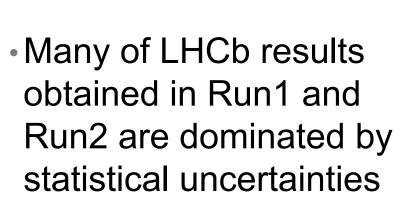
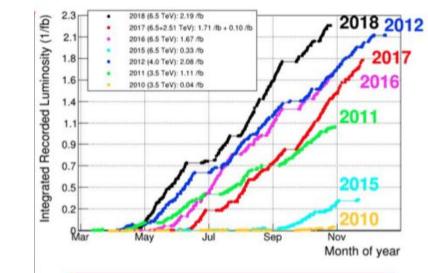
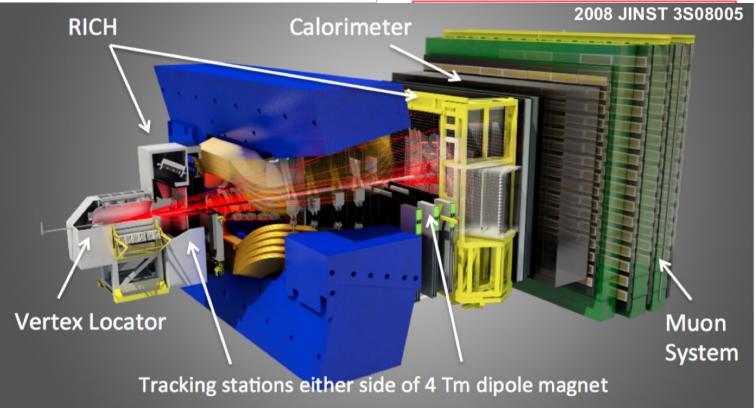

Modèle de calcul vs réalité: LHCb

Federico Stagni Concezio Bozzi Journées LCG-France Paris, June 7th, 2023

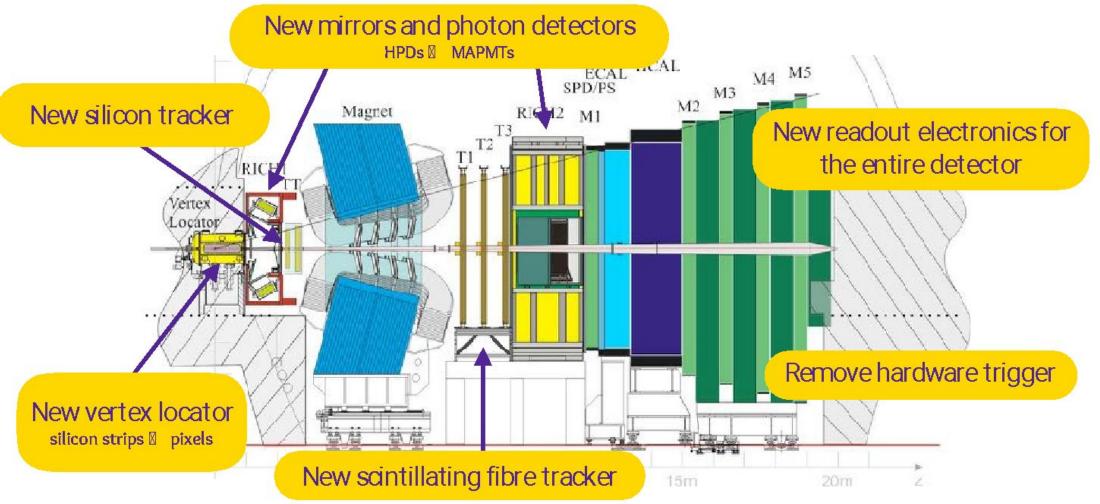

Overview

- LHCb Upgrade
- Run3 + Run4 computing model
- Current status
- Future evolution

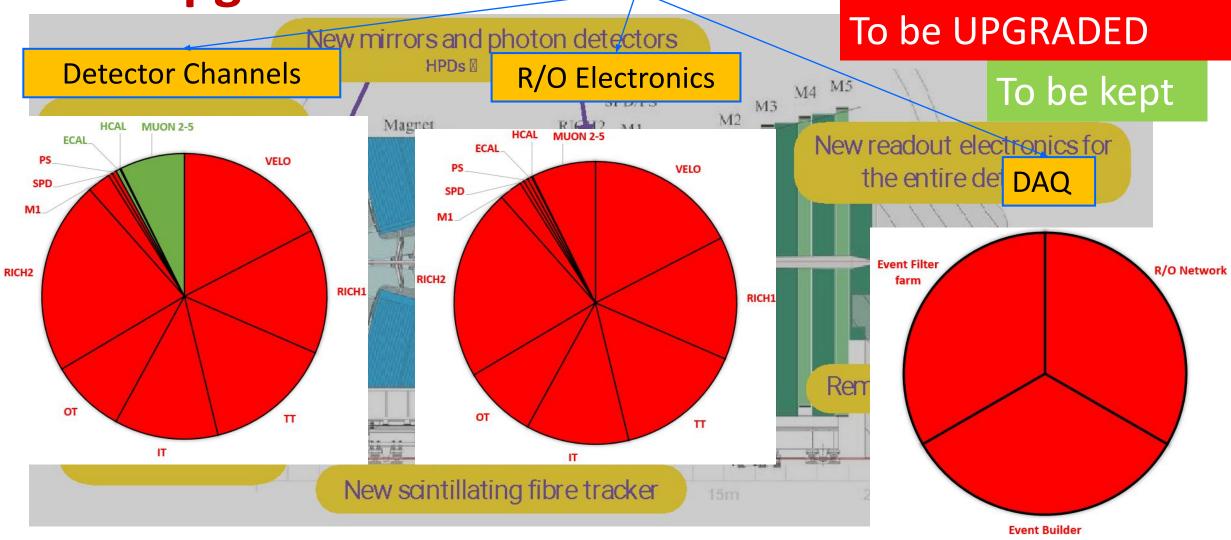




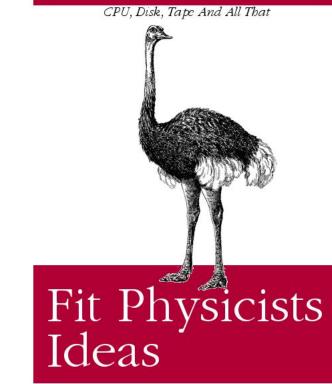
The LHCb experiment



 An upgrade of LHCb has therefore been achieved to take data in Run3 and beyond



The upgraded LHCb detector for Run 3-4

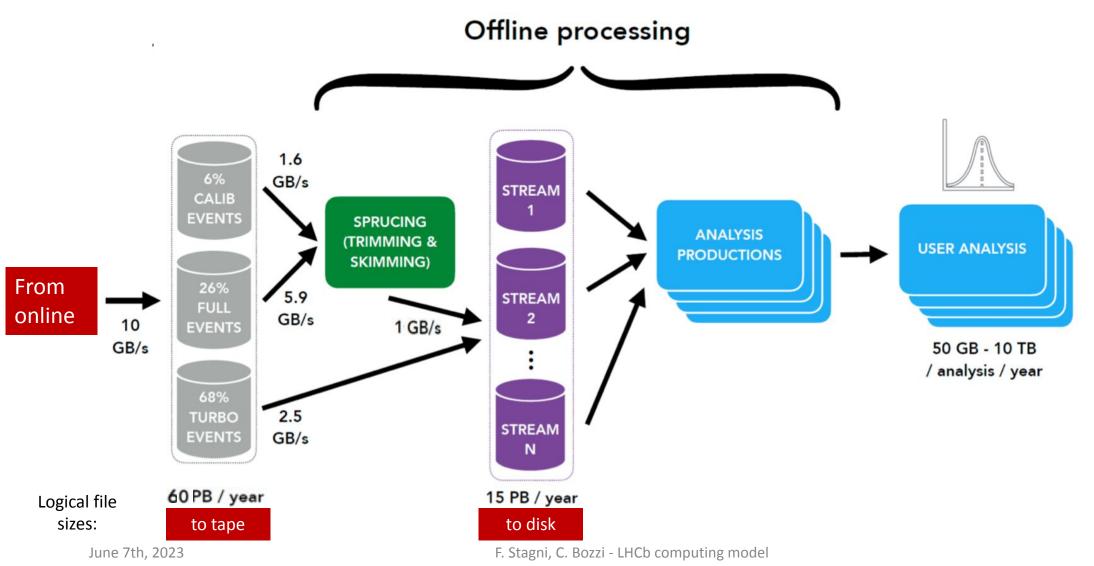


The upgraded LHCb detector for Run 3-4

A big challenge in data handling

- Major expansion of LHCb physics programme through:
 - 5-fold increase in instantaneous luminosity
 - 4x10³² to 2x10³³ cm⁻²s⁻¹
 - Full software trigger at 30MHz inelastic collision rate
 - Factor 2 increase in trigger selection efficiency
- Order of magnitude increase in physics event rate to storage
- Pile-up increase
 - Factor 3 increase in average event size
- 30x increase in throughput from the upgraded detector
 - Without corresponding jump in offline computing resources
- Full software trigger and selective persistency to mitigate throughput from online to offline
 - Nevertheless, from ~0.65GB/s (Run2) to 10GB/s (Run3-4)

Into Computing Resources


O RLY[?]

Harry Houdini

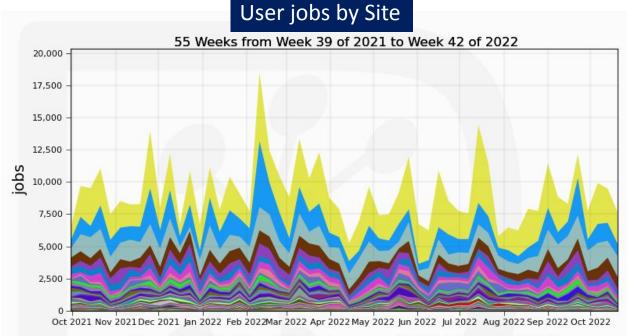
Data streams and dataflow

- Data from the LHCb detector organised in 3 streams; in all cases; events are reconstructed online at the HLT farm
 - FULL: «classic» stream, where information from the entire event is persisted in DST format and input to offline «sprucing» i.e. «slimming and skimming» for subsequent physics analysis
 - **TURCAL:** calibration stream, with both reconstruction output and (some) RAW banks. To be «spruced» offline and used for performance studies.
 - **TURBO:** introduced in Run2, implements selective persistency thus saving selected info that can range from a couple of tracks to the entire event contents. Data ready to be analysed, no further processing needed
- Sprucing is performed at T0 and T1s, concurrently with data taking and during winter shudown («re-sprucing»)
 - T0 for LHCb is equivalent to any other T1 from processing PoV
- Further processing (e.g. tupling) done in centralised Analysis Productions
- Additional analysis steps done on user / local resources

Data streams and dataflow

Run3 Computing model in a nutshell

- LHCb Upgrade computing model accommodates a trigger output BW of 10 GB/s
 - Massive usage of novel event selection (Turbo) and event size reduction (selective persistence) techniques
 - Save the full bandwidth on cheap storage (tape)
 - Reduce by a factor 3 disk requirements using the above techniques
- CPU needs dominated by MC production
 - Massive use of faster simulation techniques
- In summary:
 - Substantial reduction of expensive resources
 - Maintain the full breadth of the physics programme
 - Flexible: incorporate future technology advancements


LHCb Run3 Computi	ng Mo	del ass	umptic	ons				
$L(cm^2 s^{-1})$	2×10 ³³							
Pileup				6				
Running time (s)		5 × 1	.06 (2.5	×10 ⁶ i	n 2021)			
Integrated luminosity		10	fb ⁻¹ (5	fb ⁻¹ in 2	2021)			
Trigger rate fraction (%)		26 / 68	3/6 Fu	ıll/Turb	oo/TurCa	1		
Logical bandwidth to tape (GB/s)	10	(5.9/2	.5/1.6	Full/T	urbo/Tur	Cal)		
Logical bandwidth to disk (GB/s)	3.5	(0.8/2	2.5/0.2	Full/T	'urbo/Tur	Cal)		
Ratio Turbo/FULL event size			16	5.7%				
Ratio full/fast/param. MC		40:40:20						
HS06.s per event for full/fast/param. MC ^a	1200 / 400				100/20			
Number or MC events ^b	2.3×10^9 / fb ⁻¹ / year							
Data replicas on tape	2 (1 for derived data)							
Data replicas on disk		2 (Tu	arbo); 3	(Full,	TurCal)			
MC replicas on tape			1 (N	4DST)				
MC replicas on disk	0.3	(MDS	T, 30%	of the	total data	aset)		
Resource r	equire	ments						
WLCG Year	Disk	(PB)	Tape	Tape (PB)		CPU (kHS06)		
2021	66	1.1	142	1.5	863	1.4		
2022	111	1.7	243	1.7	1579	1.8		
2023 2024	159 165	1.4 1.0	345 348	1.4 1.0	27 <i>5</i> 3 3467	1.7 1.3		
2025	171	1.0	351	1.0	3267 3267	0.9		

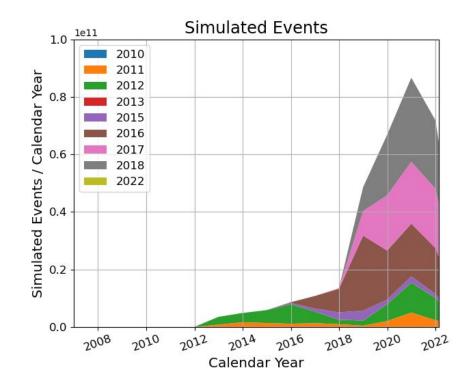
^a corresponding to 120, 40, 2s on a 10HS06 computing core

^b simulation of year N starts in year N+1

Data distribution for physics analysis

- Data distribution model quite simple
- User jobs run where data is
 - Mostly at Tier0 and Tier1s
- Number of sites with data relatively small
 - 1 T0, 7 T1s, 14 T2-Ds
- Well-balanced CPU and disk resources
 - Grid user jobs are given the highest priority anyway
- No need for caches, pre-placement, etc
- Little impact on WAN other than dataset replication (2 copies)

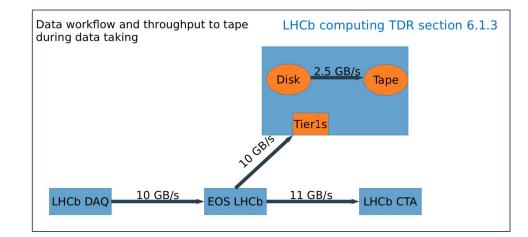
Max: 18,487, Min: 5,242, Average: 9,245, Current: 7,657

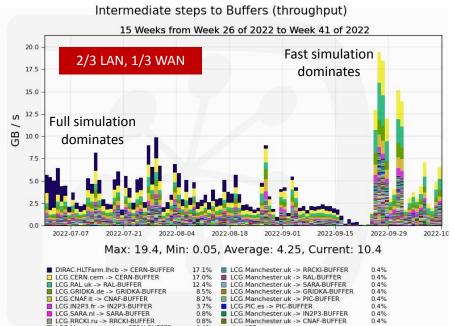

LCG.CERN.cern	27.8%	LCG.PIC.es	1.8%	LCG.UKI-LT2-IC-HEP.uk	0.8%
LCG.CNAF.it	14.8%	LCG.NCBJ.pl	1.7%	LCG.Beijing.cn	0.8%
LCG.RAL.uk	13.4%	LCG.SARA.nl	1.6%	LCG.Liverpool.uk	0.5%
LCG.GRIDKA.de	7.6%	LCG.Manchester.uk	1.4%	LCG.Oxford.uk	0.5%
LCG.IN2P3.fr	4.8%	LCG.UKI-LT2-QMUL.uk	1.3%	LCG.UKI-LT2-Brunel.uk	0.5%
LCG.RRCKI.ru	4.1%	LCG.RAL-HEP.uk	1.2%	LCG.NIPNE-07.ro	0.5%
LCG.NIKHEF.nl	3.9%	LCG.NCBJ-CIS.pl	1.1%	LCG.LAL.fr	0.4%
LCG.CSCS.ch	2.2%	LCG.CPPM.fr	1.0%	LCG.Durham.uk	0.3%
LCG.Lancaster.uk	2.0%	LCG.MIT.us	0.9%	plus 45 more	

Generated on 2022-10-24 07:15:46 UTC

Monte Carlo simulation

- No input data required. Starting from random seed!
 - Pile-up significantly smaller than GPDs
- Simulation dominates (95%) CPU work, runs everywhere
 - Improvements in simulation and introduction of fast simulation significantly decrease CPU work per event
 - big jump in number of simulated events per year!
- Simulation reconstruction is heavily filtered
 - E.g. 70-80B events simulated in 2021-2022 but much less stored
- Simulation is continuously running, with a given data-taking year being simulated for the following N years

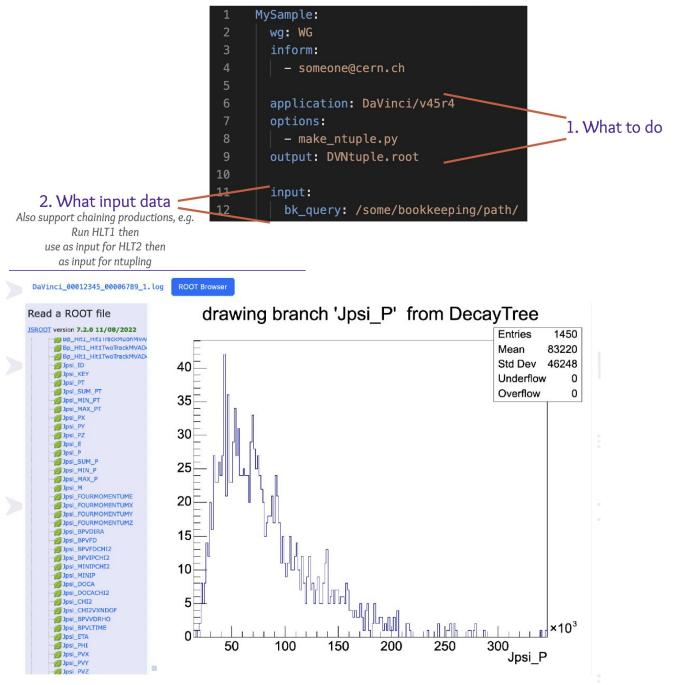

Data taking		Simulation year									
year	Х	X+1	X+2	X+3	X+4	X+5	X+6	X+7	X+8	X+9	X+10
x											
X+1											
X+2											
X+3											



Year	Simulated events (10 [°])	Stored events (10 ⁹)	Ratio	CPU work kHS06.y	CPU per event kHS06.s	LFS TB
2017	10.3	4.2	40.3%	817	2.50	640
2018	12.0	3.0	25.3%	1009	2.65	550
2019	45.0	6.9	15.2%	1290	0.90	1110
2020	67.0	16.8	31.7%	1357	0.81	2010
2021	80.0	11.1	13.9%	1815	0.72	2030
2022	78.4	3.2	4.1%	2243	0.98	2490

Network

- LHCb increases network usage in Run3 and beyond
 - Dominated (one order of magnitude!) by real data coming from the detector
 - A factor two expected for simulation
 - Fast simulation requires more BW
- Run3 requirements have been successfully tested with data challenges in 2022
- Fast and reliable network is at the basis of our successful computing operations and ultimately of the physics productivity of LHCb
- In general:
 - we favour LAN over WAN
 - when running on a Tier2, we favour the national network before going abroad.

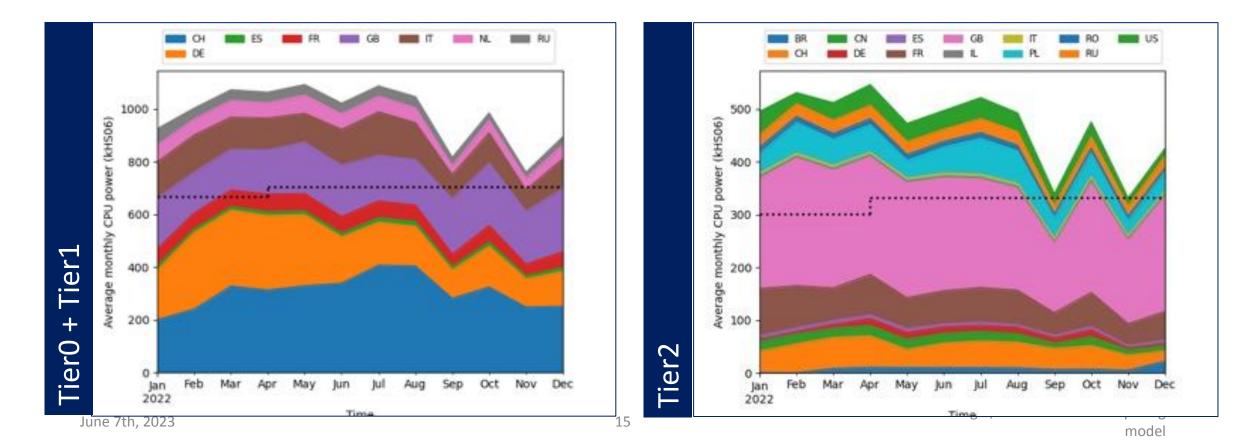


Generated on 2022-10-20 19:49:57 UTC

Analysis productions

- The Analysis Productions infrastructure allows a user-friendly, declarative approach to ntupling
- user processing of data and simulation are supported using the DIRAC transformation system
- Historically analysts were responsible for running O(10,000) grid jobs to produce ROOT files
- Centralised production ensures e.g. better validation hence more efficient use of resources
- Job details / configuration / logs automatically preserved in LHCb bookkeeping / EOS
- Automated error interpretation / advice
- Intuitive web interface for requesting / testing / browsing outputs
- Integration of testing and monitoring using gitlab CI/CD - web based monitoring

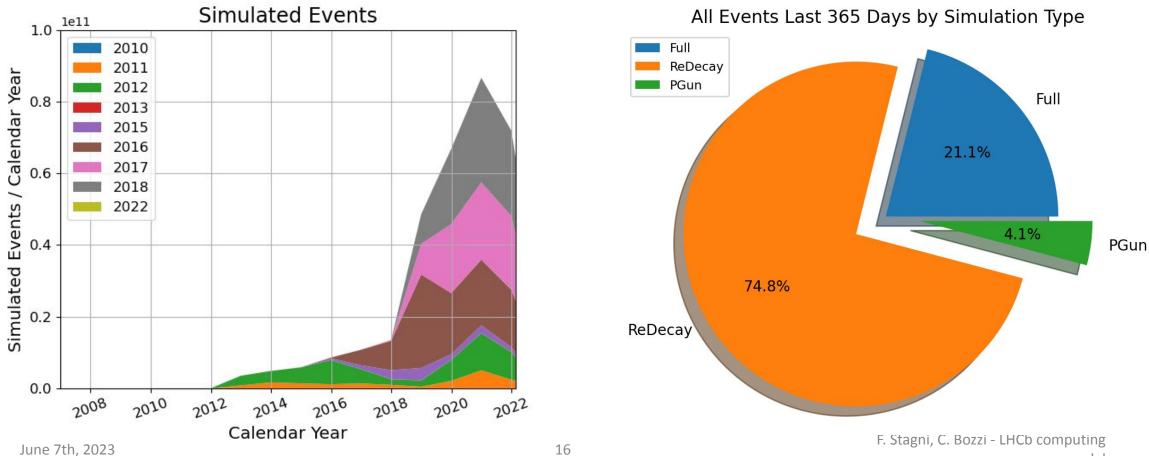
C. Burr, CHEP 2023 talk


Reality bites

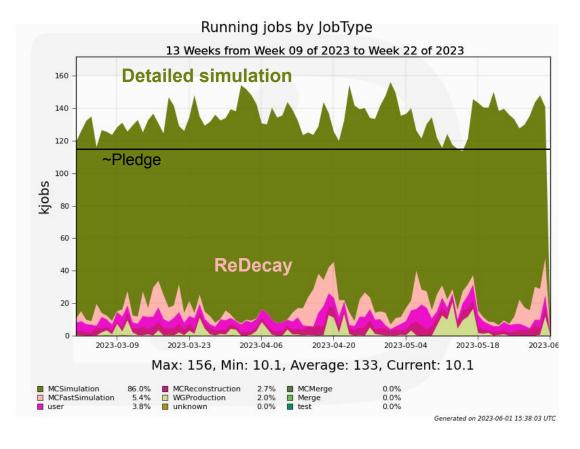
- LHC schedule and installation of LHCb upgrade sub-detectors was slowed down by Covid-19 pandemics
- 2022 was a commissioning year for LHCb
- Upstream Tracker (UT) installed during Year-End Technical Stop (YETS 2022-2023)
 - Currently under commissioning
- A failure of the LHC vacuum system of the VELO resulted in an incident in the VELO vacuum volume on January 10th 2023
 - VELO «RF foil» deformed, precluding the possibility to fully close the VELO around the LHC beam in 2023
 - RF foil to be replaced in YETS 2023-2024
- 2023 is mostly commissioning for LHCb
 - Expecting to take heavy-ion collision data with all subdetectors included
 - Perhaps some proton collision data shortly before

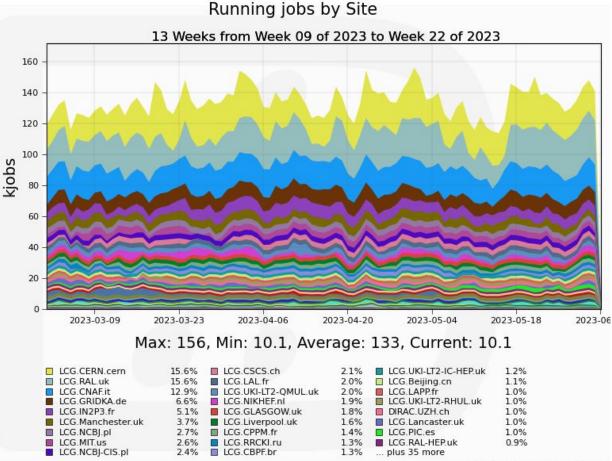
CPU usage in 2022

• Nevertheless, CPU usage on WLCG resources has been above the pledges


• Decreasing from Q3/Q4: no Run3 events to simulate, only Run1+Run2 "tails"

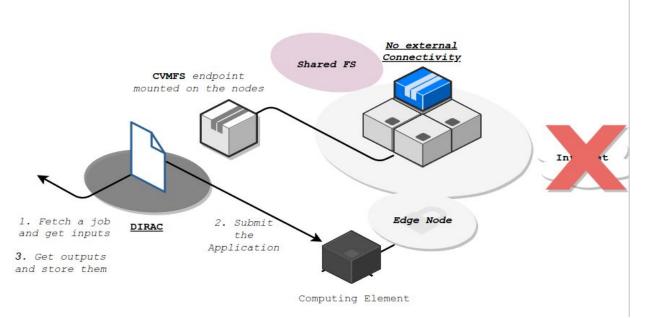
model


CPU usage in 2022


~75 billion events simulated in 2022, 80% with fast simulations

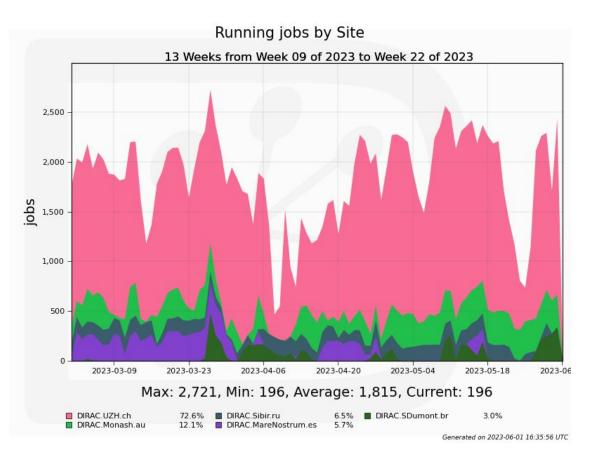
Distributed computing operations

Computing work: MC production (94%), physics analysis (6%)
 1/3 of physics jobs run through Analysis Productions


Generated on 2023-06-01 15:38:24 UTC

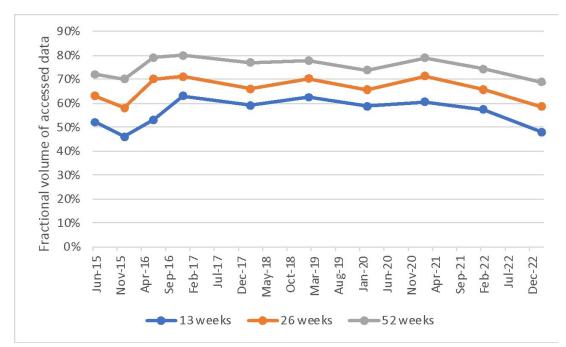
DIRAC equipped to run on HPCs

PushJobAgent

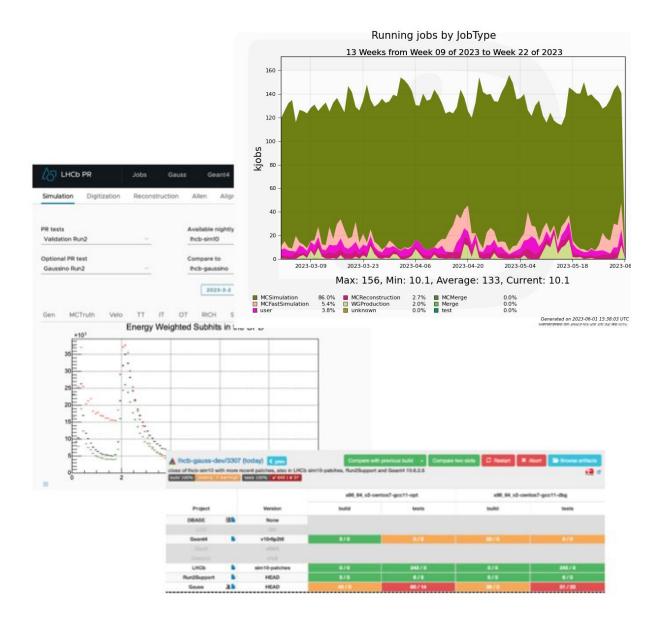

- Used in absence of network connectivity on the worker nodes
- Works as a Pilot-Job that would be executed outside of the HPC
- Fetches jobs, manages their input and output data, and solely submit the application to the HPC.
- Requires a direct access to the LRMS.

A. Boyer, CHEP talk

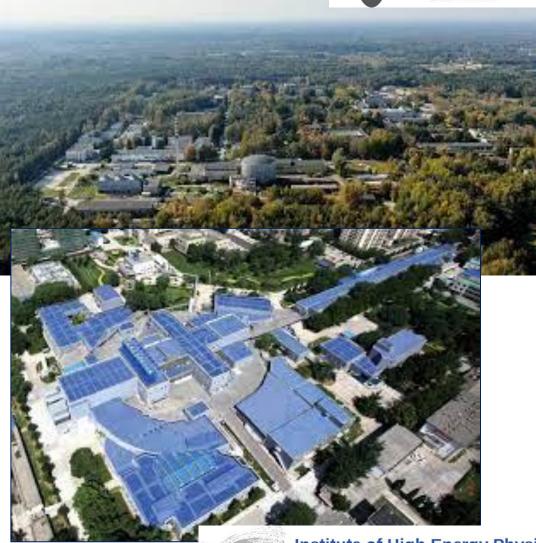
Opportunistic resources


- Fraction of jobs executed on totally opportunistic resources stable at a few percent level
- Zurich (CH), Monash (AU), Sibir (RU), Barcelona (ES)
- Barcelona Supercomputing Center (MareNostrum) and SDumont.br are production HPCs
- WLCG sites not pledging to LHCb are also utilised opportunistically (at a few percent level)

Storage (under)usage in 2022


- Disk and tape usage way below requirements/pledges/deployed capacities
- 2022 has been a commissioning year...
- Data popularity is also somewhat decreasing; Run1+Run2 analysis tails...

					2022			
LI	HCb	Request	Pledge	Pledge/CRSG	Used	Used/CRSG	Deployed capacity	Deployed cap./CRSG
	Tier-0	189	189	100%	305	161%	189	100%
WLCG	Tier-1	622	515	83%	676	109%	515	83%
	Tier-2	345	333	96%	470	136%	333	96%
CPU	HLT	50	50	100%	271	541%	n/a	n/a
	Sum	1206	1086	90%	1721	143%	1036	86%
Others		50	50	100%	53	105%	n/a	n/a
Total		1,256	1,136	90%	1,773	141%	1036	86%
	Tier-0	26.5	26.5	100%	10.5	39%	12.1	46%
Diale	Tier-1	52.9	47.8	90%	30.6	58%	45.1	85%
Disk	Tier-2	10.2	6.9	68%	4.0	40%	7.5	74%
	Total	89.6	81.2	91%	45.1	50%	64.7	72%
	Tier-0	81	81	101%	29.8	37%		
Таре	Tier-1	139	116	83%	47.1	34%		
•	Total	219.9	197.3	90%	76.9	35%		

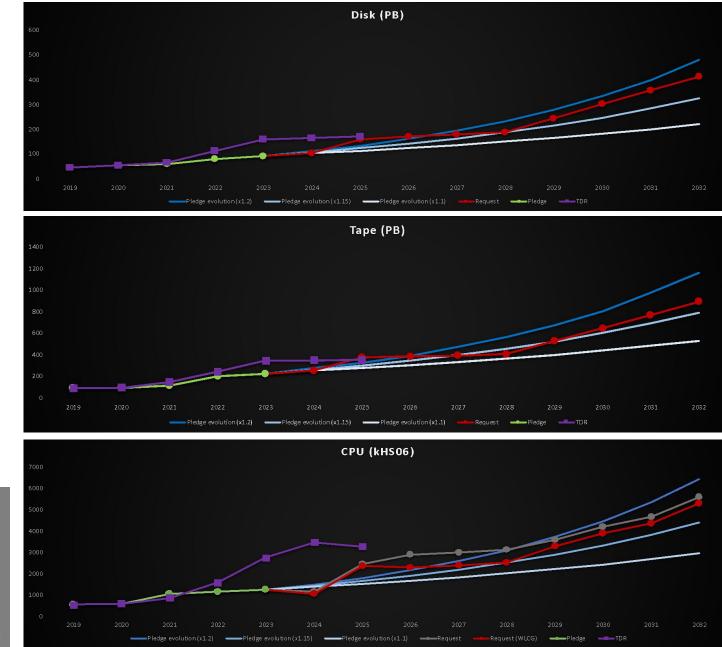

LHCb software on ARM

- Gauss simulation application successfully built on ARM
 - Simulation takes 90% of CPU work on the grid
- Physics validation needed
 - LHCb performance & regression test suite (LHCbPR)
- Continuous integration / nightly builds a prerequisite
 - server available from CERN/IT
- LbPlatformUtils needs to be properly extended
 - An LHCb-developed library (but really generic) that
 - · identifies the platform, of the node where it ran
 - used for matching of LHCb jobs
 - actually, very little of LHCb in there
 - handles compatibilities
 - finds out the possibility to use containers
 - recognizes the instructions set available

Proto-Tier1 sites

- The WLCG Overview Board (OB) approved on Dec 8th 2022 the plan presented by the NCBJ (Warsaw) and IHEP (Beijing) Tier2 sites to become Tier1 sites for LHCb
 - Contributing ~5% computing resources each
- Both sites must comply with the needed requirements in terms of network, storage (most notably: tape), services, service level agreement
- LHCb distributed computing team engaged to define tasks/deliverables/milestones/etc.
 - Minimal requirements shown at MB on Feb 14th 2023
- Current status: CPU and storage OK, NCBJ connected to LHCOPN, IHEP network to be finalised (in a couple of weeks)

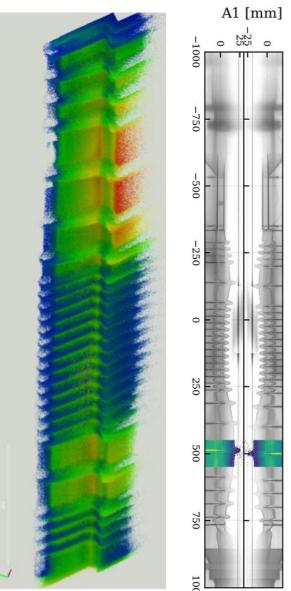
Institute of High Energy Physics Chinese Academy of Sciences


NATIONAL

FOR NUCLEAR RESEARCH

Resource evolution in Run3 / LS3 / Run4

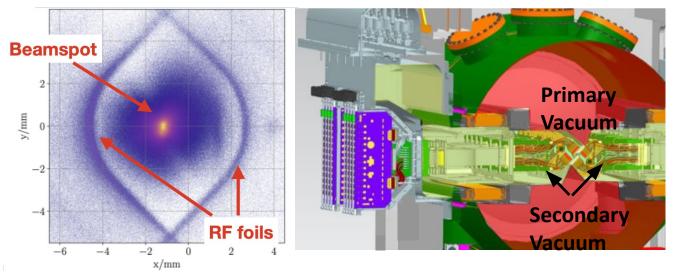
- Taking VELO incident into account
- Pledge evolution from 2023
- 2024 requests ~ 2023 pledges
- After step in 2025, requests are within 1.15-1.2x pledge evolution through Run4
- Two-years shift wrt TDR


Summary

- Run3 + Run4 computing model
 - 30x larger data volume from detector mitigated by aggressive triggering strategy, filtering, selective persistency
 - Network utilisation one order of magnitude larger than Run2
 - Requirements validated by data challenges in 2022
 - Still small wrt other LHC VOs
- Resource usage
 - CPU dominated by simulation production
 - Fast simulation significantly mitigates requirements
- Status so far: commissioning LHCb sub-detectors, waiting for data
- Offline resources:
 - Two-years delay with respect to computing model TDR
 - 2024 ~ 2023; big jump expected in 2025, then within "flat budget" in LS3 & Run4
 - Two new Tier1 sites helpful to alleviate pressure on storage (tape)

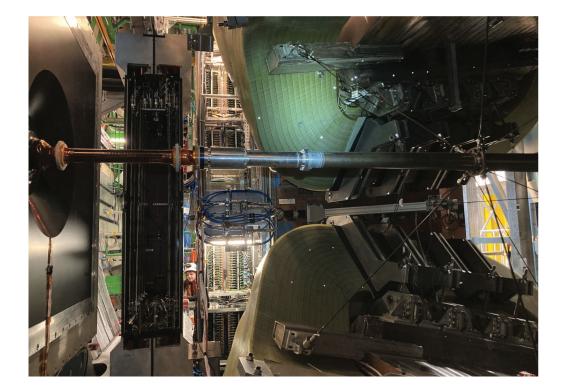
backup

VELO Vacuum Volume Incident : Status & Recovery



- On 10th January 2023 incident occurred due to a failure of the LHC vacuum system of the VELO.
 - Detector modules & cooling are not damaged
 - Currently operating with VELO in retracted position
 - Expectation to close to 16mm (where 0mm is nominal position) after June Technical Stop, subject to checks
 - RF foil has undergone plastic deformation
 - Replacement in the shutdown at the end of 2023
 - Planning advanced
 - Commissioning of Upgrade I systems proceeds and physics opportunities in '23 remain

VELO incident


RF foils imaged in 2022

- Damage of the RF box between VELO and Primary Vacuum 10/1/23
 - multiple equipment failures resulted in a build up of pressure beyond specification between VELO and beam volumes
 - RF foils have been deformed. VELO modules do not show damage
 - Foils to be replaced in year end shutdown
- System expected to be operating with the VELO in an open or partially open position.
- Reduced physics programme though many opportunities are being explored to utilise the system.
- Significant impact on offline computing requests

UT Installation Status

- UT was closed in time for start of LHC run, shortly after we last met
- 95.9% included readout channels
- Commissioning proceeding as anticipated
 - Will take time
 - Particular emphasis on firmware and software work in this period

Current situation (NCBJ)

Network: Connection with LHCOPN established on May 25th

- testing/fixing things (e.g. some issues with IPv6 and routing to other T1s)
- everything should be ready for data challenge very soon

targeting next week

- Computing hardware and configuration ready.
 - two additional servers added, disk capacity is now 3PB.
 - Purchase of tape drives is currently postponed
 - no immediate need for the additional throughput
 - existing hardware is sufficient to meet the requirements.

 LHCb team visited NCBJ on March 28-30 and was impressed by infrastructure and effort

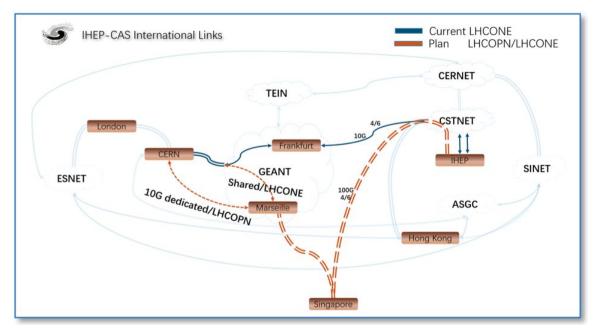
Current situation (IHEP)

Computing:

Hardware is ready

• 3216 CPU cores with 63.5k HS06 (or 67.116 HS23)

1280 Intel + 256 AMD CPU cores newly purchased

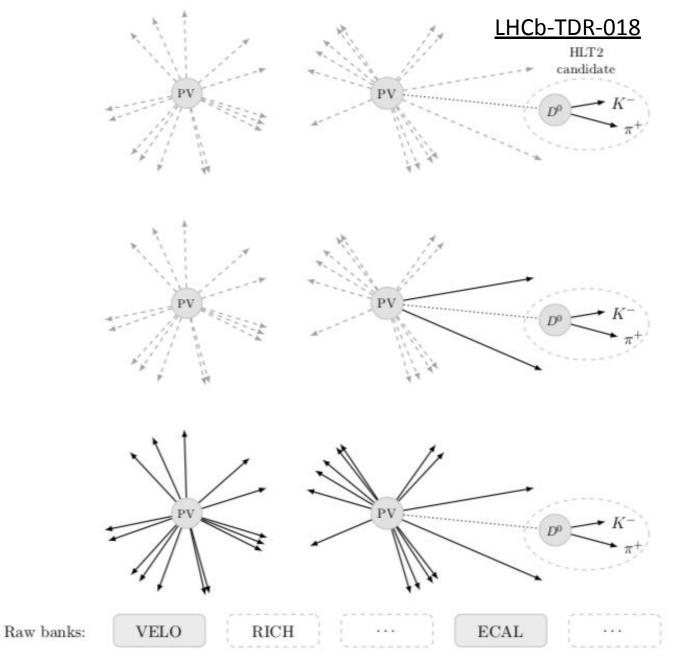

1680 Intel CPU cores from current LHCb T2

Software is ready

HTCondor CE deployed on newly purchased server

Storage:

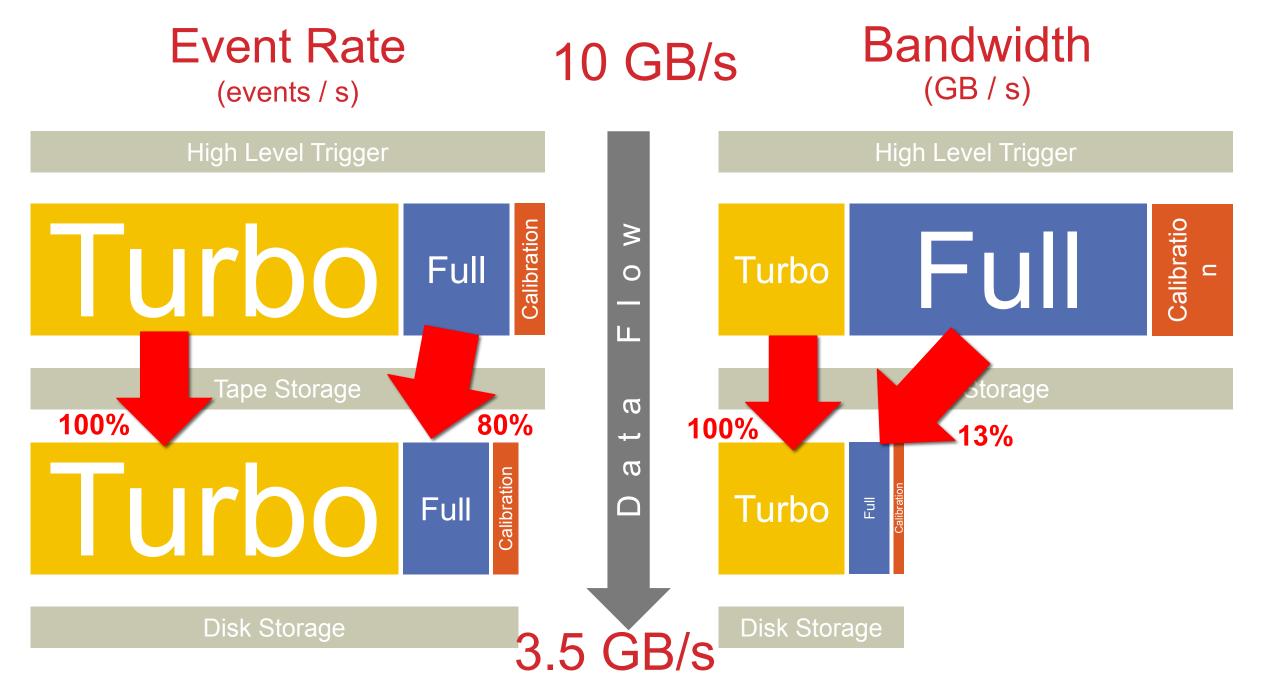
- Hardware is ready
- Disk storage capacity of 3.2PB
- Tape library is ready
 - 4 tape drivers and 3PB tape capacity.
 - Additional 7PB will be purchased this year
- Software: almost ready
 - EOS ready soon (end point root://eoslhcb.ihep.ac.cn)
 - CTA is ready (end point <u>root://ctalhcb01.ihep.ac.cn</u>)
 - Throughput of 4-6GB/s, ~3x requirement

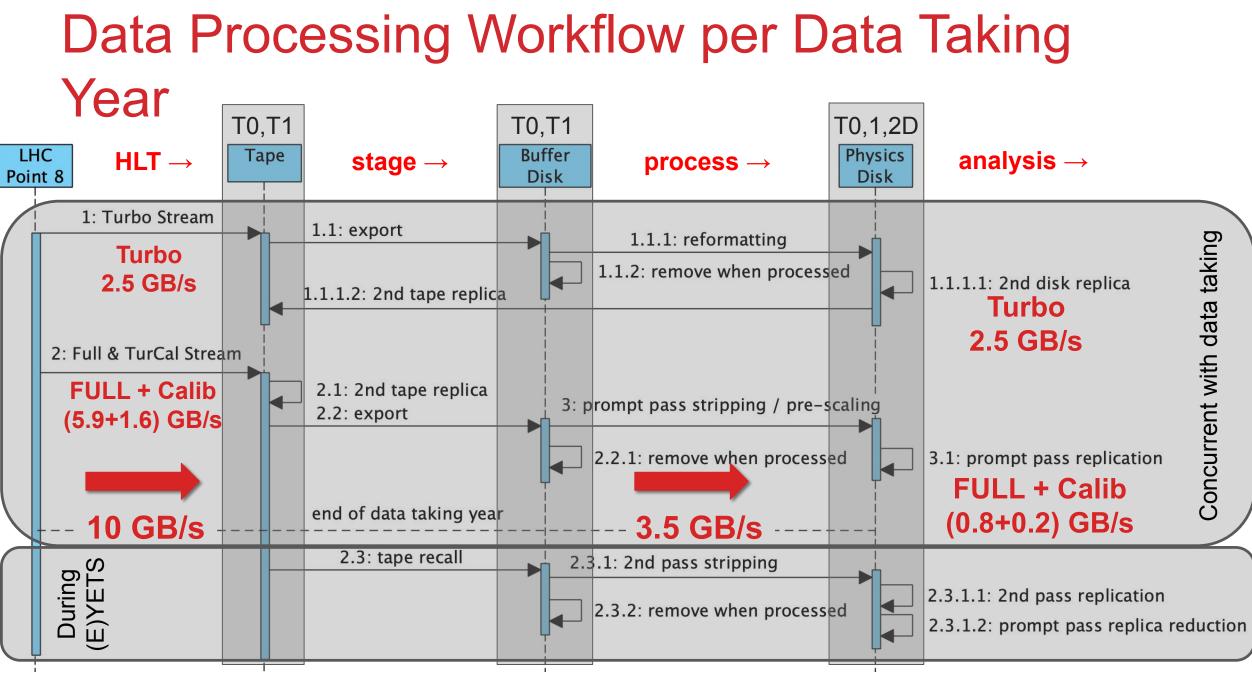

Network:

- 100Gbps link (CSTNet GEANT) will be ready on 15th June (instead of April)
- dedicated 10Gbps link (LHCOPN, Marseille-CERN) will be ready on 15th June

Data persistency

• Different levels of persistency:


- FULL and TURCAL: the full event is persisted
- TURBO: selective persistency, ranging from candidate firing the trigger to the entire event, optionally including some RAW subdetector data banks



HLT output bandwidth

- Due to selective persistency, emphasis has shifted from trigger rate (Hz) to bandwidth (bytes/s)
 - save less information and give more rate for a given bandwidth!
- About 60% of the physics selections on FULL in Run2 are migrating to TURBO in Run3
 - Massive migration, not trivial!
- Logical bandwidth to tape: 10 GB/s
- Logical bandwidth to disk reduced to 3.5GB/s by sprucing FULL and TURCAL more aggressively (select substantial fraction but slim by factor 6)
- This gives requirements of O(100PB) tape and O(50PB) disk per data taking year

	Logical Throughput to tape				Logical Throughput to disk			
stream	rate fraction	throughput (GB/s)	bandwidth fraction	throughput (GB/s)	bandwidth fraction			
FULL	26%	5.9	59%	0.8	22%			
Turbo	68%	2.5	25%	2.5	72%			
TurCal	6%	1.6	16%	0.2	6%			
total	100%	10.0	100%	3.5	100%			

Data streams from the LHCb detector

- Due to selective persistency, emphasis has shifted from trigger rate (Hz) to bandwidth (bytes/s)
 - save less information and give more rate for a given bandwidth!
- Example of rate and bandwidth division for 2018 data taking

stream	event size	event rate	rate	throughput	bandwidth
	(kB)	(kHz)	fraction	(GB/s)	fraction
FULL	70	7.0	65%	0.49	75%
Turbo	35 ^(*)	3.1	29%	0.11	17%
TurCal	85	0.6	6%	0.05	8%
total	61	10.8	100%	0.65	100%

(*) Turbo event size is an average. It ranges from a few kB (minimal persistence) to full event size

Reconstruction / Stripping

- Reconstruction of FULL is performed at Tier1s (80% of events) and Tier0 (20%)
 - Output as **RDST** files
 - saved on tape ARCHIVE (1 copy only)
- TURBO does not need to be reconstructed, but only reformatted. Same TO/1 share
- No event re-reconstruction!
 - Alignment and calibration performed online on the trigger farm and applied on HLT
- RDST files are «stripped» according to selection criteria specific to each analysis. Stripping takes place at the same site as reconstruction. Output as
 - DST: full event information; stripping = event filtering
 - mDST: selective persistency; stripping = filtering + slimming
 - The offline equivalent of the TURBO stream
- (m)DST files are merged and grouped in O(10) streams and
 - Stored on tape ARCHIVE (1 copy) and DST disk
 - Replicated to DST disk on either another Tier1 or a Tier2 with disk (Tier2D)
 - 3 copies in total

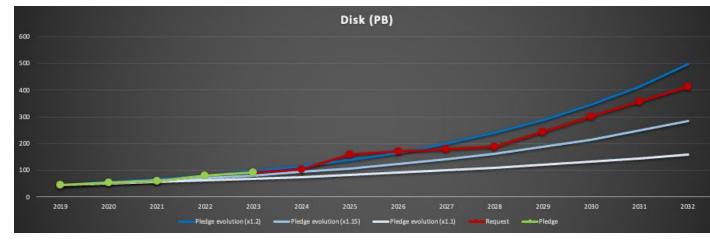
Run3 LHCb Upgrade

- With the upgrade conditions several factors need to be applied
 - Luminosity 4*10³² cm⁻²s⁻¹ to 2x10³³ cm⁻²s⁻¹
 - HLT efficiency increase because of removal of LO hardware trigger
 - Raw event size increase due to pileup, according to simulation
- Without any changes the HLT output rate would increase in Run 3 to 17.4 GB/s

	Run 2 (GB/s)	Lumi	No LO	Raw size	Run 3 (GB/s)	Event size: Turbo/FULL ~
Full	0.49	x5	x2	x3	14.7	
Turbo	0.11	x5	x2	x1	1.1	
Calibration	0.05	x5	x2	x3	1.6	
Total	0.66				17.4	

~0.167

General considerations


- The current trend of allowing users to run docker/singularity images could impact network utilization, since this ultimately requires downloading the image on each worker node. That should be carefully thought about
- In terms of features, could a minimal QoS per user of the network be introduced?
 - Network is the only resource for which there is no pledge nor fairshare
- Our main concern for network in future is bandwidth availability
 Non-LHC users are coming with large requirements
- Monitoring and performance: we regard ourselves as just users; of course we are willing to help with requirements/use cases/providing info/etc

Monte-Carlo production in Run3 onwards

- Amount of events to be simulated scales with integrated luminosity
- Limit CPU by increasing usage of fast simulations
 - But this has a big impact on network traffic
- Limit storage and network usage by
 - Filtering in generation and stripping
 - Saving output in mDST format
- As a result, expect to generate a volume of O(10 PBs) of simulated data per year
 - 1/3 is kept on (MC_DST) disk, the rest is parked on tape
 - One disk replica is made, this gives an estimation of O(1 GB/s) network traffic
- If MC reconstruction is split and fast simulation dominates, then transfers
 of simulation output from Tier2 sites becomes dominant
 - O(5-10GB/s) as a ballpark estimate, to be further discussed

Resource evolution in Run3 / LS3 / Run4

- Taking VELO incident into account
- Pledge evolution from 2019
- 2024 requests ~ 2023 pledges
- After step in 2025, within 1.2x pledge evolution through Run4

40

