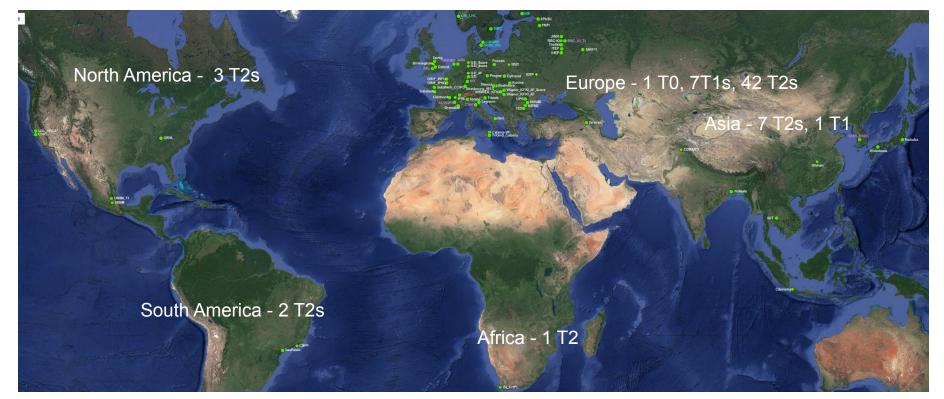
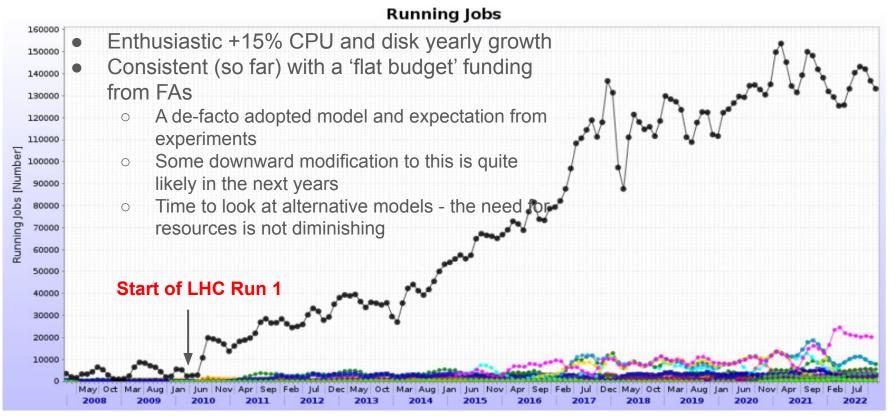


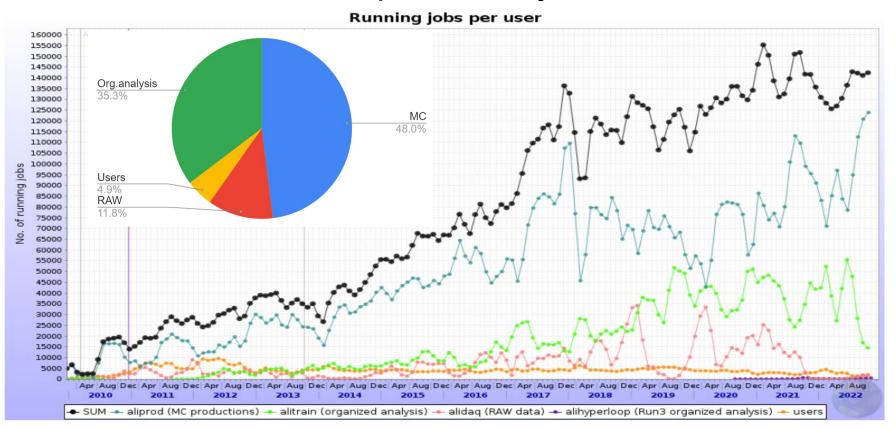
The ALICE Grid upgrade, methods and tools for LHC Run 3 and beyond


L. Betev

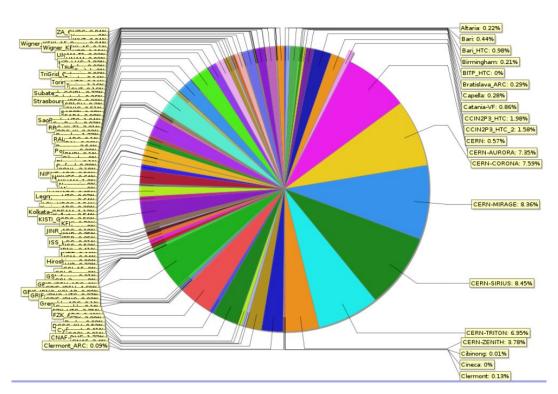
Journées LCG-France, LPNHE, 6-8 June 2023



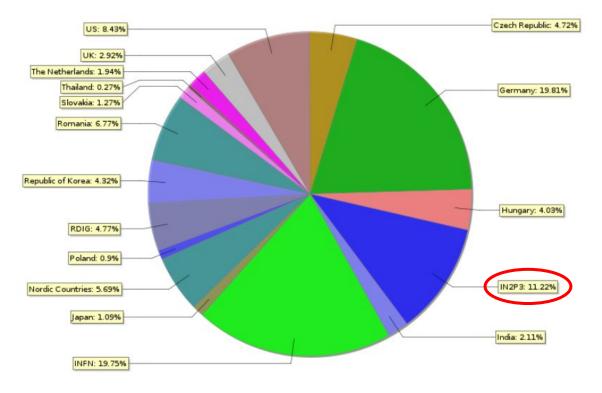
The ALICE Grid - individual computing centres



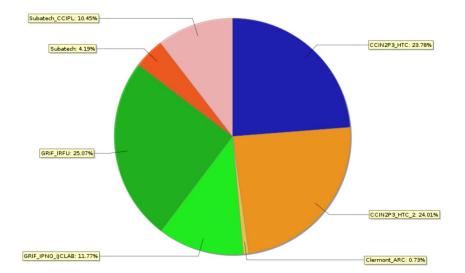
ALICE resources evolution

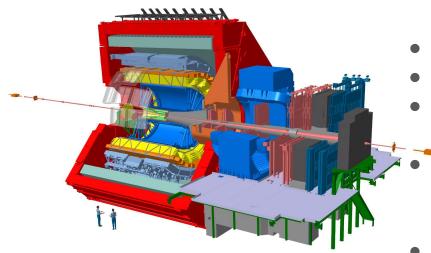

ALICE resources use per activity

Role of Tiers

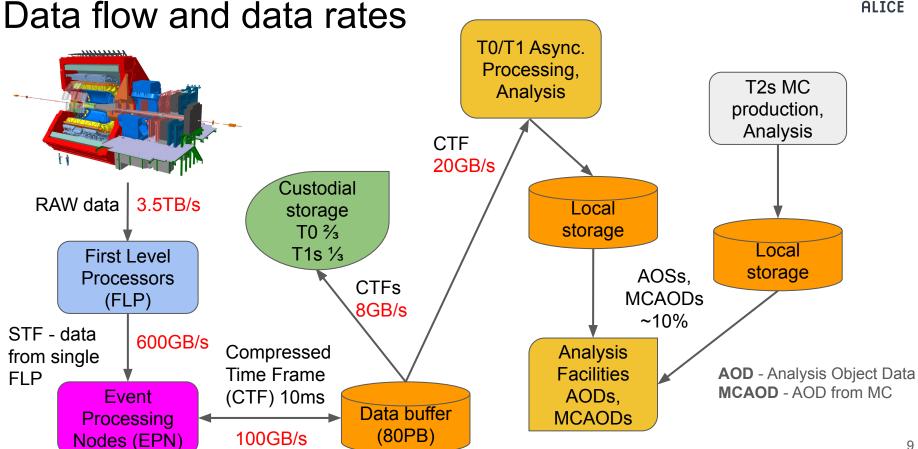

- T0 RAW reco + MC + analysis
- T1s RAW reco + MC + analysis
- T2s MC + Analysis
- Differences between tiers custodial storage + nominal services response time
- In practice all tiers run effectively all types of workload (except RAW reco) and availability is ~same
- ALICE model can absorb any site size

Regional contribution to ALICE computing


- ~12% FR contribution
- T1@CCIN2P3
- 4 (soon to be 3) T2s
 - Clermont
 - GRIF_IRFU
 - GRIF_IJCLAB
 - Subatech (+CCIPL)
- Diminishing role of T2 centres - this is an unfortunate global trend


Repartition of resources in FR sites

- ~50% at CCIN2P3
- ~15% Subatech
- ~35% GRIF (IRFU+IJCLAB)
- ~1% Clermont
- The imminent loss of Subatech is a substantial hit to ALICE computing in France
 - In addition it is the loss of one of the oldest Grid centres in the country(!)



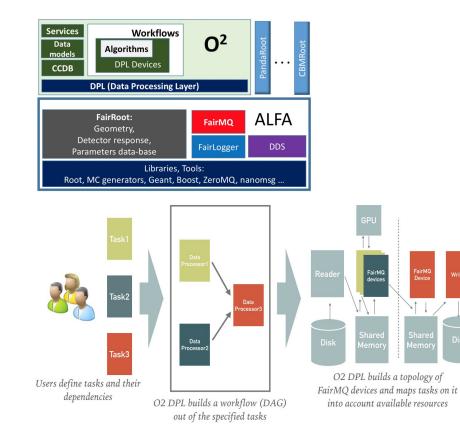
ALICE upgrade general

- p-p and HI physics
- 10x integrated luminosity L~10nb⁻¹ (B=0.5T)
 + 3nb⁻¹ (B=0.2T)
- 100x event rate of Run 1/2, 10x more data
- Continuous readout
- Focus on data compression and real time (synchronous) data reconstruction
- => Reasonable rates and data volumes after compression to storage and secondary data formats
- Adherence to 'flat budget' resources funding for data processing and analysis

The O2 facility (EPNs)

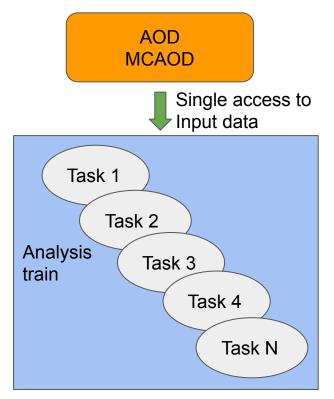
- Container-hosted computing facility located at the ALICE site, PUE<1.07
- High-throughput system, heterogeneous
 computing platform (CPU+GPU)
- 250 dual CPU nodes (ROME, 64 cores, 512GB RAM) with 8 AMD (MI50, 32GB) GPUs/node
- Functions
 - Data aggregation (Detector STFs to global CTF)
 - Synchronous global reconstruction
 - Calibration and data volume reduction
 - Quality control
 - Asynchronous (offline) reconstruction
- Containers house a backup EOS storage in case of network interruption to CC

Synchronous data processing

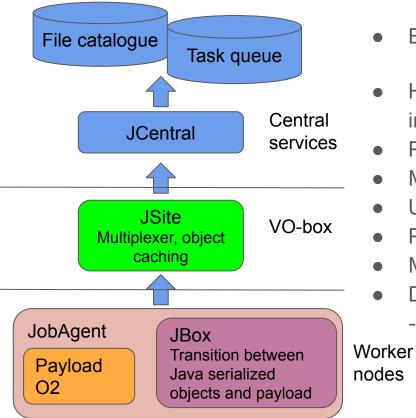

- Goal to compress the RAW data by about factor 35 (3.5TB/s -> 100GB/s)
- Through zero suppression, clusterization, tracking, optimized data format
 - Mandatory use of GPUs (40x faster than CPUs)
 - All synchronous level software is written for GPUs for all detectors

Pb-Pb @50 kHz IR 2 ms drift time TPC reconstructed tracks from different colour-coded events

Unassigned clusters (noise) Reconstructed tracks Removed clusters Failed fits


O2 Software framework

- Developed by ALICE in collaboration with the FAIR group at GSI Darmstadt
- Three major parts
 - Transport layer, based on FairMQ message passing toolkit
 - Data model ALICE-specific object description and content
 - Data processing layer set of data processors implicitly organized in a logical dataflow for data transformation
 - Trivially parallel and integrates tools for GPU offloading
- Natural use of multicore processing and shared memory - *move to multicore*


Analysis facilities (AFs)

- New element of the computing model
- Data transferred to AF from T0/T1s/T2s
- Goals
 - Provide a location with comprehensive data samples from asynchronous and MC data processing at ~10% statistics
 - Fast tuning of analysis algorithms once ready, run on full sample on the Grid
 - First data and low statistics analysis (if compatible)
- Incorporated in the Grid framework
- Sites tuned for fast I/O between storage and CPU
 - Approximate total size 6-8k cores, 10PB storage
 - ~15MB/s/core throughput
- As of today GSI Darmstadt and KFKI Budapest (²/₃ of the AF target, looking for more suitable sites)

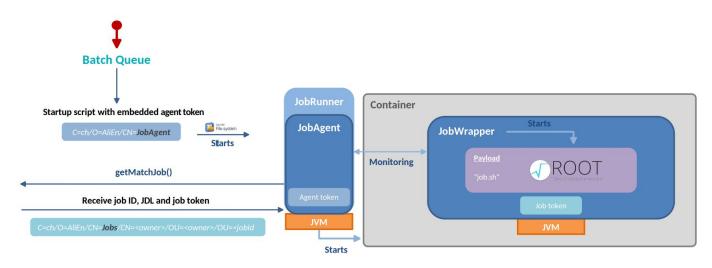
Grid middleware development - JAliEn

- Evolution of the AliEn middleware
 - Refactored and rewritten in Java
- Highly efficient and scalable communications infrastructure
- Persistent, compressed, SSL channels
- Multiplexing and object caching
- Use of Java serialized objects
- Platform independent
- Multi-core enabled, HPC ready
- Deployed gradually on the existing infrastructure
 - no interference with operations

Site services evolution

JSite

Multiplexer, object caching CE interface (either gateway -HTCondor/ARC or local batch)

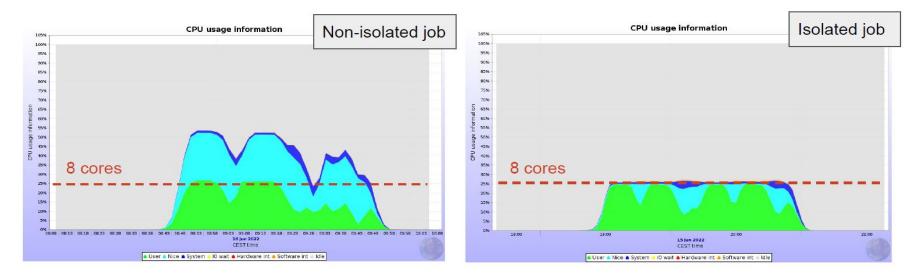

MonALISA Cache for local monitoring information Object filtering and communication with central ML instance

VO-box

- New middleware for sites simplification of operation
- JAliEn was installed gradually and in combination with the local CE updates
- From 5 services to 2
 - The remaining services are quite reliable and effectively do not require site manager intervention
- Automatic updates to new version of VO-box services
- Monitoring of all relevant info for the site is provided on a single page <u>here</u>

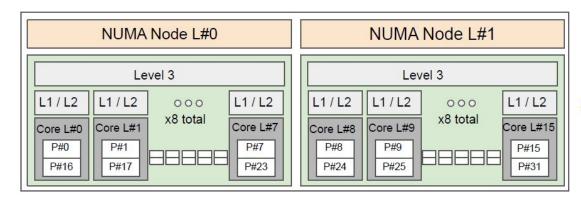
JobRunner, JobAgent and JobWrapper

- Entirely new method for both resources and job control
- Fully containerized workload
- Ability to run multiple jobs within the control of the same JobRunner
 - Effective control of any set of resources provided



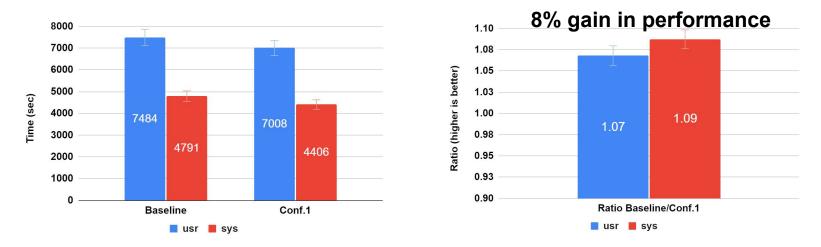
Payload containers

- By default, all jobs are wrapped in a CentOS 7.9 container
- Other images are available
 - Rocky 8.6: For newer payloads and **GPUs** (special for the EPN cluster)
 - Rocky 9.0 + RHEL 9: Already certified
 - Debug containers, for example with vtune, strace
- GPUs are supported in Apptainer (formerly Singularity)
- All of the above allows for fulfilling various job requirements, independent of the underlying OS
- Allows for use of HPCs or other specialized clusters (for example EPNs)


Job isolation and control - applying taskset

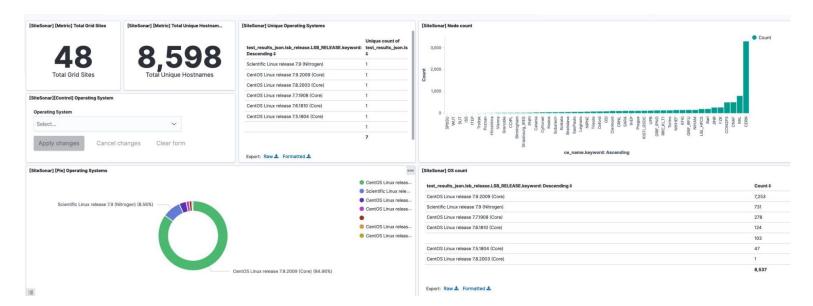
- Total CPU usage goes above the requested 8 cores
- CPU consumption is limited with taskset
- Total CPU usage is flat at 8 cores
- Applicable for sites with non-constrained resources and full node submission

Improving job efficiency through CPU pinning


Sample host CPU architecture

- Various core/cache pinning configurations possible
 - Same NUMA Node and independent L1,L2 cache
 - Different NUMA Nodes and independent L1,L2 cache
 - Same NUMA Node and sharing L1,L2 cache
 - Random core assignment
 - No pinning

Improving job efficiency through CPU pinning


- Most efficient configuration same NUMA node, independent L1/L2 cache - compared to no pinning
- Only possible if full control of the CPU whole node
- Already in production at LBNL Lawrencium HPC

New tools and monitoring - SiteSonar

- Tool to evaluate site capabilities and installations probes invoked at the beginning of execution
 - Collects data from ~10K Grid nodes daily

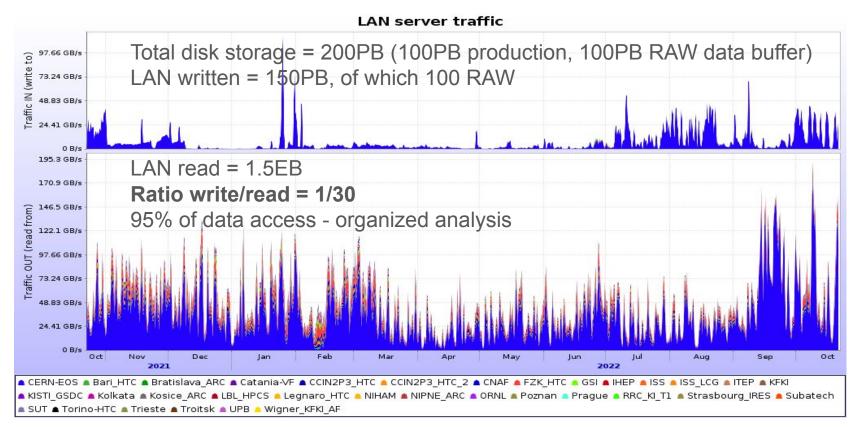
Storage performance - FileCrawler

- Checks storage integrity on sites by mimicking normal jobs
- Random files, proportional to the storage size
- Reporting on file health, throughput and accessibility
- Early detection of storage issues

Status codes extracted from the crawler

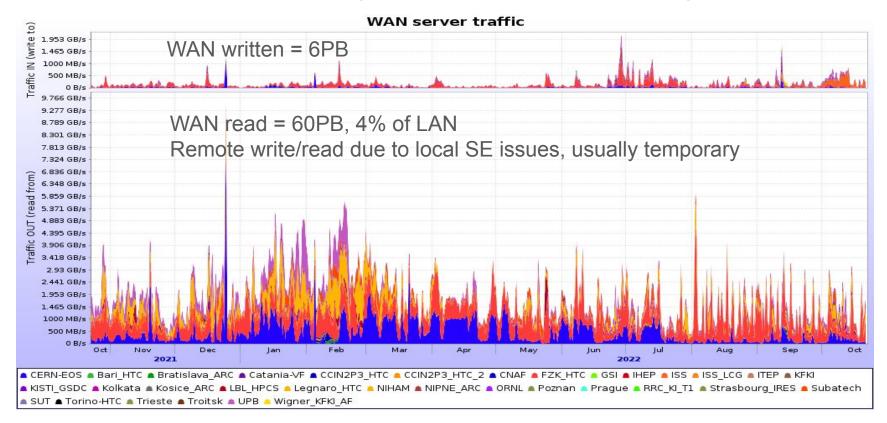
Status Type	Status Code	Status Count	Status Code Ratio	Download throughput
FILE_OK	S_FILE_CHECKSUM_MATCH	26972	99.79 %	21.97 Mb/s
	E_CATALOGUE_MD5_IS_BLANK	2	0.01 %	19.04 Mb/s
INTERNAL_ERROR	XRDFS_CANNOT_CONFIRM_UPLOAD	21	0.08 %	
FILE_INACCESSIBLE	XROOTD_EXITED_WITH_CODE	35	0.13 %	
TOTAL		27030	100 %	

SE Name	Start	End	Success ratio +	Corrupt ratio	Inaccessible ratio	Internal error ratio
SARA::DCACHE	18 Oct 2022 06:08	17 Nov 2022 10:32	99.87 %	0.09 %	0.05 %	0.00 %
Hiroshima::EOS	18 Oct 2022 06:08	17 Nov 2022 10:33	99.73 %	0.00 %	0.18 %	0.09 %
SNIC::DCACHE	18 Oct 2022 06:12	17 Nov 2022 10:28	99.68 %	0.02 %	0.27 %	0.03 %
Vienna::EOS	18 Oct 2022 06:07	17 Nov 2022 10:38	99.60 %	0.24 %	0.16 %	0.00 %
NIPNE::EOS	18 Oct 2022 06:09	17 Nov 2022 13:03	99.58 %	0.03 %	0.37 %	0.03 %
Trieste::SE	18 Oct 2022 06:11	17 Nov 2022 12:11	99.54 %	0.11 %	0.35 %	0.00 %
Bari::SE	18 Oct 2022 06:04	17 Nov 2022 12:22	99.50 %	0.08 %	0.42 %	0.00 %
HEP::SE	18 Oct 2022 06:07	17 Nov 2022 10:20	99.35 %	0.11 %	0.53 %	0.01 %
Torino::SE2	18 Oct 2022 06:09	17 Nov 2022 11:07	99.34 %	0.13 %	0.53 %	0.00 %
Troitsk::SE	18 Oct 2022 06:04	17 Nov 2022 10:43	99.26 %	0.54 %	0.19 %	0.01 %
CERN::EOS	18 Oct 2022 06:12	17 Nov 2022 10:47	99.19 %	0.08 %	0.65 %	0.07 %
CNAF::SE	18 Oct 2022 06:10	17 Nov 2022 10:35	99.06 %	0.02 %	0.92 %	0.00 %
FZK::SE	18 Oct 2022 06:11	17 Nov 2022 10:33	98.86 %	0.06 %	1.07 %	0.01 %
Legnaro::SE	18 Oct 2022 06:04	17 Nov 2022 10:26	98.54 %	0.03 %	1.34 %	0.09 %
UPB::EOS	18 Oct 2022 06:08	17 Nov 2022 10:32	98.49 %	0.07 %	1.44 %	0.00 %
ORNL::EOS	18 Oct 2022 06:06	17 Nov 2022 10:31	98.18 %	0.46 %	1.36 %	0.00 %
NDGF::DCACHE	18 Oct 2022 06:04	17 Nov 2022 10:30	97.89 %	0.23 %	1.87 %	0.00 %
NIHAM::EOS	18 Oct 2022 06:08	17 Nov 2022 10:49	97.75 %	0.12 %	2.13 %	0.00 %
GRIF::EOS	18 Oct 2022 06:05	17 Nov 2022 10:31	97.75 %	0.05 %	2.20 %	0.00 %
Subatech::EOS	17 Oct 2022 17:38	16 Nov 2022 16:28	97.46 %	0.06 %	0.91 %	1.57 %
JINR::EOS	18 Oct 2022 06:11	17 Nov 2022 12:13	95.93 %	0.13 %	3.92 %	0.03 %
RRC_KI_T1::EOS	18 Oct 2022 06:06	17 Nov 2022 10:28	95.86 %	0.09 %	1.47 %	2.57 %
KISTI_GSDC::EOS	18 Oct 2022 06:07	17 Nov 2022 10:57	95.04 %	3.49 %	1.47 %	0.01 %
CCIN2P3::SE	18 Oct 2022 06:11	17 Nov 2022 10:37	94.27 %	0.02 %	5.69 %	0.02 %
Kosice::EOS	18 Oct 2022 06:07	17 Nov 2022 11:40	93.05 %	0.11 %	6.84 %	0.00 %
Prague::SE	18 Oct 2022 06:06	17 Nov 2022 10:44	90.18 %	0.02 %	9.79 %	0.01 %
Birmingham::EOS	18 Oct 2022 06:05	17 Nov 2022 10:26	87.70 %	0.06 %	12.23 %	0.01 %
Strasbourg_IRES::SE2	18 Oct 2022 06:04	17 Nov 2022 12:46	87.68 %	0.03 %	12.26 %	0.03 %
Catania::SE	18 Oct 2022 06:07	17 Nov 2022 10:23	86.12 %	0.03 %	13.84 %	0.00 %
KISTI_GSDC::SE2	18 Oct 2022 06:07	17 Nov 2022 10:41	86.03 %	0.17 %	13.80 %	0.00 %
LBL_HPCS::EOS	18 Oct 2022 06:04	17 Nov 2022 10:23	85.88 %	1.21 %	12.90 %	0.00 %
Poznan::SE	17 Oct 2022 23:50	17 Nov 2022 10:42	79.63 %	0.33 %	20.04 %	0.00 %
ISS::FILE	18 Oct 2022 06:07	17 Nov 2022 05:19	78.76 %	0.07 %	21.12 %	0.04 %
Kolkata::EOS2	18 Oct 2022 06:09	17 Nov 2022 12:09	68.71 %	0.61 %	30.57 %	0.12 %

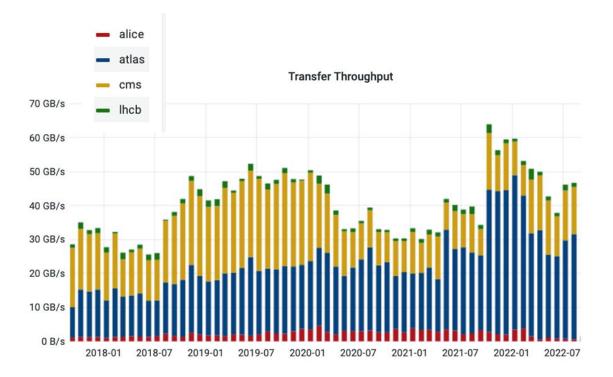


Network and data processing

- Jobs are dispatched to the Grid sites that already have the data
 - Minimizes WAN traffic and RTT efficiency penalty
- Grid site local file access (95%), remote (5%)
 - Remote access due to local SE issues, usually temporary
- Multiple replicas sorted topologically: apps first access local replica, then the next closest
 - Sorting by network topology, availability, network quality, geo-location and other metrics
- Storing multiple replicas
 - One replica is written to the local storage element
 - The other replicas are written to the remote (but close) storage elements
 - Remote writes might go through LHCOPN / LHCONE

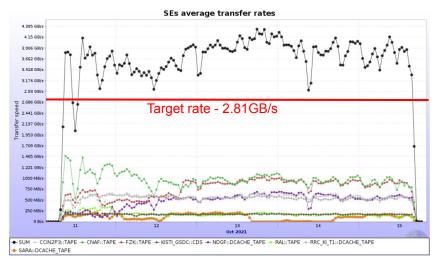


Data access - LAN


Data access - WAN (LHCONE/LHCOPN)

ALICE in the big picture - WLCG data transfers

- Includes RAW data distribution and other LHCONE/LHCOPN transfers
- ALICE computing model and network use is beneficial to remote sites
- Network requirements are mild and well within the capabilities of regional T2s



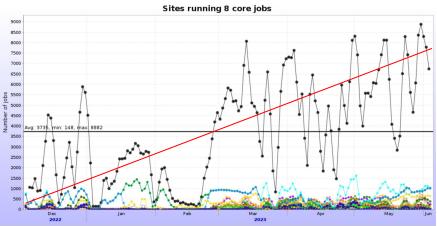
Expected data rates in Run3 - replication of RAW

T1 Centre	Target rate GB/s	Achieved rate GB/s	
CNAF	0.8	<u>0.94</u> (116%)	
IN2P3	0.4	0.54 (130%)	
KISTI	0.15	0.16 (106%)	
GridKA	0.6	0.76 (123%)	
NDGF	0.3	0.47 (144%)	
NL-T1	0.08	0.1 (122%)	
RRC-KI	0.4	0.53 (128%)	
RAL	0.08	0.17 (172%)	

Sum 2.81GB/s

- Full traffic simulated during data challenge
- Channels tuned to slightly above the target rate, within reasonable limit
- The bulk of the bandwidth will be used after the Pb-Pb data taking period, for ~3 months
 - Since there is no Pb-Pb this year, we remain at the level of data challenges

Multicore use



Steady decline of single-core payloads

• Legacy analysis and MC

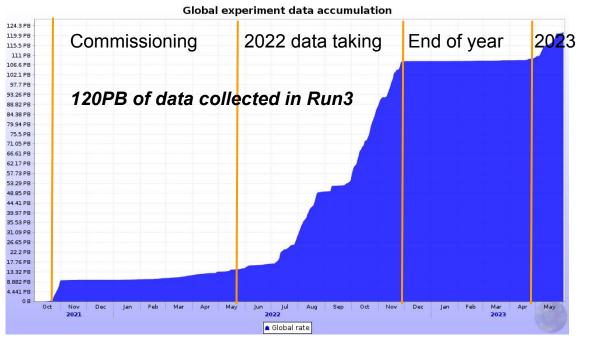
Proportional increase of multicore

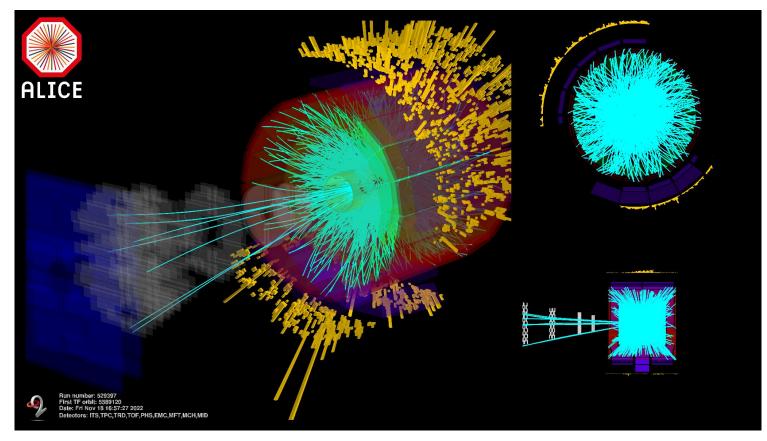
- 2022 and 2023 data processing
- MC
- New organized analysis (Hyperloop)

A Large Ion Collider Experiment

Site upgrade to 8-core

- Site conversion to 8 cores ongoing
 - ~90% of Grid capacity already there
 - 100% of FR sites on 8 core queues
- Good experience with whole node submission
 - Steady running (LBNL Lawrencium, Perlmuter) + ORNL + GridKA (in progress) + KISTI
 - All HPC resources are whole-node, use will expand
 - Possibility to improve job performance
 - ~8% reduction in execution time through optimal NUMA assignment
 - More flexibility with CPU vs. I/O intensive tasks


	AliEn proxy LDAP		CVMFS			
Service	Status Time left					
48. Perimutter	Status	Time left	Status	Cores A		1555
20. EPN	-	-		16		1555
	-	44.00.00				
74. Wigner_KFKI_AF_8core		1d 23:23		8		1555
72. Vienna		1d 23:13		8		1555
71. UPB		1d 23:31		8		1555
70. UNAM		1d 23:52		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		1555
69. UIB_LHC	-			8		1555
66. Torino-HTC		1d 23:18		8		1555
64. Subatech_CCIPL	-	-		8		1555
63. Subatech	_	1d 23:26		8		1555
60. SARFTI		1d 23:25		8		1555
59. SARA		1d 23:37		8		1555
58. SaoPaulo_HTC		1d 23:01		8		1555
57. RRC_KI_T1		1d 23:12		8		1555
55. RAL		1d 23:15		8		1555
54. Prague		1d 23:44		8		1555
52. Polaris		1d 23:17		8		1555
51. PNPI		1d 23:27		8		1555
45. NIPNE_ARC		1d 23:29		8		1555
44. NIKHEF		1d 23:01		8		1555
42. Nemesis		1d 23:48		8		1555
40. Legnaro_HTC		1d 23:55		8		1555
35. KFKI		1d 23:14		8		1555
34. JINR_ARC		1d 23:31		8		1555
31. IHEP		1d 23:00		8		1555
29. Hiroshima		1d 23:39		8		1555
27. GSI_8core		-		8		1555
25. GRIF_IRFU		1d 23:00		8		1555
24. GRIF_IPNO_IJCLAB		1d 23:22		8		1555
22. 12K_1110		1d 23:19		8		1555
21. FZK		1d 23:56		8		1555
19. DCSC_KU		1d 23:59		8		1555
17. CNAF-DUE		1d 23:30		8		1555
16. CNAF		1d 23:46		8		1555
15. Clermont_ARC		1d 23:13		8		1555
14. CERN-ZENITH		1d 23:53		8		1555
13. CERN-TRITON		1d 23:07		8		1555
12. CERN-SIRIUS		1d 23:54		8		1555
11. CERN-MIRAGE		1d 23:09		8		1555
10. CERN CORONA		1d 23:10		8		1555
8. CCIN2P3_HTC_2		1d 23:44		8		1555
7. CCIN2P3_HTC		1d 23:28		8		1555
2. Bari_HTC		1d 23:51		8		1555
1. Altaria		1d 23:44		8		1555
26. GSI_4core	-	-		4		1555
76. Yerevan		1d 23:02		1		1555
75. WUT		1d 23:59		1		1555
73. Wigner_KFKI_AF		1d 23:27		1		1555
68. Troitsk		1d 23:14		1		1555
67. Trieste		1d 23:16		1		1555
65. SUT	-	1d 23:43		1		1555


2022 + 2023 data collection and processing

- After a period of detector commissioning in 2021-2022
- Steady p-p data taking in 2022
- Dec 2022 to Apr 2023 calibration and processing, followed by skimming
- 2023 has started well and is the first year with Pb-Pb beam (looking forward to it)

Event from 18 Nov 2022, Iow IR Pb-Pb@5.36TeV

Summary

- During the LHC shutdown ALICE upgraded the detector and entire software stack
- Change of physics focus, triggerless readout, up to 100x event rate
 - Requires online compression and offline filtering
 - \circ $\,$ $\,$ To stay within the resources envelope of WLCG $\,$
 - Steady data taking and processing since start of Run3 (2022 onward)
- New O2 software multiprocess/shared memory, multicore
- New central GRID software
 - Entirely rewritten in Java
- JAliEn keeps the logic and functionality of AliEn
 - \circ $\hfill It$ is faster and simpler to deploy and operate
 - Much easier to maintain and to add new features
 - Incorporated support for GPUs and HPCs
- Site operation is simplified and made more reliable
 - Lowers the threshold for new sites joining (not the current trend...)

Thank you!

 To the entire French GRID community for the excellent and steady support

- Farewell to Subatech as GRID site
- Special thanks to the team and especially to Jean-Michel Barbet
- In the ALICE Grid since the start of operation many years ago...
- One of the first sites to adopt, test and debug new software or principles of operation
- We are very sorry to see it go... and wish JM Happy Trails!

Subatech - Subatech CCIP

