interface

Table: leaky abstraction: standardize the interface

C / C++

Fortran'90

ieee_arithmetic

Ada

copysign (d x, d y)
frexp (d x, i *exp)

ldexp (d x, i exp)

scalbn (d x, i exp)
nextafter(d x, d y)
numeric_limits::radix
numeric_limits::epsilon ()

numeric_limits::digits

numeric_limits::min_exponent
numeric_limits::max_exponent

nearbyint (d x)
rint(d x)

floor (d x)
ceil (d x)

sign (x, y)
exponent (x)
fraction (x)

set_exponent (x, i)

nearest (x, s)
radix (x)
epsilon (x)
precision (x)
digits (x)
range (x)

minexponent (x)
maxexponent (x)
spacing (x)
rrspacing (x)

nint (x)

floor (x)
ceiling (x)

ieee_copy_sign (x, y)

ieee_logb (x)

ieee_scalb (x, i)

ieee_next_after (x, y)

ieee_rint (x)

ieee_rem (x, y)

F'Copy_Sign (value, sign)
F'Exponent (x)
F'Fraction (x)

F'Scaling (x, adjustment)

F'Adjacent (x, towards)
F'Machine_Radix
F'Model_Epsilon

F'Machine_Mantissa
F'Machine_Emin
F'Machine_Emax

F'Rounding (x)
F'Floor (x)
F'Ceiling (x)
F'Remainder (x, y)

Unfortunately the C/C++ API doesn't vectorise well.
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@
t «Why aiming for precision? » exesn

Not metrology: we do not seek “precision for precision’s sake”
The functional paradigm invites us to write computer function approaching mathematical functions, and we tend to focus on
the aspect of purity.
But a mathematical function also seeks totality (being defined on the largest domain of
definition):
the function should be calculable for any argument for which it is defined.

@ removing non-jump and non-essential discontinuity: = sme| 0= 1 (naively sin (0.0) / 0.0 = NaN)
z=

@ analytic continuation: factorial = T, or RIEMANN ¢ function

= maximal extension of function domain
= piecewise function definition, casuistry

Using IEEE-754 exceptional values, we can reach a “weak totality":
@ log (0.0) = -Inf (mathematically correct)
@ log (-1.0) = NaN (mathematically correct? more precisely NaRN)
Precision limitations lead to a gray zone in this kind of totality:
@ expf (88.72284) = + Inf (but mathematically it's 2128 = domainException)
@ expf (-103.972084) = 0.0f (but mathematically it's just below 27150 = domainException)
@ gammaf (35.0401001) = + Inf (but mathematically it's 2128)

OK with double, but not with float.

Not all Inf have the same meaning, not all NaN have the same meaning, c¢f null in SQL

Lafage (I 10 July 2023



@

= Implicit contract: the fonction will

@ (if the argument is inside the mathematical domain of the
mathematical function)

@ (if the type representation of the argument is inside the domain of the
function that has a representable image in the return type)

© return a result
Q this result is relevant(?)

@ (ideally the returned value is the representation of the image of the
mathematical function applied on the represented argument)

10 July 2023



«Why aiming for pr

totality (mathematical) vs. representable totality

A representable solution resulting from representable arguments CAN go through a non-representable intermediate calculation.

IEEE-754 exceptional values are not the value of the function, relative error of 100%, as in catastrophic cancelation.
least surprise principle

— we agree to compute erroneous results, because we know that we cannot compute exact results: exact results are rarely

(= almost never) representable: T, e, V2, 1/3, 1/5 in base 2..
— On the other hand, we don't want things to be very wrong: mathematical result 2 but the function returns NaN
If the calculation is badly carried out, we can end up with
— infinite roots, where they exist and can be represented
— to an absence of roots, where they exist and are representable
— to a presence of roots, where they do not exist

a difference of degree generates a difference of nature (catastrophe theory, bifurcation, chaos)

The relative size of the danger zone in the parameter space will be much larger in low precision.

Annex for a less costly nondimensionalization:

« You Could Learn a Lot from a Quadratic» doi:10.1145/609742.609746, shows how to nondimensionalize with binary, much

less costly in time and accuracy than divisions (and roots) in physicist nondimensionalization. Easy when knowing |IEEE-754

APL.
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doi: 10.1145/609742.609746

a tak

M «precision? »

PRECISE _ PRECISE _  SLIGHTLY LESS

NUMBER * NUMBER = PRECISE NUMBER

PREGSE . PRECISE _  SLIGHTLY LESS

NUMBER ~ NUMBER ~ PRECISE NUMBER

PRECE | GARGAGE = GARBAGE

NUMBER
PRECISE -
NUMBER X GARBAGE = GARBAGE
_ LESSBAD
JGARBAGE = cagepace

2 UoRSE
(6ARBAGE)" = AgancE

1 Z(N PIECES OF STA’I'ISTICALLY) _ BETTER
N INDEPENDENT GARBAGE / ~ GARBAGE.

PRECISE _ MUCH JORSE
NUMBER ~  GARBAGE

GARBAGE - GARBAGE = 'MUCH LORSE

GARBAGE
PRECISE NUMBER MUCH \JORSE
o ——————— = GARBAGE, POSSIBLE

GARBAGE ~ GPRBAGE  DuisioN BY ZERD

o - PRECIE
GARBAGE < O = \rper

https://xkcd.com/2295/
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https://xkcd.com/2295/

'M Variance: A

e dimuons spectrometer, wire chamber: 10° channels
@ V channel, 3 noise:

> average noise n = En
» noise fluctuation 0 = vVn

@ = 99,7 % noise cut pedestal p =n + 30 = En + 3vVVn
to be reevaluated V channel, before each run (temperature or hygrometry fluctuations,

high voltage, detector getting old)

@ 2 ways:

0?2=Vn = (n—n)?2  2passes >0 (2)
= n?—(n)° 1 pass (3)

V. Lafage (lJCLab) 10 July 2023 LY



(d 0

BUT
e n is digitized on 12 bits [0..4095]
e n? is digitized on 24 bits
e the sample has N = 500 measures~ 22 (not big data...),
>y n? is digitized on 33 bits
= doesn't fit in a float (24 bits mantissa),
inexact representation (9 bits loss) ,

= catastrophic cancellation, negative variance”,
= trivialy avoided with double precision!

= doesn't fit in an unsigned int, (overflow)
= unsigned long long allows exact sommations?

V. Lafage (lJCLab) _ 10 July 2023




(d 0

@ TP solid state physic:
measuring solid state property transition with temperature

e IBM PC data acquisition with BASIC
o display of whisker boxes
= online variance evaluation, 1-pass
It was a time with no Wikipedia around to check for other algos..
e two passes approach
e arbitrary data shift towards some expected average value

e 1-pass online Welford's algorithm (one more division per iteration)

V. Lafage (lJCLab) _ 10 July 2023



Gb Quadratic:

@ neutral kaons precise mass measurement
@ m,(=497,611+£0,013=497,611x (1£2,6 x 107°) MeV/c?

™m0 =497,671+0,031 =497,671 x(1+£6,2x 107%) MeV/c? in PDG 1990 & 1992
@ K9 7970 and 70 — yv: KO = yyyy

- anticounter-rings
plastic window 9

50cm anticounter-rings
K anticounter
L
[i] 50m
vacuum
K; target T
—_—
+
+
K, collimator neutral beam dump
sweeping magnets
target
K targ proton beam dump MuUon Veto counters
collimatars hadron calorimeter
K; beam train displacement '}

photon calorimeter

wire chamber 1 wire chamber 2
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@ Quadratic
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ﬁ Quadratic:

(] 7.0 € Tro (7 electromagnetic < 7 weak)
o E 0 ~ 100 Gev 0 0.0 ~4,18mrad
E_ ~50GeV 0 o ~2,70mrad
™ 7wl
= 9K07€[1,48;6,88]mrad
@ = small angles approximation sin @ ~ 6 ~ tan 6
@ for two photons impacts (w1, E1), (wg, Eg) in the calorimeter,
vertex reconstruction on axis z ~ mel;igﬂ N lw1wal
__m-  n—0 \/ETI
VE1E;
@ Ish (0 ,11;2,37] x107°
Sm ¢ [2,61;6,23] x 107°
@ sing=0-1306%+0(6%)=0(1-§02+0(62)

@ sinarctanp = p — %p3 +o(p3)=p (1 - 1024 o(pz))

10 July 2023 7/




Gh Quadratic:

T T 2B, B,
& = 1-77

(1-€2)22 + 20wy wh — €2 (Jws | + |wa[2)] 2+ [(Rwy wh)? - €2 (jws 2|ws)?)] =0 |

Expanded form
,',]2 (2 _ 7]2) 22
= [lw1 = wal? =02 (2= n?) (lwi? +|wa[?)] 2

—[(Gwiwy)® = 0% (2= n?) w1 Plwa] = 0

A= [lwr —wal* = n? (2= 12) (w1 ~ |wa[?)]

The problem is not in evaluating roots (we compute the cancelation-free one: we can evaluate it the naive way)
the problem is in properly evaluating polynomial coefficients

the correction happens around 15th bit (single precision is enough);

naive evaluation leads to 9th bit discrepancy

the correction always occurs in the same direction.

&) Approximation wrongly evaluated

A Quad o) on

V. Lafage (lJCLab) 10 July 2023



Quadratic:

wy —ws|? —n? (2=n2) (Jwy|? +|wz[?) N

(1-12) YIwr —wal* — 02 (2= n2) (w1 2 — |ws )2

2n2(2-n?) 2n2(2-n2)
P
5 2 a2
| 2 (1-m2)wy —wyl 1—"72(2—712)(*2#‘1‘”1‘ ‘wf‘ )
wy — w2 2 2 wq—wo
oas 3 — 5 wilf 4 lwal®) +
2n2(2-1n2) 2 ) 2n2(2-n?)
2 2\°
|wy |2 —|wo|
(27"]2)|w1*w2|2 1 2 2 12 2 17”2(27"2)( |wq —wal !
RN oy e —5(\w1| +lwal?) + (1= n?)|wy —wal 217
2 2\’
! 0% 17"2(27"2)(%) -
w1 — w2 1 2 2 2 2 w1—wy
—— ] —5(lw + |w +(1—=m%)|w; —w
(5]} = 5 (w2 wal?) + (1= 2) oy = wl TR
2 2\’
) y 1—"72(2—712)(‘1”1‘ —lwa] ) 1
<|w1—w2|) 1 p2lwal® lwol +(1-n?) [wy—ws
V2n lwy — wo|? 2-n?

49
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Gb Interlude

Matrix condition number

w(A) =AY A > A1 A =1

maximum ratio in relative error on x to relative error on b in Az =b

multi variables functions condition number

W@l _ el el 3]
F@llad = @l ~ 1wl

V. Lafage (I1JCLab) i N

10 July 2023
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Dimensional ana

scale relativity: laws of nature shouldn’t de
(in the same way that there is neither center of the Universe, nor privileged direction, nor reference Ether of the speeds,
nor absolute reference potential... but centers, directions, reference frame, scales relevant relatively to a given problem)
invariance of scale, covariance of scale

Scale effects: KANT: intensive / extensive quantities
GALILEO: size of animals (Square-Cube Law); KLEIBER: animal metabolism (3/4, not 2/3)

dimension: nature of a quantity (length, surface, volume, mass, duration, speed, force, angle...)

homogeneity: thou shouldst Only add same dimension qumliu‘ws (cf homogeneous function f(tx) =t f(x))
pendulum period (small oscillations): T' = 27\'\/% g~L -T2

constraint on the arguments of analytic functions: f(2z) =3 a,z"™ = 2 dimensionless argument (and result f)
fluid mechanics & scaling (models): Macu i REYNOLDS V—VL FROUDE, WEBER, PRANDTL, NUSSELT, GRASHOF,
HERSEY, SOMMERFELD...

SOMMERFELD fine structure constant: o =1/137,035999206..

e~
4Ameghe

SCHWARZSCHILD black hole horizon: R, = 2GM
c

PLANCK relativistic quantum gravity: Ip =/ Eg =1,6x 1035 m, tp =4/ }Z—G
Sir Geoffrey Ingram TAYLOR 1950 Trinity test atomic bomb energy, starting from photos with radius of action:
R(t,E,p)= Kt5E5,,L 5

BERTRAND, 1878: cooling time of the homogeneous sphere

=5,4x 10 %4s

dimensional equation, (BERTRAND-VASCHY-BUCKINGHAM) IT théorem A physically meaningful equation involving a
certain number n of physical variables, can be rewritten in terms of a set of p = n— k dimensionless parameters
Ty, o, , T constructed from the original variables, where k is the number of physical dimensions involved

«zeroth principle of theoretical Physics» (John A. WHEELER, Spacetime Physics, 1966)
« Never make a calculation until you know the answer. »
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@
The art of nondimensionalizat
»

ck to our quadratic function e
Let’'s use the following notations for dimensions of the argument and of the function: = ~ X,

~Y
g/I'hen the dimensions of coefficients are
@ c~Y
@ b~rY. X1
@ a~Y X2
@ = A=0b2—-4dac~Y?2. X2
We try to evaluate the possible roots which are homogeneous to X, from the coefficients, of

which none is homogeneous to X.
What quantities can be formed as monomials of the data in the problem?

G ~ abmel ~ X2n—mynt+m+l

@ G~X = " tm + 1 =0 affine equation
—2n — m = 1

@G~y &= " + m o+ L= 1 affine equation
—2n m = 0

0 G~1l = " +m + 1 =0 linear equation
—2n — m = 0




@
t The art of nondimens

We lack an equation...

@ normal for the dimensionless « coefficient:
VA, a™ ~ 1 is also dimensionless

@ if the linear system was fully specified, it would get a single null solution:
G = a%%c% = 1 would be the only dimensionless parameter of this problem

@ How to plug the holes? = exploit formal symmetry between a and c (associating one of
the zeros to its reciprocal): | = +n

A=1
o= |% is the simplest to evaluate, but is subject to overflow (and underflow)

A=l
B=a= |%| ? = 7”71‘7 ‘V‘C‘ is better protected from overflow (and ...)
= exponents are smaller (limits the exposure to overflow),

but not the simplest (roots must be extracted)

@ the solutions of affine systems are the linear combination of a particular solution of the
affine system and the space of solutions of the linear system
[b] .

a solution for the scale X is Tal’ solutions for the scale X are Yy, %B“

so for example, another solution for X is MB — Vel

la] Vial
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@
M The art of nondime

What is the interest of Y in finding roots, homogeneous to X?

When we check that a value = found as root of the trinomial y = P(x) = axz? + bx + c is valid, we won't find exactly
P(xg)=0:

the rounding errors mean that we expect to find a value of the order of € ,chine-

But €pachine is dimensionless, and dimensional analysis tells us that P(xq) ~

P(z0) ~ Yepachine

So we can find values of P(x()) which seem to be large but remain small in front of Y, and it is this smallness which makes it a
good root.

Similarly, to evaluate the sign of A the theoretical threshold of O will be obtained for €pacnine Y2 - X 2 = €pachine|acl

This reflection applies to all comparisons between floats: “float equality considered harmful”: it is illusory to expect strict
equalities, and if the margin associated with rounding can only be proportional to €y,chine. it must also have the right
dimension.
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a =  04,2%A b = o0,2°B c = o.27C
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