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Universal tool ! |n particle physics: hinting towards more
fundamental description at shorter scales.

Glorious examples :

1l. Chiral perturbation theory [ = r|0, (e 2im” @\2

Strongly coupled UV

QLD theory, effective d.o.f.s

Symmetry! Broken
flavor symmetry,
spurions, anomalies, ...
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Universal tool ! |n particle physics: hinting towards more
fundamental description at shorter scales.

Next examples !

I I I. S M EffectiveFieldTheory
IV. SM+light d.o.f. EFT

May be the right way to think about new physics. How to use
them ? How to interpret them ? IR and UV questions.

EX : (classical or quantum) symmetry |QB/Di Luzio/Grojean/Paul/

S Rossia ’20, ’20, QB/Gendy/
breaking In EFTs =
5 Grojean/Ruderman ’21, ’23, QB/

Grojean/Kley ’22]



~ffective field theories

Today : two examples of recent developments in our
understanding of EFTs.
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Totaltarian principle :“everything which is not forbidden is
compulsory”

4 C v
E Il QCD
—— L DO O OQQCD
renormalization - -
l (same symmetries)
I _____ .

Not always true ! The UV matters.

Ex : strong CP violation [QB/Hall/Manzari/Scherb *23]
Or positivity bounds.
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Many more ! (at dimension 3)
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Constraints from the UV

Not necessarily compatible with IR assumptions ! In particular if
dimension < 8 fixes the structure at dimension 8.

Ex : flavor structure of the SMEFT [QB, Gendy, Grojean *20]
Or non=linear supersymmetry (SUSY).
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Seemingly different theories sometimes have identical/related
dynamics

One example : double copy. ‘Squaring’ relation between
decomposed amplitudes for gauge and gravity theories, for different

types of scalar theories, for gluon and photon theories, etc.

[ Kawai/Lewellen/Tye ‘86,
Bern/Carrasco/Johansson ’08]

Do EFTs participate in these relations?
| Broedel, Dixon ‘12,

QB/Durieux/Grojean/Machado/
Roosmale Nepveu ’20]
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What about gluon EFTs ?

Fquation of motion :

D@+ L @B -0

O(A™") O(A~"=%)

1/A°

1/A°

propagates
Ike a scalar !

Gluons in EFTs behave
D, F*" + f“bccbbf“ﬁ’/cpcf‘ — (0 like minimally-coupled
scalars !
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