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Programmation noneuclidienne
comment avoir les threads qui se touchent… avant l’infini ?

Vincent Lafage

IJCLab, CNRS/IN2P3 & Université Paris-Saclay, Orsay, France

10 July 2023
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Why parallelize? end of Moore's law

Moore’s Law: Gordon Moore’s observation (1965)
« Cramming More Components onto Integrated Circuits. »:
The number of transistors
in a dense integrated circuit (IC)
doubles about every two years.
(even before microprocessors)

+ registers
+ memory cache
+ processor instructions
+ bus size (4 bits → 64 bits)
+ memory management (MMU)
+ processing units (one, then many ALU/FPU, vector ALU/FPU…)
+ pipeline depth (superscalars cf Pentium ca 1993)
+ complex branch predictor / out-of-order execution unit

Heat/Power Wall: 𝒫 = 𝛼 ⋅ 𝐶 ⋅ 𝑉𝑑𝑑
2 ⋅ f + 𝑉𝑑𝑑 ⋅ 𝐼𝑠𝑡 + 𝑉𝑑𝑑 ⋅ 𝐼𝑙𝑒𝑎𝑘

Frequency Wall: « Free lunch is over » (already for 15 years, almost 20 years)
1971 ⇒ 10 µm, 2012 ⇒ 22 nm, 2014 ⇒ 14 nm, 10 nm in (slow) progress (Intel).
TSMC, Samsung: 7 nm, 5 nm factories. 3 nm and beyond down to 1.4 nm in Intel
roadmap. Tunnel effect ⇒ Quantum Wall
Money Wall
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Why parallelize? end of Moore's law
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 1970  1980  1990  2000  2010  2020
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Logical Cores

Frequency (MHz)

Single-Thread
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(SpecINT x 10

3
)

Transistors
(thousands)

Typical Power
(Watts)

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten
New plot and data collected for 2010-2021 by K. Rupp

Year

50 Years of Microprocessor Trend Data
Moore’s Law: Gordon Moore’s observation (1965)
« Cramming More Components onto Integrated Circuits. »:
The number of transistors
in a dense integrated circuit (IC)
doubles about every two years.
(even before microprocessors)

+ registers
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+ memory management (MMU)
+ processing units (one, then many ALU/FPU, vector ALU/FPU…)
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2 ⋅ f + 𝑉𝑑𝑑 ⋅ 𝐼𝑠𝑡 + 𝑉𝑑𝑑 ⋅ 𝐼𝑙𝑒𝑎𝑘

Frequency Wall: « Free lunch is over » (already for 15 years, almost 20 years)
1971 ⇒ 10 µm, 2012 ⇒ 22 nm, 2014 ⇒ 14 nm, 10 nm in (slow) progress (Intel).
TSMC, Samsung: 7 nm, 5 nm factories. 3 nm and beyond down to 1.4 nm in Intel
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Why parallelize? Frequency/Power Wall

Introduction to Multicore architecture, Tao Zhang – Oct. 21, 2010
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Why parallelize? in the era of climate change

Information technologies : growing part of a rare, expensive & dirty energy.
1.6MW for the first room of IN2P3 Computing Centre: 0,5 to 1 M€/yr
Moving from PFlops to Exascale requires a breakthrough…

moving to a better W/MIPS ratio
(or W/MFLOPS):
Intel XScale1, 600MHz, 0.5W
5 × slower, 80 × cheaper in energy!
reduce frequency, using more cores

« The number of computations per joule of energy dissi-
pated doubled about every 1.57 years. »

Figure: Koomey’s law, 2010

1ARM ancestor
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Why parallelize? Yet another Wall…

Introduction to Multicore architecture, Tao Zhang – Oct. 21, 2010
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Why parallelize? Memory Wall

𝑉𝑐𝑐

𝐼 𝑅

𝐶

Data is moved through wires
Wires/memory behave like an RC circuit

Trade-off:
Longer response time 𝜏 = 𝑅𝐶 (“latency”)
Higher current 𝐼 (⇒ more power)

Physics says:
Communication is slow, power-hungry, or both

Hierarchy of memories
Small amount of fast memory close to CPU
Large amount of slow memory far from CPU

CPU register « Level 1 cache « Level 2 cache « Level 3 cache « Main memory « Disk « Internet
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Why parallelize? Memory Wall

We must feed the CPU ⇒ some problems will be memory bound.
The distinction between memory bound and CPU bound algorithms can often be related to
their arithmetic intensity:
for 𝑁-sized problem, how many operations?

dotproducts: 𝒪(𝑁) data, 𝒪(𝑁) ops
convolution
matrix-vector products: 𝒪(𝑁(𝑁 + 1)) data, 𝒪(𝑁2) ops
matrix-matrix products: 𝒪(2𝑁2) data, 𝒪(𝑁3) ops
matrix inversion, diagonalisation, Fourier/Bessel transform…

“If the only tool you have is a hammer, you tend to see every problem as a nail.”
Maslow’s gavel

⇒
“If the only tool you have is a GPU, you tend to see every problem as a matrix product.”
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Architecture

Turing Machine
von Neumann architecture
(Princeton architecture)
⇒ von Neumann bottleneck
Harvard architecture

Instruction
memory

I/O

Control
unit

Data
memory

ALU
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Know your tool

execute typical instruction 1 ns
fetch from L1 cache memory 0.5 ns
branch misprediction 5 ns
fetch from L2 cache memory 7 ns
Mutex lock/unlock 25 ns
fetch from main memory 100 ns
send 2K bytes over 1Gbps network 20 000 ns
read 1MB sequentially from memory 250 000 ns
fetch from new disk location (seek) 8 000 000 ns
read 1MB sequentially from disk 20 000 000 ns
send packet US to Europe and back 150 000 000 ns
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Know your tool hwloc-ls
Machine (31GB total)

Package L#0

L3 (8192KB)

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core L#0

PU L#0
P#0

PU L#1
P#1

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core L#1

PU L#2
P#2

PU L#3
P#3

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core L#2

PU L#4
P#4

PU L#5
P#5

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core L#3

PU L#6
P#6

PU L#7
P#7

NUMANode L#0 P#0 (31GB)

2,0

0,2

2,0 PCI 01:00.0

GPU :1.0

PCI 00:19.0

Net eth0

0,2 PCI 5c:00.0

Net wlan0

PCI 00:1f.2

Block sdb
698 GB

Block sda
476 GB

Host: serval
Date: mar. 07 déc. 2021 19:37:32
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Know your tool hwloc-ls
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Why parallelize?

I CAN HAZ
TERAFLOPZ,
PLZ?
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Sequentiality

IMPERATIVE PROGRAMMING = programming sequence of
instructions/subtasks to the processor
program as an ordered shopping list, as an ordered recipe
SEQUENTIALITY is essential to programming
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Concurrency

With only one processor, tasks will get executed one after the other.
Often this order is compulsory: permuting tasks would change the result
… sometimes this order is contingent: permuting tasks wouldn’t change the result

If we can identify all these permutable tasks,
we could run those OUT OF SEQUENCE

we could run those CONCURRENTLY on multiple processors, or execution
units

(exhibiting concurrency in a program is an industrialization process).
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Task & Thread
Logical level: we want to identify TASKS and among them, order-independent tasks.
Physical level: we want to assign tasks to execution THREADS.
Multitasking can occur on one processor:

time sharing of processing ressource among threads
context switching between threads

If we have a multiprocessor, some/each processor can be assigned one or many threads

PARALLEL programming = CONCURRENT programming on a MULTIPROCESSOR
(a.k.a multiprocessing) (a.k.a. multiprogramming)

two kinds of loops:
—  iterations depends on the previous one(s)

⇒ what we usually call an iterative process
—  iterations are independent of the previous ones

⇒ more duplication (or N-uplication) than iteration
⇒ embarassingly parallel = lowest possible concurrency = as decoupled as possible
⇒ delightfuly parallel!
very common in particle physics: each event is independent and can be processed on a separate
processor / in a separate process
⇒ DISTRIBUTED processing

V. Lafage (IJCLab) 10 July 2023 15 / 22



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Purity

When we apply the same function on a collection of objects, the collection of result is
independent of the order of application of the function.
To ensure that this is right we need PURE functions:
⇒ computer functions that are as close as possible to mathematical functions

—  the function return values are identical for identical arguments
(no variation with local static variables, non-local variables, mutable reference arguments
or input streams.) i.e. its evaluation relies on a DETERMINISTIC ALGORITHM: given a
particular input, will always produce the same output, with the underlying machine always
passing through the same sequence of states

⇒ function are referentially transparent (see below)
—  the function application has no SIDE EFFECTS: no mutation of local static variables,

non-local variables, mutable reference arguments or input/output streams
Pure = deterministic + without side effects
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Purity down-to-earth functional paradigm…

 input arguments must be immutable: C++ const, Fortran intent (in),…
 evaluation must not rely on (mutable) global variables
(e.g. in Fortran, it shouldn’t rely on COMMON variables, but it can rely on module
parameters or protected variables.
In C++, you can use const / constexpr / static constexpr global)
a pure function can only call pure functions
no exceptions

REFERENTIAL TRANSPARENCY:
⇒ the expression can be replaced with its corresponding value (and vice-versa) without
changing the program’s behavior.
⇒ allows MEMOIZATION:
optimization technique used primarily to speed up computer programs by storing the results of
expensive function calls and returning the cached result
a specific type of LOOKUP TABLE (LUT):
⇒ a collection / an array of precomputed results that one reuses instead of recomputing.
Lookup tables are usually initialised at start, while memoization fills it on the fly.

� Mixing functional paradigm (purity) with object-oriented paradigm will strongly change
your object-oriented style
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Side effects
what happens when the function is not pure…

Input/Output: displaying something occur in a given order, storing data to disk (can be
seen as a global object)
hardware related behavior: depends on the interaction with environment, which is a
global variable
time dependency: time is a global variable
exceptions: your function is not returning a value of the expected type, likely because of
limited definition domain for the arguments.
A mathematical function is not only pure, it also aims at totality (maximal expansion of
the definition domain)
most random number generators rely on a hidden state changing on each call.

⇒ in the long run, no computer function can ever be called pure: running a computer
requires energy and increases the entropy of the Universe, which is a global variable ⇒
side effect…
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Purer than pure simple functions

Fortran'23
A pure procedure changes variables outside its scope only through its arguments. This allows it
to be used in parallel constructs, where concurrency issues would otherwise prevent use.
A simple procedure is a pure procedure that in addition is restricted to reference variables
outside its scope only through its arguments. ⇒ It represents an entirely local calculation.
If all the intent in arguments are constants and there are no intent inout arguments, it may be
performed by the compiler at compile time.
A simple procedure must satisfy all the requirements of a pure procedure. In addition,

• it must not reference a variable by use or host association,
• it must not reference a variable in a common block,
• all its dummy procedures must be simple,
• all its internal procedures must be simple,
• all procedures it references must be simple,
• when used in a context that requires it to be simple, its interface must be explicit and

specify that it is simple, and
• it must not contain a entry statement.

All the intrinsic functions are simple.
All the module functions in all of the intrinsic modules are simple.
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short warning

CAVEAT !!!
Floating point evaluation are usually dependent on the order of evaluation:
floating point operations are NOT associative, contrarily to the real number corresponding
operation: ∀(𝑎, 𝑏, 𝑐), (𝑎 + 𝑏) + 𝑐 = 𝑎 + (𝑏 + 𝑐) BUT ∃(𝑎, 𝑏, 𝑐), (𝑎 ⊕ 𝑏) ⊕ 𝑐 ≠ 𝑎 ⊕ (𝑏 ⊕ 𝑐)
⇒ out-of-order operation might change ever so slightly the result
Subtle side-effects introduced by the languages, compilers and optimization options…

C strictly conforms to your order of computation
Fortran, i.e. FORmula TRANslator, tries to somehow optimize your computation:
mathematically equivalent, numerically not strictly equivalent

Some purity check by compiler are rather formal (particularly on heterogeneous architectures)…
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What could go wrong?

REENTRANCY
a subroutine is called reentrant if

multiple invocations can safely run concurrently on multiple processors,
or on a single processor system, where a reentrant procedure can be interrupted in the
middle of its execution and then safely be called again (”re-entered”) before its previous
invocations complete execution.
Reentrant code may not hold any static or global non-constant data without synchronization.
Reentrant code may not modify itself without synchronization.
Reentrant code may not call non-reentrant computer programs or routines.

THREAD SAFETY
Thread-safe code only manipulates shared data structures in a manner that ensures that all
threads behave properly and fulfill their design specifications without unintended interaction.
(no data race)

reentrant ⇏ thread-safe
thread-safe ⇏ reentrant

https://en.wikipedia.org/wiki/Reentrancy_(computing)

https://stackoverflow.com/questions/856823/threadsafe-vs-re-entrant
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When some task takes the lead

CRITICAL SECTION is a part of code where concurrent accesses to shared resources would
lead to erroneous behavior.
⇒ we need to protect these accesses
Lock / mutex (mutual exclusion), protected object
(atomic instruction)

During a critical section, we loose all benefits of the multiprocessor.

!!!Warning!!!: dead lock
synchronization point, or rendez-vous:
sometimes one task has to wait for the completion of another one
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