IPHC Scientific Council 2023, June 27th CMOS MAPS projects

Uni	versité				
	de Stra	IS	bd	วบ	irg

Future e⁺e⁻ collider

- A. Scientific motivations
 - B. Building a strategy
- C. Highlights on some activities (MIMOSIS, 65nm R&D, software)
 - D. Gantt plan & Resources

A. Scientific motivations

Motivations for a future e⁺e⁻ collider

- Higgs Boson discovery by LHC (2012)
 - ✓ Not the end of the story. What is BSM ?
 - One approach consists in testing the SM in the Higgs sector

Probe to new physics, model identification

- A lot more than Higgs physics ! (EW, top, BSM, etc.)
 - ✓ No QCD background
 - ✓ Well defined initial state
 - Theoritical uncertainties under control
 - ✓ Tunable \sqrt{s} :
 - 91 GeV(Z), 160 GeV (WW), 250 GeV(Zh), 350 GeV (ttbar), up to 500 GeV (ILC) or even 3 Te\ (CLIC)
 - ✓ Beam polarization (ILC, CLIC)

Energy	Reaction	Physics Goal
91 GeV	$e^+e^- \rightarrow Z$	ultra-precision electroweak
160 GeV	$e^+e^- \rightarrow WW$	ultra-precision W mass
250 GeV	$e^+e^- \rightarrow Zh$	precision Higgs couplings
$350{-}400 { m ~GeV}$	$e^+e^- \rightarrow t\overline{t}$	top quark mass and couplings
	$e^+e^- \rightarrow WW$	precision W couplings
	$e^+e^- \rightarrow \nu \overline{\nu} h$	precision Higgs couplings
500 GeV	$e^+e^- \rightarrow f\overline{f}$	precision search for Z'
	$e^+e^- \rightarrow t\overline{t}h$	Higgs coupling to top
	$e^+e^- \rightarrow Zhh$	Higgs self-coupling
	$e^+e^- \rightarrow \tilde{\chi}\tilde{\chi}$	search for supersymmetry
	$e^+e^- \rightarrow AH, H^+H^-$	search for extended Higgs states
$700-1000 { m ~GeV}$	$e^+e^- \rightarrow \nu \overline{\nu} hh$	Higgs self-coupling
	$e^+e^- \rightarrow \nu \overline{\nu} VV$	composite Higgs sector
	$e^+e^- \rightarrow \nu \overline{\nu} t \overline{t}$	composite Higgs and top
	$e^+e^- \rightarrow \tilde{t}\tilde{t}^*$	search for supersymmetry

Future e⁺e⁻ colliders (« Higgs factories »)

- 2 approaches
 - ✓ Circular (luminosity) : FCCee, CEPC
 - ✓ Linear (maximum Energy = Gradient_{eff} × Length): ILC, CLIC
- All future e+e- collider physic programs demand
 - ✓ Impact parameter resolution: $\sigma_{ip} \leq 5\mu m \oplus \frac{10 \ \mu m.GeV}{n \ sin^{3/2} \theta}$
 - CMS/4
 - ✓ Track momentum resolution: ${}^{\sigma p_T}/{}_{p_T^2} < 5 \times 10^{-5} \, GeV^{-1}$
 - CMS/40
 - ✓ Jet Energy resolution: $\sigma_E/_E \sim 3 4\%$
 - ATLAS/2
 - ✓ General particle flow approach
- Vertex/tracking detector role:
 - <u>b,c,τ tagging everywhere</u>
 - Standalone tracking capabilities
 - Low momentum tracking
 - Jet charge determination

Tracking/vertexing detectors in future e⁺e⁻ colliders

Collider	II	LC	CLIC		FCCee		CEPC				
Bunch separation (ns)	330	/550	0.5		20/990/3000		25/680				
Power Pulsing	У	es	yes		no		no				
beamstrahlung	hi	gh	high		low	low					
Detector concept	SiD	ILC	CLICdet	CLD	IDEA	Lar	Baseline	IDEA			
B Field (T)	5	3.5	4	2	2	2	3	2			
Vertex	Si-Pixel	Si-Pixel	Si-Pixel	Si-Pixel	Si-Pixel	Si-Pixel	Si-Pixel	Si-Pixel			
Vertex Rmin (mm)	16	16	31	12	12	12	16	16			
Tracker	Si-strips	ТРС	Si-Pixel	Si-Pixel	DC/Si- strips	DC/Si- strips or Si- Pixels	TPC or Strips	DC/Si- strips			
Tracker Rmax (m)	1.25	1.8	1.5	2.2	2.0	2.0	1.8	2.1			
Disks layers	4 + 4	2 + 5	6 + 7	3 + 7	3 (150 mrad)		2+6				

(From D. Dannheim)

Large similarities between the concepts

• <u>R&D:</u> ⇒Keep excellent spatial resolution, low material budget, moderate Power consumption and push towards better time resolution (BX)

Ju

B. Building a strategy

Future e⁺e⁻ collider: global and local context

Building a strategy for CMOS R&D towards e⁺e⁻ colliders

- Long History of CMOS R&D targeting e⁺e⁻ colliders @ IPHC
 - ✓ Key features make them excellent candidate for VTX/TRK in a e⁺e⁻ collider
- Strategy (~ up to 2019)
 - ✓ Focus on ILC
 - ✓ Step by step approach
 - Participation to mid-term projects to approach the final VTX for e⁺e⁻ collider requirements
- Evolution of the strategy
 - ✓ Local changes

٠

- C4PI platform, IPHC teams developing their own projects (ALICE, Belle-2)
- Generic R&D less specific but still favoring granularity w.r.t. high flux
- ✓ International context concerning e⁺e⁻
 - More ecumenical approach (FCCee, ILC, CEPC, CLIC, etc.)
 - R&D for future e⁺e⁻ collider must be integrated inside the ECFA Detector R&D framework (DRD3/DRD7)
- ✓ Therefore
 - R&D can be more generic with different models:
 - sometimes fully endorsed by C4PI/other teams. Possible opportunities (Belle-2 ⇒ e.g. test beam in KEK)
 - Joined effort (65 nm : R&D with ALICE-ITS3)
 - The strong connection with C4PI remains absolutely crucial
 - The R&D for future e⁺e⁻ collider, carried by the PICSEL team remains still essential for the CMOS R&D ecosystem @ IPHC
- ⇒ Mid-term projects are still the way to go (e.g. MIMOSIS program carried by PICSEL team)
- Maintain/develop our international & national collaborations
- Find synergies/collaborate with the mid-term projects carried by other teams whenever possible/adequate
- ⇒ Develop simulation & physics studies dedicated to FCCee

C. Highlights on some activities MIMOSIS 65nm R&D Simulations & integration

The MIMOSIS program w.r.t. e⁺e⁻ colliders requirements

Specification	MIMOSIS (CBM-MVD)	Higgs factories (FCCee/ILC)
Resolution		
Pixel pitch	$26.9 imes 30.2\mu\mathrm{m}^2$	$15-20\mu{ m m}$
Spatial resolution	$\simeq 5\mu{ m m}$	$\simeq 3\mu{ m m}$
Sensor thickness	$50\mu{ m m}$	$50\mu{ m m}$
Mat. budget $/$ layer	$0.05\% X_0$ (fixed target)	$\simeq 0.15\% X_0$
Data flow		
Hit rate	$\simeq 70 \text{ MHz cm}^{-2}$	$10 - 100 \text{ MHz cm}^{-2}$
Time resolution	$5 \ \mu s$	$100-500\ ns$
		O(ns) (CLIC or backgd reject.)
Output	$8 \times 320 \ Mb/s$	t.b.d.
Rad. tol. (inc. safety factor)		
Ionizing dose	$5\mathrm{MRad/year}$	$100\mathrm{kRad/year}$
NIEL fluence	$7 \times 10^{13} n_{eq} cm^{-2}/year$	$10^{11} n_{eq} cm^{-2}/year$
Integration		
Matrix dimensions	1024×504 pixels	t.b.d.
Sensor area	$\simeq 4.2 \ cm^2$	t.b.d.
Power	$< 100 \ mW/cm^{2}$	$20 - 50 \ mW/cm^2$
Cooling	in vacuum operation	Air Flow
Stitching	no	optionnal
Bent sensors	no	considered

MIMOSIS = a milestone for Higgs factories (5 μ m / \leq 5 μ s)

Example: MIMOSIS (CBM-MVD) & Decision on options for sensing elements

W. Snoeys et al., NIM-A Vol.871 (2017) 90–96. Munker, Vertex 2018, Status of silicon detector R&D at CLIC

June 27th 2023

A.Besson, Université de Strasbourg

MIMOSIS-3 Tests (C4PI)

R&D in TPSCo 65nm technology

- 65 nm feature size technology
 - ✓ (ALPIDE & MIMOSIS fabricated in 180 nm)
 - ✓ Larger wafers (⇒ 30 cm)
 - ✓ More functionalities inside the pixel
 - ✓ Keeps pixel dimensions small \Rightarrow spatial res.
 - Potentially faster read-out
 - Lower Power consumption
 - ✓ Synergy with Higgs factories requirements
- 2020: TJ-65 nm 1st submission (MLR1)
 - Main driver: CERN EP R&D WP 1.2 & ALICE ITS-3 upgrades
 - Privileged Relation between CERN with the foundry (access to options is a key factor)
 - Goal: validate the process for charged particle detection
 - ✓ Contributions to MOSS/MOST
 - ✓ MLR1 submission: CE_65v1 prototype designed@IPHC
 - ✓ Analog output, various designs (pitch, amplification)
- CE_65v2 (ER1 submission)
 - \checkmark 18/22 μm pitch, hex design
 - ✓ Availaible in August 2023

ANALOG OUT

CE65_v1

(a) Standard

DEPLETED ZONE DEPLETED ZONE P* EPITAXUAL LAYER P* EDIBISTRATE

NWELL COLLECTION ELECTRODE

PWELL NWELL

PMOS

LOW DOSE N-TYPE IMPLANT

NMOS

lard

(b) Modified

(c) Modified with gap

Variant	Process	Pitch	Matrix	Sub-matrix
CE65-A	std	$15 \mu { m m}$	64×32	AC/21, DC/21, SF/22
CE65-B	mod_{gap}	$15 \mu { m m}$	64×32	AC/21, DC/21, SF/22
CE65-C	mod	$15 \mu { m m}$	64×32	AC/21, DC/21, SF/22
CE65-D	std	$25 \mu { m m}$	48×32	AC/16, DC/16, SF/16

June 27th 2023

A.Besson, Université de Strasbourg

CMOS 65 nm submissions and connexion with DRD3/DRD7

- 2 lines of submissions
 - ✓ Submissions dedicated to ALICE ITS-3 (ER2 & ER3)
 - ✓ Submissions for generic R&D, supported by CERN EP R&D WP1.2 (« MLR2 » and beyond)
- Solid state detector R&D framework = DRD3/7
- Generic R&D possible contributions
 - ✓ One expression of interest submitted with future e+e- collider vertex detectors as the main driver
 - Goal: gather groups to reach a critical size
 - Targets 3 μm spatial resolution, improved time resolution (5-500 ns), controlled Power (< 50 mW/cm²), data flow (10-100 MHz/cm²) and low material budget (50 μm thickness)
 - Demonstrator to equip new generation beam telescope
 - Proposing Institutes: CERN, DESY, IPHC, APC, etc.
 - Open to other participations
 - ✓ Other projects in discussion (tracking, timing, calorimeters)
 - MLR2 submission model ?
 - ✓ MLR2 submission: ~ end 2025 (another expected > 2027)
 - ✓ Cost to be shared between EP R&D WP 1.2 and participating projects
 - ✓ Multi-year plan needed to allow significant contributions to the targeted submissions

DRD project: Fine-pitch CMOS pixel sensors with precision timing for vertex detectors at future Lepton-Collider experiments

DRD technology area

DRDT 3.1 - Achieve full integration of sensing and microelectronics in monolithic CMOS pixel sensors.

Proposing participants

Institute	Contact	Foreseen main areas of contribution
APC Paris	M. Bomben	Simulations, testing
CERN	D. Dannheim	Testing, DAQ, ASIC design support
DESY	S. Spannagel	ASIC design, testing, DAQ, simulations
IPHC Strasbourg	A. Besson	ASIC design, testing
Oxford University	D. Hynds	Testing, simulations
Zurich University	A. Macchiolo	Testing, DAQ, simulations

65 nm R&D timeline (e⁺e⁻ point of view)

FTE needs estimate																				
		20	23			20	24			20	25			20	26			20	27	
TASK	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
R &D for e+ e- colliders																				
65 nm / 180 nm R & D (PICSEL)	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	2	2,5	2,5	2,5	3	3	3	3
CE65 tests (C4PI)	1	1	1	1	1	1														
Microtechnics (C4PI)									0,1	0,1					0,5	0,5	0,5			
ER_2 test structure design (C4PI)	1	1	1	1,5	1,5	1,5	1,5													
ER_2 fabrication								//////	//////											
MLR2 design (C4PI)								2	3	4	4	4								
MLR2 Fabrication												/////	//////							
beam telescope demonstrator													tests	tests						
beyond MLR2 design (C4PI)													4	4	4	4	4	4	4	4
beyond MLR2 fabrication ?																			//////	//////
R & D Test (C4PI)													1,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5

Simulations & integration

- Master the full simulation chain (key4hep) for detector optimisation
 - ✓ Complete physics studies
- Master Tools for CMOS sensor characterization, charge transport and digitization studies, analytical tools for detector optimization, etc.
 - ✓ Local tools (TAF, Guariguanchi)
 - Tools developed by the community (Allpix2, corryvreckan)

- Bent sensors
 - \checkmark Adress questions specific to Higgs factories
 - Understand limitations
 - Plans
 - Reproduce the procedure with MIMOSIS-1/2
 - ✓ Process, Epitaxial variants ?
 - ✓ Irradiations tests ?
 - ✓ R min ? Ring ?
 - ✓ Aging ?
 - Develop flex / mec. Support / Tools for bending
- Exploit MIMOSIS
 - ✓ Double sided telescope ?

	FTE needs estimate																			
		20	023			2024				2025			2026			2027				
TASK	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
Integration																				
Integration (PICSEL)	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3
microtechnics (C4PI)		0,2	0,2	0,2	0,2	0,2	0,2	0,2					0,2	0,2	0,2	0,2	0,2			
							Sin	nulations	for e+ e-	colliders										
Physics Simulations (PICSEL)	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5
CMOS Simulation (PICSEL)	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1
Simulation C4PI (TCAD, etc,)	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1
June 27th 2023						А	.Dessu	п, оп	versite	ue su	aspou	ng								Z

D. Gantt plan & resources

FTE per Project

FTE needs estimate																				
		20	23			20)24			20	25			20	26			20	27	
TASK	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
					MIMOS	IS Progra	m													
MIMOSIS Physicists (PICSEL)	1,5	1,5	1,5	2	1	1	1	1	1	2	2	2	1,5	1						
MIMOSIS microtechnics (C4PI)			0,3	0,3	0,3				0,5	0,5	0,5	0,5								
MIMOSIS-1 Tests (C4PI)	1	1																		
MIMOSIS-2 Fabrication																				
MIMOSIS-2 Tests (C4PI)			3	3	2	2	2	2	1											
MIMOSIS-3 Designs (C4PI)			0,5	0,5	0,5	0,5														
MIMOSIS-3 Fabrication																				
MIMOSIS-3 Tests (C4PI)									1	1	1	1	1							
								R &D for	e+ e- colli	ders										
65 nm / 180 nm R & D (PICSEL)	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	2	2,5	2,5	2,5	3	3	3	3
CE65 tests (C4PI)	1	1	1	1	1	1														
Microtechnics (C4PI)									0,1	0,1					0,5	0,5	0,5			
ER_2 test structure design (C4PI)	1	1	1	1,5	1,5	1,5	1,5													
ER_2 fabrication								//////	//////											
MLR2 design (C4PI)								2	3	4	4	4								
MLR2 Fabrication												/////	//////							
beam telescope demonstrator													tests	tests						
beyond MLR2 design (C4PI)													4	4	4	4	4	4	4	4
beyond MLR2 fabrication ?																			//////	//////
R & D Test (C4PI)													1,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5
								Inte	gration											
Integration (PICSEL)	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3
microtechnics (C4PI)		0,2	0,2	0,2	0,2	0,2	0,2	0,2					0,2	0,2	0,2	0,2	0,2			
							Sim	ulations f	or e+ e- c	olliders										
Physics Simulations (PICSEL)	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5
CMOS Simulation (PICSEL)	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1
Simulation C4PI (TCAD, etc,)	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1
TOTAL Test (C4PI)	2	2	4	4	3	3	2	2	2	1	1	1	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5
TOTAL Design (C4PI)	1	1	1,5	2	2	2	1,5	2	3	4	4	4	4	4	4	4	4	4	4	4
Total Microtechnics (C4PI)	0	0,2	0,5	0,5	0,5	0,2	0,2	0,2	0,6	0,6	0,5	0,5	0,2	0,2	0,7	0,7	0,7	0	0	0
TOTAL PICSEL	4,9	4,9	4,9	5,4	4,4	4,4	4,4	4,4	4,4	5,4	5,4	5,4	5,4	5,4	4,4	4,4	4,9	4,9	4,9	4,9

Local human resources

	FTE of the PICSEL team									
		2022	20)23	20	24	20)25	20	26
		S2	S1	S2	S1	S2	S1	S2	S1	S2
Nom	fonction									
Baudot	Professor	0,20	0,20	0,20	0,20	0,20	0,20	0,20	0,20	0,20
Besson	Associate Professor	0,50	0,50	0,50	0,50	0,50	0,50	0,50	0,50	0,50
El Bitar	Senior scientist	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Senyukov	scientist engineer	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Andrea	Senior scientist	0,05	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10
Medernach	Computing engineer	0,50	0,50	0,50	0,20	0,20	0,20	0,20	0,20	0,20
Bugiel S.	post-doc	1,00	1,00	CERN						
Bugiel R.	post-doc	0.5	1,00	1,00						
ajit Kumar	post-doc AidaInnova (Belle-2-PICSEL)		0.5	0.5	0.5	0.5				
Ali Murteza	post-doc ANR		1,00	1,00	1,00	1,00				
Х	post-doc CMS-FCC		0,00	0,00	1,00	1,00				
G.Sadowski	PhD Region-QMAT	1,00	1,00	1,00	1,00	1,00	1,00			
H. Darwish	co tutelle CBM	0,00	1,00	1,00	0,00					
Total FTE		5,25	8,30	7,30	6,00	6,00	4,00	3,00	3,00	3,00

Funding resources

- R & D supported mainly by the GRAM Master project.
 - ✓ Constant support from IN2P3 ⇒ support test equipment of C4PI
 - ✓ Supported MLR1/ER1 submissions
- MIMOSIS program
 - ✓ Submissions fully funded by CBM experiment
 - 3 engineering runs (M-1, M-2, M-3)
- Future contributions to funding for R&D
 - ✓ R&D will be driven inside the DRD framework
 - DRDs are not providing the funding
 - ✓ IN2P3 will define its priorities for the DRDs
 - contributors to CMOS R&D: IPHC-Strasbourg, CPPM-Marseille & emerging labs
 ⇒ IP2I-Lyon, APC-Paris
 - Starting discussions at the national level (head of IN2P3)
 - Target a national contribution for funding
 - ✓ Joined effort with international collaborators (CERN, DESY, Zurich, etc.)
- Project calls and external funding
 - ✓ Existing supports: Grand-Est region, QMAT, AIDAInnova, Eurizon, etc.
 - Prioritize manpower requests

Summary

- With respect to the other projects, the timeline @IPHC is favorable
 - ✓ Safety margin for delays ?
- The strategy has to rely on mid-term projects and synergies
 - ✓ Keep the motivation
 - ✓ Maintain the know-how
 - ✓ Develop new skills
 - ✓ Allows new ideas, new concepts, technological breakthroughs.
- The main threat is clearly related to manpower
 - $\checkmark\,$ National and international network needed to find synergies
 - ✓ Focus on priorities:
 - Make the MIMOSIS program a success
 - Stay a key player in CMOS R&D
 - Physics studies

Questions from the experts

- The PICSEL team seems to have significant involvement in ALICE ITS3. This can provide the opportunity to profit from synergies between the projects. But there may also be a risk that this leads to lack of resources for the future e+e- collider developments by the PICSEL team, in case of delays / issues with the deliverables for ITS3. Is there enough contingency in the personnel resources, to accommodate possible delays / additional design iterations for the already approved / committed ALICE, Belle2 and CBM projects, without jeopardizing the start of these design activities in 2025? Is there any possibility to reinforce the PICSEL team by recruiting more PhD students? Are there plans to use MSc and PhD students for microtechnique integration?
 - ✓ Gap between senior scientists (occupied with management) > 45 years old and younger physicists
 - ✓ PhD students ⇒ management limit. Getting the funding is also a challenge
 - ✓ Permanent expertise in Detector R&D needed
- Can you elaborate on why the year 2025 is identified to be a "critical period" (section VI-D)?
 - ✓ Transition MIMOSIS R&D program inside DRD3 ⇒ Tests FTE potential issue
 - ✓ Manpower in the team not consolidated yet (non permanent FTEs)
 - Rising needs in other projects
- What is the sharing of the 180 nm vs. 65 nm design experience within the C4Pi designer team? Are all current 180 nm designers in principle available to move towards 65 nm designs in the long term?
 - ✓ Question to C4PI ⇒ yes
- Simulations / detector optimization are discussed as activities (section VI-B.3). Should this include sensor design optimizations based on TCAD-simulations? This may be problematic, given the very restricted access to the TPSCo65 technology parameters.
 - ✓ TCAD expertise @ C4PI
 - ✓ Goals are towards detector response simulation for physics studies ⇒ Allpix2 and digitization model
 - Test beam data can help for an empiric approach (done in the past)
- How is the 65nm process and designs produced to be qualified for radiation hardness (FCChh)?
 - ✓ Not the goal of the team but interest from DEPHY MP
 - ✓ CE65 irradiation program ⇒ leakage current
- Beam telescopes could perhaps be added to the list of spin offs, given the leadership expertise of IPHC in this domain (e.g. Mimosa beam telescopes) and the fact that beam-telescope sensors are mentioned as an intermediate application for Higgs-factory sensor developments.
 - ✓ Agreed
 - MIMOSIS chips have also potential applications for telescopes.

Back up

- A. Future e⁺e⁻ colliders
- B. Software
- C. Detector requirements
- D. Detector performances
- E. MIMOSIS program
- F. 65 nm R&D; spin-off, bent sensors
- G. Implementation of DRD3/DRD7
- H. Submissions
- I. Human resources
- J. HCERES report & SWOT
- K. History

Questions to the scientific council

- 1. Evaluate the scientific and technical relevance of each of the proposed instrumental projects in the context of national and international collaborations, as well as in the framework of the In2p3 prospective and the European strategy for particle physics
- 2. Evaluate the degree of feasibility of each project with regard to current know-how, existing means and available resources, in particular human resources.
- 3. Evaluate the impact of these instrumental projects in maintaining and developing relevant technical skills for the future.
- 4. Assess the possible synergies and complementarities between the different projects.
- 5. Evaluate whether the commitment to this set of instrumental projects will leave sufficient room and flexibility for staff training, technological monitoring and the possibility of seizing future opportunities.

(A).Future e⁺e⁻ colliders

A. Luminosity & cross-sections

A. Key features of ILC for physics

Key features of ILC (physics)

✓ Clean environment

- Precise theoretical predictions
- ✓ Tunable √s
- ✓ Beam polarization to enhance S/N
- Democratic cross sections
 - Higgs production @ LHC: 1evt/10¹⁰
 - Higgs production @ ILC: 1evt/10²
 - Globally small (σ_{ZH} ~ 100 fb)
 - ⇒ Most measurements limited by statistics

A. Higgs boson couplings shifts in BSM (examples)

Is the % level on the coupling precision enough?

= 1 σ expected uncertainties from the full ILC data set (model-independent fit)

Model discrimination with ILC full data set

Graphical representation of the χ^2 separation of the Standard Model

A. Future e⁺e⁻ colliders (« Higgs factories »)

Snowmass summary (summer 2022): <u>https://snowmass21.org/energy/start</u>

Proposals emerging from this Snowmass for a US based collider

- Different levels of maturity for the different projects
 - □ ILC ready to go
 - FCCee/CEPC:
 - feasability studies
- Hosting, International cost sharing, political decision ?
- Next Milestone: European Strategy Update for particle physics (~2026)
 - Other proposals considered (e.g. new concepts, ILC hosted outside Japan, etc.)

34

e⁺e⁻ collider beam parameters

Linear	IL(C	CLIC								
Parameter	250 GeV	500 GeV	380 GeV	1.5 TeV	3 TeV						
Luminosity L (10 ³⁴ cm ⁻² sec ⁻¹)	1.35	1.8	1.5	3.7	5.9						
L > 99% of √s (10 ³⁴ cm ⁻² sec ⁻¹)	1.0	1.0	0.9	1.4	2.0						
Repetition frequency (Hz)	5	5	50	50	50						
Bunch separation (ns)	554	554	0.5	0.5	0.5 🔺						
Number of bunches per train	1312	1312	352	312	312						
Beam size at IP σ _x /σ _y (nm)	515/7.7	474/5.9	150/2.9	~60/1.5	~40/1						
Beam size at IP σ _z (μm)	300	300	70	44	44						
ILC: Crossing angle 14 mrad, e ⁻ polarization $\pm 80\%$, e ⁺ polarization $\pm 30\%$ CLIC: Crossing angle 20 mrad, e ⁻ polarization $\pm 80\%$ Very small beams + Very small bunch separation											
=> beamstrahlung		requir	ements	for detec	tor						
Very low duty cycle at ILC/CLIC allows for:	Very low duty cycle at ILC/CLIC allows for: Triggerless readout Power pulsing 1 train = 312 bunches, 0.5 ns apart - not to scale -										
Triggerless readout Power pulsing	train = 312 bunch not to scale -	hes, 0.5 ns ap	art								

Circular		FCC-ee	CEPC			
					L	
	Z	Higgs	ttbar	Z (2T)	Higgs	
√S [GeV]	91.2	240	365	91.2	240	
Luminosity / IP (10 ³⁴ cm ⁻² s ⁻¹)	230	8.5	1.7	32	1.5	
no. of bunches / beam	16640	393	48	12000	242	
Bunch separation (ns)	20	994	3000	25	680	
Beam size at IP σ _x /σ _y (μm/nm)	6.4/28	14/36	38/68	6.0/40	20.9/60	
Bunch length (SR/BS) (mm) Beam size at IP σ_z (mm)	3.5/12.1	3.3/5.3	2.0/2.5	8.5	4.4	
Deere transverse nelevication						

Beam transverse polarisation

4 September, 2019

=> beam energy can be measured to very high accuracy (~50 keV)

At Z-peak, very high luminosities and very high e⁺e⁻ cross section (40 nb)

- ⇒ Statistical accuracies at $10^{-4} 10^{-5}$ level ⇒ drives detector performance requirements
- ⇒ Small systematic errors required to match
- \Rightarrow This also drives requirement on data rates (physics rates 100 kHz)
- \Rightarrow Triggerless readout likely still possible

Beam-induced background, from beamstrahlung + synchrotron radiation

- Most significant at 365 GeV
- Mitigated through MDI design and detector design

Modified from Lucie Linssen, ESPPU, 2019

6

(slide from Mogens Dam/Lucie Linssen)

200 or 100 ms (5 or 10 Hz)

train duration = 727 (baseline) or 961 (Lupgrade) µs

Bunch spacing = 554 (baseline) or 366 (Lupgrade) ns

1 train = 1314 (baseline) or 2625 (Lupgrade) bunches

A.Besson, Université de Strasbourg

A. Interaction region

Interaction regions

Constraints from accelerators to future e+e-factory experiments - Giovanni Marchiori - 6

G. Marchiori, ECFA WG3: Topical workshop on tracking and vertexing

A.Besson, Université de Strasbourg

B. Motivations

- Master the full simulation chain (key4hep) for detector optimisation
- Master Tools for CMOS sensor characterization, charge transport and digitization studies, Analytical tools for detector optimization, etc.
 - ✓ Local tools (TAF, Guariguanchi)
 - ✓ Tools developed by the community (Allpix2, corryvreckan)

B. Software challenge: optimization of the detector

- Example: Shall we target 18 or 22 μ m pitch ?
- Caveat: One can not decouple detector optimization and algorithm optimization

B. Higgs factories simulation studies (PhD: G. Sadowski, El Bitar, Andrea, Besson)

Objectives:

- Define different geometries and design options of Vertex Detector
- Candle for physics performance : increasing level of complexity (Tracking, Vertexing, flavour tagging, full analysis)
- Chosen approach: full simulation, for more precise results, use of CLD here. Starts with particle Reco and tracking
 - ► Determine Reco-MC matching
 - ▶ Implement estimations of performance plot : resolution, performances.
- What we have done:

(C).Detector requirements

- 1. Spatial resolution
- 2. Machine related backgrounds
- 3. Time resolution
- 4. Material budget and integration
- 5. Power
- 6. ILC vs FCCee

C. Vertex detector technology figure of merit

Challenge:

⇒Keep excellent <u>spatial resolution</u>, low <u>material budget</u>, moderate <u>Power consumption</u> and push towards better <u>time resolution</u> (BX)

June 27th 2023

C1. Spatial resolution in Higgs factories

Typical targets:

- $\checkmark ~\sigma_{sp}{\sim}3~\mu m$ for the vertex layers
- \checkmark σ_{sp} ~5-10 µm for the outer tracker layers
- Resolution in each layer depends on

\checkmark Pitch

- In conflict with the functionnalities inside the pixel
- Favored by small feature size technology
- Charge deposition
 - Sensitive layer thickness
- Charge sharing (SNR vs resolution)
 - Depletion:
 - Staggered pixels
- Charge encoding

C2. Understand beam related backgrounds

- Sources:
 - Incoherent pairs (« beamstrahlung »)
 - ✓ Synchrotron
 - Beam loss (circular machines)
 - ✓ Radiative bhabha
 - ✓ Beam gas, etc.
- Usually one considers that occupancy ~< 10⁻²-10⁻³ is safe for tracking/vertexing purposes
- Experience from ILC studies over 20 years
 - Any modification in the Interaction region (beam scheme, beam pipe design, B field) might bring surprises
 - \checkmark One should not consider that a 10⁻⁴ occupancy estimation means that there is no issue.
 - The robustness is questionnable
 - Large possible variations in some acceptance corners (asymmetries in φ or z)
 - Safety factor absolutely mandatory
 - 2 independant simulation tools would be welcome (GuineaPig, Fluka, etc.)
- Experience from Belle-2
 - Discrepancies observed between simulations and first collisions
- Direct beam background vs backscattered background
 - ✓ Generally the backscattered ones are more sensitive to any MDI change.
- What about timing information to reject background ?
 - Need ~ 5 ns to reject backscattered particles
 - ✓ Is it worth paying the price in terms of additionnal power ?
- What about cluster shape to reject background ?
 - Need very good sensitive thickness/pitch ratio (> 2).
 - \checkmark Charge information helps.
 - (you actually reject very low pT particles)

C2. Example of background study: ILD, from linear to circular

- at FCCee, MDI extends to ~1m from IP \rightarrow 6 times more beamstrahlung background hits in TPC

June 27th 2023

A.Besson, Université de Strasbourg

C2.Example of study in CLD

	Z	ww	ZH	Тор
Bunch spacing [ns]	30	345	1225	7598
Max VXD occ. 1us	2.33e-3	0.81e-3	0.047e-3	0.18e-3
Max VXD occ.10us	23.3e-3	8.12e-3	3.34e-3	1.51e-3
Max TRK occ. 1us	3.66e-3	0.43e-3	0.12e-3	0.13e-3
Max TRK occ.10us	36.6e-3	4.35e-3	1.88e-3	0.38e-6

US FCC workshop 25/04/2023 Ciarma

C3.Timing & 4-D tracking

- Time resolution Δt
 - ✓ Bunch separation (3 µs / 1 µs / 20 ns @ FCCee)
 - ✓ Background rejection ? (1-10 ns range)
 - ✓ Particle ID (10-100 ps)
- Usual drawbacks to go faster
 - ✓ Power consumption
 - ✓ Active Cooling & geometrical acceptance due to services
 - \checkmark In pixel circuitry \Rightarrow larger pixels (or multipixels)
 - ✓ Fill factor, dead time
 - ✓ PID Restricted to low momentum particles (~< few GeV/c)</p>
- Still
 - $\checkmark\,$ Forward region not covered by a central gazeous detector
 - ✓ Added value for intermediate radii (e.g. LLPs ?)

C3. Power vs fast timing vs pixel size

Name	Sensor	node	Pixel size	Temporal precision [ps]	Power [W/c
ETROC	LGAD	65	1.3 x 1.3 mm²	~ 40	0.3
ALTIROC	LGAD	130	1.3 x 1.3 mm²	~ 40	0.4
TDCpic	PiN	130	300 x 300 μm²	~ 120	0.45 (matrix 2 (periphe
TIMEPIX4	PIN, 3D	65	55 x 55 μm²	~ 200	0.8
TimeSpot1	3D	28	55 x 55 μm²	~ 30 ps	5-10
FASTPIX	monolithic	180	20 x 20 µm²	~ 130	40
miniCACTUS	monolithic	150	0.5 x 1 mm ²	~ 90	0.15 – 0.3
MonPicoAD	monolithic	130 SiGe	25 x 25 μm²	~ 36	40
Monolith	LGAD monolithic	130 SiGe	25 x 25 μm²	~ 25	40

Nicolo Cartiglia, INFN, Torino, VCI2022, 25/02/22

Price to pay: additionnal cooling system (addtionnal material)

C3. Fast timing

- Extremely active domain
 - ✓ Interest to push beyond 10 ps resolution
- PID not discussed here (covered by TF4)
 - ✓ dE/dX ; dN_{cl}/dx and timing for PID
 - ✓ Fast timing not proper to silicon (also scintillation, gazeous, Cerenkov)

- Specialized layers
 - ✓ Doesn't compromise the other requirements (material budget and granularity)
 - Probably not in the most inner layers
 - ✓ Dedicated studies needed for design optimization

A.Besson, Université de Strasbourg

C4.Material budget in Higgs factories

Driving parameter

✓ Inner radius

$$\Delta d_0|_{m.s.} \approx \frac{0.0136 \,\mathrm{GeV/c}}{\beta p_T} r_0 \sqrt{\frac{d}{X_0 \sin \theta}} \sqrt{1 + \frac{1}{2} \left(\frac{r_0}{L_0}\right) + \frac{N}{4} \left(\frac{r_0}{L_0}\right)^2}$$

- ✓ Beam pipe
 - Constant term ~ 0.15-0.3 % X₀
- ✓ Material budget / layer
 - Requirement ~ ~0.15% X₀ /layer

 $\sigma_{d0}{}^2 = a^2 +$

р.sin^{3/2}А

Sensitivity to impact parameter resolution

Material budget optimization

- ✓ Double sided approach
 - PLUME prototypes
- ✓ Stitching (see later)
 - Larger surfaces (fill factor ?)
- ✓ Bent sensors
 - Optimize inner layers
- ✓ Integration
 - Cooling system, mech. Support, cabling, Powering scheme, etc.

C4. From ITS-3 to stitched and bent sensors for e⁺e⁻ colliders

- ALICE-ITS3/CERN drives the R&D on Stitching + bent sensors:
 - ✓ Sensor part ~15% of total material budget
 - \checkmark Sensors thinned down to 50 μm
 - ✓ Minimizing overlapping regions,
 - minimizing minimal radius around the beam pipe
 - Challenges and caveats (for e⁺e⁻ colliders)
 - ✓ Mechanics ? Bonding ? Air cooling only ?
 - ✓ Design: Minimizing peripheral circuits (Fill factor ~90%)
 - ✓ Bent sensor performances ? Yield
 - \Rightarrow design rules constraints the minimal pitch (~22 $\mu m)$
 - ITS-3 do not have disk (chip periphery adds Z position constraint)
 - ✓ Approach validated in a limited radius range (R> 18mm)

Integration (example of PLUME collaboration)

- Plume collaboration (Bristol, DESY, IPHC)
 - Double sided ladders with minimized material budget
- Plume-02 prototypes
 - ✓ Successfully validated in test beam
 - \checkmark Cu/Al flex cable (0.42/0.35 % X₀)
 - ✓ 6 ladders fabricated
 - 2 installed in BEAST for Belle-2 commissioning
- Summary
 - ✓ No major issue
 - \checkmark 0.3 % X₀ reachable
 - ✓ Possible next step:
 - \neq chips on each side
 - Replace carbon foam by carbon fiber

Know-how acquired I Ladders close to ILC mat. budget specifications June 27th 2023

A.Besson, Universite de Strasbourg

C5. Power challenges

- Power is in conflict with all other parameters
- Baseline:
 - ✓ Air flow cooling only to minimize material budget
 - ✓ Up to ~ 20 mW/cm²
 - what is the limit ? ~50 mW/cm² or even more ?
- Driving parameters:
 - ✓ # channels, Time resolution / data flux
 - ✓ Surface (VXD ~ 3500 cm²; tracker O(10 m²)
 - ✓ Power Pulsing (ILC/CLIC) ⇒ Constraints more relaxed w.r.t. FCCee
- The « Power paradox »
 - ✓ Small radius ⇒ Higher hit density and Power/cm² but small fraction of total power
 - ✓ Higher radius ⇒ less hit density but higher total power/layer
- Power sharing
 - ✓ Analog part: O(25-50%) ⇒ density of pixels, charge collection speed
 - ✓ Digital part: O(25-50%) \Rightarrow data flux, freq.
 - ✓ Output→DAQ: maximum flux. (25%)
- Architecture optimization is important
 - Priority encoder (limited by flux)
 - ✓ Asynchronous might be adapted (tot, etc.)
 - ✓ Etc.
- Technology feature size
 - ✓ e.g. 180nm to 65 nm: ~50% Power reduction
- Air extraction:
 - \checkmark In conflict with disks and forward acceptance
 - (≠ALICE ITS2/3, Belle-2, STAR-HFT)

Power Analog $(mW/chip)$	49.22
Power Bias $(mW/chip)$	4.5
Power PriorityEncoder $(mW/chip)$	4.219
Power DigitalPeriphery $(mW/chip)$	64.27
Power PLL $(mW/chip)$	18.5
Power Serializer With Data $(mW/chip)$	86.06
Power Serializer With No Data $(mW/chip)$	0
Power LVDS $(mW/chip)$	56.4

MIMOSIS like architecture, 180 nm

C5. Power & cooling in Higgs Factories

<Power> (P.P.)

Ambitious

~12 W

Conservative

~31 W

 $(~10 \text{ mW/cm}^2)$

Baseline:

Beam

background rate

DBD

DBD

DBD x 2

DBD x 2

- \checkmark air flow cooling only to minimize material budget
- \checkmark Up to ~ 20 mW/cm²
- Driving parameters:
 - \checkmark # channels, Time resolution / data flux

<Power (NO P.P.)

(W)

102 W (~30mW/cm²)

122 W (~33mW/cm²)

107 W

127 W

- ✓ Surface (VXD ~ 3500 cm²)
- Power Pulsing (ILC/CLIC)
 - ✓ Constraints more relaxed w.r.t. FCCee

Read-out

speed

(µs)

4 μs

2 µs

4 μs

2 µs

Power Analog $(mW/chip)$	49.22
Power Bias $(mW/chip)$	4.5
Power PriorityEncoder $(mW/chip)$	4.219
Power DigitalPeriphery $(mW/chip)$	64.27
Power PLL $(mW/chip)$	18.5
Power Serializer With Data $(mW/chip)$	86.06
Power Serializer With No Data $(mW/chip)$	0
Power LVDS $(mW/chip)$	56.4

MIMOSIS like architecture, 180 nm

Period	Relative Energy
E during train	225 mJ ~ 4 %
E between train (Power ON)	380 mJ ~ 6 %
E between train (Power OFF)	5740 mJ <mark>~ 90 %</mark>

Layers	Relative Power
Layers 0/1	~ 10 %
Layers 2/3	~ 35%
Layers 4/5	~ 55 %

55

C6. Being generic: ILC & FCCee differences

Beam structure: « continuous » vs trains

✓ Power Pulsing: allows a factor O(10) reduction in average power

- ✓ ILC: However, avoiding PP is desirable (alignment)
- Beam pipe shape and material
 - ✓ ILC: ~0.14% X_0 for the beam pipe (500 µm)
 - ✓ FCCee: Sync. Radiations ⇒ Cooling of the beam pipe ⇒ higher Mat.Budget
 - \Rightarrow 800 (2 pipes) + 400 (water) ~ 0.34% X₀
 - $\Rightarrow

 +

 5

 μm Au = 0.15%

 X_0$
 - ⇒ Smaller inner radius @ FCCee (12 mm)
- MDI:

✓ CLD: Forward acceptance limited to 150 mradian (8.6°)

- ✓ ILD: Froward acceptance (disks) ~ 5°
- TeraZ vs Giga Z
 - ✓ Specific timing and impact parameter resolution ?
 - e.g. lower radius ?
- Magnetic field:
 - ✓ ILC: 3.5/4 T (R_{max} ~1.8m)
 - ✓ CLIC: R_{max}(CLIC): 1.5m
 - ✓ FCC: 2 T max ⇒ compensate by larger level arm (R_{max} ~ 2.15m)

Overall most of the R&D can be fruitfully made common

(D). Detector performances

D. b/c tagging sensitivity (CLIC example)

GSI Helmholtzzentrum für Schwerionenforschung

(E). MIMOSIS Program **CBM-MVD** collaboration

J. Andary,^a B. Arnoldi-Meadows,^a O. Artz,^a J. Baudot,^b G. Bertolone,^b A. Besson,^b N. Bialas,^a R. Bugiel,^b G. Claus,^b C. Colledani,^b H. Darwish,^{a,b} M. Deveaux,^c A. Dorokhov,^b G. Dozière,^b Z. El Bitar,^b I. Fröhlich,^{a,c} M. Goffe,^b F. Hebermehl,^a A. Himmi,^b C. Hu-Guo,^b K. Jaaskelainen,^b O. Keller,^f M. Koziel,^a F. Matejcek,^a J. Michel,^a F. Morel,^b C. Müntz,^a H. Pham,^b C.J. Schmidt,^c S. Schreiber,^a M. Specht,^b D. Spicker,^a J. Stroth,^{a,c,d} I. Valin,^b R. Weirich,^a Y. Zhao^b and M. Winter^e

^aGoethe-Universität Frankfurt, Germany

^bUniversité de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, France

^cGSI Helmholtzzentrum für Schwerionenforschung GmbH, Germany

- ^dHelmholtz Forschungsakademie Hessen für FAIR, Germany
- e IJCLab, UMR9012 CNRS / Université Paris-Saclay / France
- ^f Facility for Antiproton and Ion Research in Europe GmbH, Germany

Federal Ministry of Education and Research

E. CBM experiment @ FAIR (GSI)

• The Compressed Baryonic Matter (CBM)

✓ Fixed target experiment @ FAIR (GSI)

✓ Explore QCD phase diagram @ high baryon densities

- The Micro-Vertex-Detector (MVD)
 - 4 double-sided thin planar detector stations
 - 100 kHz Au+Au @ 11 AGeV and 10GHz p+Au @ 30 AGeV
 - Non uniform hit density in time and space
 - High radiation environment, operating in vacuum

E. MIMOSIS roadmap

- 4 prototypes:
- MIMOSIS-0: = 2 regions
 - Tests (2018-2019)
 - Testability
- MIMOSIS-1: 1st full size prototype
 - Elastic buffer, SEE hardened
 - ✓ Fabricated in 2020
 - ✓ Lab/beam test campaign in 2021-22
- MIMOSIS-2:
 - ✓ On-chip clustering
 - ✓ Back from foundry Q2 2023 ⇒ tests Q3 2023
- MIMOSIS-3: final pre-production sensor

✓ ≥2024

⇒ architecture adaptable to a fast sensor for an ILC vertex detector ⇒ Opportunity to study different designs/options

E. MIMOSIS-1

MIMOSIS tests

- Submatrices: DC/AC pixels \checkmark
 - DC pixels: ALPIDE-derived
 - AC pixels: top bias up to > 20V
- 6 epitaxial variants (18 wafers) \checkmark
 - Thinned down to 60 µm
 - Study Yield
 - Study charge collection / spatial res.
 - Explore performances after irradiation
- Intense test program in 2021/22:
 - Laboratory tests

Irradiation tests

- Ljubjana (TRIGA) ~1 MeV reactor neutrons Karlsruhe (KIT) ~10 keV X-rays
- Beam tests @ DESY/CERN (3 campaigns) \checkmark
- Latchup / SEE tests at GSI

1024 pixels (30.96 mm)

SR SR SR SR SR SR

AC pixels

MATRIX C

194k pix (157mm²)

384 pix

Full custom digital

In-pixel Memory

Dual Port

2 words of 1 bit

More details on MIMOSIS-1 design → F. Morel,

"The MIMOSIS pixel sensor", TIPP 2021

Checked thickness

(60 μm)

SR SR

AC pixels

MATRIX D

11

64k pix (52 mm²)

128 pix

Pixel output

504 pixels (13.54 mm)

60

62

SR SR SR SR SR SR

DC pixels

MATRIX B

194k pix (157mm²)

384 pix

61

58 59 Amplification

1

Shaping time few us

SR SR

DC pixels

MATRIX A

64k pix (52 mm²)

128 pix

160 al

harge in 160 aF

DC coupling

Bias1

AC coupling

64 pb

Bias2

ᇊ

Sensing part

MV Bias1

- standard process (3 available wafers)
- continuous n-layer (blanket) (3 wafers)
- additional p-implant (3 wafers)
- gap in n-layer (3 wafers)

E. AC / DC pixels

• DC Pixels (~ALPIDE) & AC pixels (top bias up to > 20V)

✓ Amplifier / shaper / discriminator chain similar to ALPIDE in both scheme

- ✓ Data driven readout
- ✓ Pulse injection for calibration
- ✓ Pixel masking options

MIMOSIS beam test results

- Noise
 - ✓ DC pixels, no back bias applied)
 - @ room T°C
 - ✓ Pixel Noise ~ 3-5 e⁻ ENC
 - ✓ FPN ~5-17 e⁻ ENC
- Efficiency
 - ✓ ≥ 99.5 %
 - ✓ Time walk correction
- Cluster multiplicity
 - ✓ Typically in the 1-2 range
- Resolution as expected
- Fake rate very low
 - ✓ < 10⁻⁶

Pixel dimensions ~26.9 μm x 30.2 μm Binary resolution ~ 7.8 (U) x 8.3 (V) μm Depletion - Cluster size resolution dependencies observed

E. Noise

Figure 7: FPN and pixel noise after ionizing, non-ionizing and combined irradiation. The extracted uncertainties are of order 0.01 e⁻ and are not shown for clarity.

E. Process comparison

A.Besson, Université de Strasbourg

E. Irradiations

E. Resolution vs process

A.Besson, Université de Strasbourg

E. Resolution vs irradiation

Figure 15: Comparison of resolution and cluster size for various irradiation types - p-stop.

E. Tests of MIMOSIS-2 (in 2023)

June 27th 2022

٠

٠

70

E. Wafer types

Wafer nb	Туре	thickness μm	Goal μm	Ері	company
1	Process Standard CIS	<u>700</u>	<u>200-300</u>	<u>25μm</u>	Tower (Simple dicing)
2		700	50	25µm	Optim (Simple dicing)
3	A.S. The A.S.	700		25µm	
4	Standard, not fully depleted (ALPIDE) H	700	200-300	50µm	Tower (Simple dicing)
5	one w	niteoliteite	noiten Keistent	prodess	Ontim (Simple dicing)
6		700		50µm	
7	Non Uniform	700	200-300	25µm	Tower (Simple dicing)
8	N- Layer with gap	700	50	25µm	Aptek (Simple dicing)
9	(14-06þ)	700		25µm	
10		<u>700</u>	<u>200-300</u>	<u>50μm</u>	Tower (Simple dicing)
11		700	70 ?	50µm	Aptek (Simple dicing)
12	la sense	700		50µm	
13	Uniform	<u>700</u>	<u>200-300</u>	<u>25μm</u>	Tower (Simple dicing)
14	N- Layer +	700	50	25µm	Aptek (Simple dicing)
15	extra Deep P	700	50	25µm	Optim (Simple dicing)
16	(P-Stop)	700	<u>200-300</u>	<u>50μm</u>	Tower (Simple dicing)
17		700	70 ?	50µm	Aptek (Simple dicing)
18		700		50µm	

+ 6 Pads Wafer

3 x 6 wafers \Rightarrow Wafer Intact = 36 Mimosis_2 per wafer

To be tested with priority

June 27th

E. Mimosis-1 Verification tools example

- Large and complex designs need
 - A hierarchy in the work flow to keep submission on schedule
 - Verification tools that can be run in a reasonnable time
 - ✓ Knowledge of these tools is crucial
- Example Power-grid problem observed in MIMOSIS-1
 - ✓ Threshold shifts
 - ✓ Problem fixed quickly

F. Morel DRD7 kick-off meeting

June 27th 2023

A.Besson, Université de Strasbourg
E. Localized irradiations

- CYRCE platform @IPHC
 - ✓ https://cyrce.fr/
 - ✓ Delivers 25 MeV proton beams
 - Niel factor ~1.8
 - $\checkmark\,$ Can control precisely the dose
 - CYRCE beam characterization
 - High rate tests
 - Localized irradiations

- Check performances uniformity with non uniform irradiations to mimic the expected MVD irradiation non uniformity
- First tests performed with MIMOSIS-1 in Q2 2023

F. CE65 performances

F. CE65_v1

(a) Standard

NWELL COLLECTION ELECTRODE

PMOS

NMOS

(b) Modified

(c) Modified with gap

Variant	Process	Pitch	Matrix	Sub-matrix
CE65-A	std	$15 \mu { m m}$	64×32	AC/21, DC/21, SF/22
CE65-B	mod_{gap}	$15 \mu { m m}$	64×32	AC/21, DC/21, SF/22
CE65-C	mod	$15 \mu { m m}$	64×32	AC/21, DC/21, SF/22
CE65-D	std	$25 \mu { m m}$	48×32	AC/16, DC/16, SF/16

A.Besson, Université de Strasbourg

F. CE65_v1 charge sharing and residuals

G. Implementation of the ECFA Detector R&D Roadmap & DRD3/DRD7

G. Detector R&D Roadmap: themes (DRDTs)

DRDT 3.1 - Achieve full integration of sensing and microelectronics in monolithic CMOS pixel sensors.

Developments of Monolithic Active Pixel Sensors (MAPS) should achieve very high spatial resolution and very low mass aiming to also perform in high fluence environments. To achieve low mass in vertex and tracking detectors, thin and large area sensors will be crucial. For tracking and calorimetry applications MAPS arrays of very large areas, but reduced granularity are required for which cost and power aspects are critical R&D drivers. Passive CMOS designs are to be explored, as a complement to standard sensors fabricated in dedicated clean room facilities, towards hybrid detector modules where the sensors is bonded to an independent ASIC circuit. Passive CMOS sensors are good candidates for calorimetry applications where position precision and lightness are not major constraints (see Chapter 6). State-of-the-art commercial CMOS imaging sensor (CIS) technology should be explored for suitability in tracking and vertex detectors.

G. Synergies

ECFA recognizes the need for the experimental and theoretical communities involved in physics studies, experiment designs and detector technologies at future Higgs factories to gather. **ECFA supports a series of workshops** with the aim to **share challenges and expertise, to explore synergies in their efforts** and to respond coherently to this priority in the European Strategy for Particle Physics (ESPP).

Goal: bring the entire e⁺e⁻ Higgs factory effort together, foster cooperation across various projects; collaborative research programmes are to emerge

" Start Date not known, t	of Facility he earliest	(This means, where the technically feasible start			< 2030				2	030-203	5		2035 - 2040	2040-	2045		>2045	
cated - such Ig factor)	that detec	tor R&D readiness is not	Panda 2025	CBM 2025	NA62/Klever 2025	Belle II 2026	ALICE LS3 ¹⁾	ALICE 3	LHCb (≳LS4) ¹⁾	ATLAS/CMS (≳ LS4) ¹⁾	EIC	LHeC	ILC ²⁾	FCC-ee	CLIC ²⁾	FCC-hh	FCC-eh	Muon Collider
		Position precision σ _{hit} (μm)		≃ 5		≲5	≃ 3	≲3	≲10	≲15	≲3	≃5	≲3	≲3	≲3	≃ 7	≃ 5	≲5
	4 7	X/X _o (%/layer)	≲0.1	<mark>≃0.5</mark>	≃ 0.5	≲0.1	<mark>≃0.0</mark> 5	≃ 0.05	≃1		≃ 0.0 5	≲0.1	≃ 0.05	≃ 0.05	≲0.2	~ 1	≲0.1	≲0.2
CMOS	RDT 3. RDT 3.	Power (mW/cm ²)		≃ 60			<mark>≃ 2</mark> 0	≃ 20			≃ 20		≃ 20	≃ 20	≃ 50			
PS assive (ADs		Rates (GHz/cm²)		≃ 0.1	≃1	≲0.1		≲0.1	≃6		≲0.1	≃0.1	≃ 0.0 5	≃ 0.0 5	≃ 5	≃ 30	≃ 0.1	
MA /3D/Po LG/		Wafers area (") ⁴⁾					12	12			12			12		12		12
Planar	DRDT 3.2	Timing precision $\sigma_t (ns)^{5)}$	10		≲0.05	100		25	≲0.05	≲0.05	25	25	500	25	≃ 5	≲0.02	25	≲0.02
	3.3	Radiation tolerance NIEL (x 10 ¹⁶ neg/cm ²)							≃6	≃ 2						≃ 10 ²		
	DRD1	Radiation tolerance TID (Grad)							≃ 1	≃ 0.5						≃ 30		
		Position precision σ _{hit} (μm)						≃ 6	≃ 5		≃ 6	≃6	≃6	≃6	≃ 7	≃ 10	≃6	
	4 7	X/X _o (%/layer)						≃ 1	≃1		~ 1	≃1	≃1	≃1	≃1	≲2	≃1	
CMOS	RDT 3.	Power (mW/cm ²)						≲100	≃ 100		≲100		≲100	≲100	≲150			
r PS assive ADs		Rates (GHz/cm ²)							≃ 0.16									
MA r/3D/P LG.		Wafers area (") ⁴⁾						12			12		12	12	12	12		12
Planar	DRDT 3.2	Timing precision $\sigma_t (ns)^{5)}$						25	≲25		25	25	≲0.1	≲0.1	≲0.1	≲0.02	25	≲0.02
	13.3	Radiation tolerance NIEL (x 10 ¹⁶ neg/cm ²)							≃ 0.3							≲1		
	DRD'	Radiation tolerance TID (Grad)							≃ 0.25							≲1		
	I Start Date not known'th icated - snch MAPS Planar/3D/Passive CMOS LGADs LGADs	Image: Maps Index and Sectors MAPS Index and Sectors MAPS Index and Sectors Index and Sectors Planar/3D/Passive CMOS Index and Sectors MAPS Index and Sectors Index and Sectors Index and Sectors Planar/3D/Passive CMOS Index and Sectors Index and Sectors Index and Sectors Index and Sectors Index and Sectors Index and Sectors Index and Sectors Index and Sectors Index and Sectors Index and Sectors Index and Sectors Index and Sectors Index and Sectors Index and Sectors Index and Sectors Index and Sectors Index and Sectors Index and Sectors Index and Sectors Index and Sectors Index and Sectors Index and Sectors Index and Sectors Index and Sectors Index and Sectors Index and Sectors Index and Sectors Index and Sectors Index and Sectors Index and Sectors Index and Sectors Index and Sectors Index and Sectors Index and Sectors Index and Sectors Index and Sectors Index and Sectors Index and Sectors Index and Sectors Index and Sectors Index and Sectors Index and Sectors Index and Sectors Index and Sectors Index and Sectors Index and Sectors Index and Se	"Start Date of Facility (This means, where the not known, the earliest technically feasible start icated - such that detector R&D readiness is not ng factor) Image: Second Start Date of Facility (This means, where the not known, the earliest technically feasible start icated - such that detector R&D readiness is not ng factor) Image: Second Start Date of Facility (This means, where the not known, the earliest technically feasible start icated - such that detector R&D readiness is not ng factor) Image: Second Start Date of Facility (This means, where the not known, the earliest technically feasible start icated - such that detector R&D readiness is not ng factor) Second Start Date of Facility (This means, where the not known, the earliest technically feasible start icated - such that detector R&D readiness is not ng factor) Second Start Date of Facility (This means, where the not known, the earliest technically feasible start icated - such that detector R&D readiness is not ng factor) Second Start Date of Facility (This means, where the not known, the earliest (EAD and the intervence) Second Start Date of Facility (This means, where the not known) Second Start Date of Facility (This means) Second Start Date of Facility (This me	$\begin{tabular}{ c c c c } & \label{eq:start} \begin{tabular}{ c c c c c } & \label{eq:start} \end{tabular} \\ & \end{tabular} \end{tabular} \end{tabular} \\ & \end{tabular} \end{tabular} \end{tabular} \\ & \end{tabular} \end{tabular} \end{tabular} \end{tabular} \\ & \end{tabular} $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\frac{1^{9} Start Date of Facility (This means, where the not known, the earliest technically feasible start (cated - such that detector R&D readiness is not g factor) SOUTHON THE CONSTRUCT ON THE CONSTRUCT $	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Start Date of Facility (This means, where the tot known, the earliest technically feasible start icated - such that detector R&D readiness is not ig factor) Start Date of Facility (This means, where the tot known, the earliest technically feasible start icated - such that detector R&D readiness is not ig factor) Start Date of Facility (This means, where the tot known, the earliest technically feasible start icated - such that detector R&D readiness is not ig factor) Start Date of Facility (This means, where the tot known, the earliest technically feasible start icated - such that detector R&D readiness is not ig factor) Position precision o_{ht} (µm) Start Date of Facility (This means, where the function of the function of	Start Date of Facility (This means, where the tot known, the earliest technically feasible start icated - such that detector R&D readiness is not ig factor) Start Date of Facility (This means, where the tot known, the earliest technically feasible start icated - such that detector R&D readiness is not ig factor) Start Date of Facility (This means, where the tot known, the earliest technically feasible start icated - such that detector R&D readiness is not ig factor) Start Date of Facility (This means, where the tot known, the earliest technically feasible start icated - such that detector R&D readiness is not ig factor) Start Date of Facility (This means, where the tot known, the earliest technically feasible start icated - such that detector R&D readiness is not ig factor) Start Date of Facility (This means, where the tot known, the earliest technically feasible start icated - such that detector R&D readiness is not ig factor) Start Date of Facility (This means, where the tot known, the earliest technically feasible start icated - such that detector R&D readiness is not ig factor) Start Date of Facility (This means, where the tot known, the earliest technically feasible start icated - such that detector R&D readiness is not ig factor) Start Date of Facility (This means, where the tot known, the earliest technically feasible start icated - such that detector R&D readiness is not ig factor) Start Date of Facility (This means, where the tot known, the earliest technically feasible start icated - such that detector R&D readiness is not ig factor) Start Date of Facility (This means, where the tot known, the earliest technical feasible start icated - such that detector R&D readiness is not ig factor) Start Date of Start Date of R&D readiness is not ig factor) Start Date of R&D readiness is not	Source Source<	"Start Date of Facility (This means, where the forknown, the earliest technically feasible start is not nown, the earliest technically feasible start is not nown, the earliest technically feasible start is not normalized - such that detector R&D readiness is not not specific provided in the detector R&D readiness is not not normalized - such that detector R&D readiness is not not normalized - such that detector R&D readiness is not not normalized - such that detector R&D readiness is not not normalized - such that detector R&D readiness is not normalized - such that detector R&D readines readiness is not normalized - such that detector R	"Start Date of Facility (This means, where the not known, the arriest technically feasible start iscated - such that detector R&D readiness is not gractor) 2030-2035 started - such that detector R&D readiness is not gractor) \$\$000 arrises (\$100 arrises) \$\$000 ar	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	P3 base base of Faility (This means, where the tasted - such that detector R&D readines is not g factor) V	P3 bat bat of Failty (This mean, where the lated - such that detector R&D readiness is not g factor) Image: Construction of the construline of the construction of the construction of the

ECFA

European Strategy for Particle Physics Implementation of the **Detector Research and Development Roadmap**

TF3 Solid State Detectors

DRD3 organisation

ECFA WG3: Topical workshop on tracking and vertexing, 30-31 May 2023, CERN ay 2023, CERN on five rsité de Strasbourg June Z/ III ZUZO

WG 3.1: Monolithic CMOS sensors

- ✓ Spatial resolution of 3 µm
- ✓ Timing precision of 20 ps
- ✓ Readout architectures for 100 MHz/cm²
- ✓ Radiation tolerance of $10^{16} n_{eq}$ /cm²NIEL and 500 MRad

WG 3.2: Sensors for tracking and calorimetry

- ✓ Spatial and temporal resolutions at extreme radiation levels
- ✓ Reduction of pixel cell size for 3D sensors
- ✓ 3D sensors with a temporal resolution of about 50 ps
- ✓ Spatial and temporal resolutions at low radiation levels and low material and power budgets
- ✓ LGAD sensors with very high fill factor and an excellent spatial and temporal resolution
- LGAD sensors for Time of Flight applications

WG 3.3: Radiation damage and extreme fluence operation

- Build up data sets on radiation induced defect formation in WBG materials
- ✓ Develop silicon radiation damage models based on measured point and cluster defects
- Provide measurements and detector radiation damage models for radiation levels faced in HL-LHC operation
- ✓ Measure and model the properties of silicon and WBG sensors in the fluence range 10^{16} to 10^{18} n_{eq}/cm²

WG 3.4: Simulation

- ✓ Flexible CMOS simulation of 65 nm to test design variations
- ✓ Implementation of newly measured semiconductor properties into TCAD and MC simulation tools
- Definition of benchmark for the validation of the radiation damage models with measurements and benchmark different models
- ✓ Developing of bulk and surface model for $10^{16} n_{eq}^{2}$ cm² to $10^{17} n_{eq}^{2}$ cm² NIEL
- Collate solutions from different MC tools and develop algorithms to include adaptive electric and weighting fields

WG 3.5: Measurement and characterization techniques

- ✓ Development of new semiconductor characterization techniques is a priority for future detector developments
- ✓ These techniques should enable high-resolution imaging and defect spectroscopy of semiconductor materials, as well as advanced characterization of charge transport properties
- ✓ The Two Photon Absorption –TCT setup, Caribou DAQ system and the Ion Beam testing and irradiation facility at RBI have been identified as good examples and further improvements are being proposed

WG 3.6: Wide bandgap and innovative sensor materials

- ✓ 3D diamond detectors, cages/interconnects, base length 25 µm, impact ionisation
- ✓ Fabrication of large area SiC and GaN detectors, improve material quality and reduce defect levels
- ✓ Improve tracking capabilities of WBG materials
- ✓ Apply graphene and/or other 2D materials in radiation detectors, understand signal formation

WG 3.7: Sensor interconnection techniques

- ✓ Yield consolidation for fast interconnections
- \checkmark Demonstration of small pitch (< 30 µm) pixel interconnections
- Demonstration of radiation hardness and thermomechanical constraints
- ✓ Development of maskless post-processing for commonly-used interconnection technologies
- Bring part of the commonly-used interconnection technologies to specialised academic groups
- ✓ Develop device-to-wafer interconnection technologies
- ✓ Develop wafer-to-wafer in presently advanced interconnection technologies
- ✓ Develop VIAS in multi-tier sensor/front-end assemblies
- ✓ Develop connection techniques for post-processed devices

WG 3.8: Outreach and dissemination

- Disseminating knowledge on solid-state detectors to people working in high energy physics
- ✓ Disseminating knowledge on solid-state detectors to highschool students and the general public
- ✓ Design and set-up of the DRD3 website
- Collection of the outreach material
- \checkmark Set-up and organize schools and exchange programs
- ✓ Set-up of the DRD3 conference committee

٠

Ball park performance targets MCMOS

Three main time scales/phases to define program up to: 2027-28, 2029-2035, >2035

		Tracking VD/CT	Timing Layer + Calorimeter
Ball park generic performance targets* mandatory/desireable	Heavy lon	<mark>ultralight low power tracker</mark> pitch Ю - 30 <u>µm</u> @ О(100) MHz/cm², О(1) <u>µs</u>	0(20) <u>ps</u> (TL)
	<u>Flavour</u> collider	ultralight low power tracker pitch 10 - 30 µm @ 0(100) MHz/cm², 0(1) ns	0(20) <u>ps</u> in (TL)
	Lepton collider	e-e : ultralight low power tracker pitch down to ≲10 µm, @ O(100) MHz/cm ² timing driven by power timing driven by power dissipation µ-µ : O(20) <u>ps</u> rates and irradiation tbc	O(10) <u>ps</u> in TL O(< 50) <u>ps</u> in calorimeter driven by power power dissipation
	pp collider	HL-LHC: 25-50 μm @ 0(5) GHz/cm ² 5x10 ¹⁵ to 5x10 ¹⁶ neg/cm ² , 250 - 500 <u>MRad</u> timing 0(<50) ps timing 0(<50) ps FCC- <u>hh</u> : < 10 - 20 μm @ 30 GHz/cm ² 4D tracking	HL-LHC: pitch O(<1) mm O(20) <u>ps</u> in TL, NIEL 5x10 ¹⁵ FCC- <u>hh</u> ; 5D calorimeter
* ranges represe	ntative ex for VD and CT with more	4D tracking O(<10) <u>ps</u> up to O(10 ¹⁸) to O(10 ¹⁸) <u>neq</u> /cm ² , up to O(50) <u>GRad</u> stringent constraints to be achieved in VD	O(<10) <u>ps</u> up to O(10 ¹⁸) <u>neq</u> /cm ² , up to O(50) <u>GRad</u> O(50) <u>GRad</u>

Work Packages

ECFA

MCMOS 1st R&D phase up to 2027-2028 **DRD3**

Deliverables: MPW submissions/reviews/milestones (ex. MCMOS TPSC 65 nm)

DRD3.1 Monolithic CMOS	Phase-1: sensors with	3 µm position precision, tole	sensors with ti rance 10^16	ming precision 20 ps, read neg/cm^2 NIEL and 500 M	out architectures for 10 ARad	0 MHz/cm^2, radiation
Timeline	2024	2025		2026	20	27-28
Work Packages	Deliverable	Deliverable	Deliverable	Review Milestones MPW1.1 MPW1.2	Deliverable	Review Milestones MPW1.2 MPW1.3
Technology TPSCo (TJ) 65 nm	prepare MPW1.1	submit MPW1.1 mid- 2025 start to preprae MPW1.2		internal/DRDC reviews mid- 2025 results of MPW1, specifications of MPW1.2	qualify MPW1.2 preprare/submit MPW1.3a preprare/submit MPW1.3b preprare/submit MPW1.3c	Internal/ DRDC reviews Q4 2027 results of MPW2, specifications of MPW3 (consider other techno. progress) establish 2nd DRD phase program
WP1 position precision	ER 12" 4 splits process/epitaxial layer, with variants of electrode size/shape/pitch on small matrix	MPW1.2 selected feautures of MWP1.1 and/or new features		M1 mid-2026 establish position precision versus pitch, sensor active thickness and readout mode (digital/binary) establish technology for application in CT, TL, SI/W calo		M5 handle large size high density sensor technical opions for AU(FG) 11-6-0 PRI 1-6.3
WP2 timing precision	specific features in splits	MPW1.2 selected features of MWP1.1 and/or new features	qualify MPW1.1 submit MPW1.2 Q4- 2026	M2 mid-2026 establish timing precision versus electrode size and pitch, sensor active thickness (w/o amplification)	MPW1.3a wafer size matrices in selected features	M6 handle large size sensors for Central Tracking, Timing Layers, Si/W calo
WP3 readout architecture common to DRD7	common IP block components arhcitecture implementations: synchro.aynchro. modes; adapted to channel density, reador.af.statures of WP1-WP2 (digital/binary/timing) and target rates power distribution and control in large size wafers	MPW1.2 selected features of MPW1 for further studies scale matrix size		M3 mid-2026 qualified IP blocks establish power dispation of architecture options	or WH 19472/WP3 (pixel/ship/ship) configurations) MPW1.3b - MPW1.3c design wafer for interconnect	(DRD6 proto) M7 handle architecture option for low power in wafer scale size, epand to other technologies M8 deliver SuA sensors for beam area infrastrcuture
WP4 radiation tolerance	specific feature in splits	MPW1.2 selected feautures of MWP1.1 and/or new features		M4 establish SoA radiation tolerance		
Interconnection and data transfer common to DRD3/DRD7			preprare p	rototypes for 3D integration		
Integration common to DRD3/DRD8 Non-silicon materials		cooling	g systems, light	mechanical designs, sytem p	rototypes	
common to DRD3/DRD7 Simulation and characterization common to DRD3		develop a	quain nd test simulati	on models, develop tools and	telescopes	

Ball park goals

- explore all performance aspects in several technologies against design/process parameters
- develop few architectures with low power consumption for different work packages
- prepare (start?) 3D integration
- Review achievements, narrow down technology options Handle :
 - technical solutions for initial strategic programs: ALICE-3, LHCB-2, Belle-3, ATLAS/CMS...
 - sensors for DRD6 High Granularity Calorimetry prototypes
 - telescope for beam-test infrastructure

common areas within DRD3 and with DRD7

Work Packages

ECFA

MCMOS 2nd and 3rd R&D phases

Deliverables: to be redefined through reviewing of Phase 1 progress and achievements

٠

٠

DRD3.1 Monolithic CMOS	Phase-2: 4D track precisions, O (ing <3 µm and <20 ps 1)GHz/cm^2 rates	Phase-3: 4D tracking <1 µm and <10 ps precisions, O(50) GHz/cm^2 rates, radiation					
Timeline	202	29-2034	2	2035				
Work Packages	Deliverable	Review Milestones	Deliverable	Review Milestones				
Technology TPSCo (TJ) 65 nm		internal/ DRDCreviews results of MPWs, establish 3rd DRD pahse program		internal/ DRDCreviews results of MPWs, establish 4th DRD pahse program				
WP1 position precision								
WP2 timing precision	technology nodes ≲ 65 nm wafer size ≥ 12'' 3D interconnection	handle technical options	technology nodes ≲ 16 nm wafer size ≥ 12'' 3D interconnection					
	non Si-materials	for lepton colliders (ILC, C3, CLIC, FCC-ee, MC) including 4D tracking performance	non Si-materials	handle technical options for hadron colliders ultimate rates and radiation tolerance in 4D tracking				
WP3 readout architecture common to DRD7								
WP4 radiation tolerance								
nterconnection and data transfer common to DRD3/DRD7		tbd		tbd				
Integration common to DRD3/DRD8 Non-silicon materials		tbd		tbd				
common to DRD3/DRD7 Simulation and		tbd		tbd				
haracterization common to DRD3		tbd		tbd				

Ball park goals

- Integrate WP features in same sensors at low power consumption
 - Evolve to further technologies/lower nodes toward full 4D tracking
- Implement 3D integration
 - Reach ultimate timing precision, rates and rad. tol. for in $3^{
 m rd}$ phase

common areas within DRD3 and with DRD7

DRD3

WG 3.1: CMOS @ IN2P3

- IN2P3: MP GRAM & DEPHY (since end 2022)
 - DEPHY: high fluences, high flux for CMOS & hybrid pixels
 - GRAM: granularity, material budget, low power
 - IPHC (C4PI, PICSEL, Belle-2, ALICE)
 - ✓ 20 years: STAR HFT, EUDET telescopes, ALICE ITS-2, AidaInnova, etc.)
 - ✓ 3 teams in HEP are pursuing a CMOS R&D activity:
 - PICSEL: MIMOSIS for CBM-MVD ⇒e⁺e⁻ colliders (TJ180 nm & TPSco 65nm)
 - Belle-2 upgrades (TJ180 nm and beyond)
 - ALICE ITS3 (TPSco 65nm)
 - ✓ DRD3: focus on TPSco 65nm
 - IPHC Scientific council June 27th
 - CPPM
 - ✓ > 10 years: (ITK ATLAS, Belle-2, RD50, RD53, AidaInnova)
 - Depleted CMOS
 - LF150nm, TSI180nm, TJ 180 nm, TPSco 65nm, etc.
 - high fluences, high flux
 - IP2I
 - ✓ Interest for fast timing (< 100 ps)
 - ✓ Growing activity in digital micro-electronics with C4PI (TJ 180 nm)
 - Contribution to DRD3.1 (TPSCo TJ 65 nm)
 - Digital on Top methodology for read-out (with DRD7)
 - Low power architecture with ToF measurement
 - interconnection 3D (wafer stacking) (with DRD7)
- APC
 - ✓ Tests for the TPSco 65nm prototypes
 - ✓ Possible contributions to design (TPSco 65nm)
 - Expertise in simulations (TCAD, Allpix2) and radiation damages

NWELL COLLECTION

H. Submissions plans

TPSCo 65 nm timeline (from CERN EP R&D WP 1.2)

I. Human resources

FTE per Project

FTE needs estimate																				
		20	23	-		20)24			20	25			20	26	-		20	27	
TASK	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
MIMOSIS Program																				
MIMOSIS Physicists (PICSEL)	1,5	1,5	1,5	2	1	1	1	1	1	2	2	2	1,5	1						
MIMOSIS microtechnics (C4PI)			0,3	0,3	0,3				0,5	0,5	0,5	0,5								
MIMOSIS-1 Tests (C4PI)	1	1																		
MIMOSIS-2 Fabrication																				
MIMOSIS-2 Tests (C4PI)			3	3	2	2	2	2	1											
MIMOSIS-3 Designs (C4PI)			0,5	0,5	0,5	0,5														
MIMOSIS-3 Fabrication																				
MIMOSIS-3 Tests (C4PI)									1	1	1	1	1							
R &D for e+ e- colliders																				
65 nm / 180 nm R & D (PICSEL)	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	2	2,5	2,5	2,5	3	3	3	3
CE65 tests (C4PI)	1	1	1	1	1	1														
Microtechnics (C4PI)									0,1	0,1					0,5	0,5	0,5			
ER_2 test structure design (C4PI)	1	1	1	1,5	1,5	1,5	1,5													
ER_2 fabrication								//////	//////											
MLR2 design (C4PI)								2	3	4	4	4								
MLR2 Fabrication												/////	//////							
beam telescope demonstrator													tests	tests						
beyond MLR2 design (C4PI)													4	4	4	4	4	4	4	4
beyond MLR2 fabrication ?																			//////	//////
R & D Test (C4PI)													1,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5
								Inte	gration											
Integration (PICSEL)	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3
microtechnics (C4PI)		0,2	0,2	0,2	0,2	0,2	0,2	0,2					0,2	0,2	0,2	0,2	0,2			
							Sim	ulations f	or e+ e- c	olliders										
Physics Simulations (PICSEL)	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5
CMOS Simulation (PICSEL)	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1
Simulation C4PI (TCAD, etc,)	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1
TOTAL Test (C4PI)	2	2	4	4	3	3	2	2	2	1	1	1	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5
TOTAL Design (C4PI)	1	1	1,5	2	2	2	1,5	2	3	4	4	4	4	4	4	4	4	4	4	4
Total Microtechnics (C4PI)	0	0,2	0,5	0,5	0,5	0,2	0,2	0,2	0,6	0,6	0,5	0,5	0,2	0,2	0,7	0,7	0,7	0	0	0
TOTAL PICSEL	4,9	4,9	4,9	5,4	4,4	4,4	4,4	4,4	4,4	5,4	5,4	5,4	5,4	5,4	4,4	4,4	4,9	4,9	4,9	4,9

Local human resources

	FTE of the PICSEL team									
		2022	2023		2024		2025		2026	
		S2	S1	S2	S1	S2	S1	S2	S1	S2
Nom	fonction									
Baudot	Professor	0,20	0,20	0,20	0,20	0,20	0,20	0,20	0,20	0,20
Besson	Associate Professor	0,50	0,50	0,50	0,50	0,50	0,50	0,50	0,50	0,50
El Bitar	Senior scientist	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Senyukov	scientist engineer	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Andrea	Senior scientist	0,05	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10
Medernach	Computing engineer	0,50	0,50	0,50	0,20	0,20	0,20	0,20	0,20	0,20
Bugiel S.	post-doc	1,00	1,00	CERN						
Bugiel R.	post-doc	0.5	1,00	1,00						
ajit Kumar	post-doc AidaInnova (Belle-2-PICSEL)		0.5	0.5	0.5	0.5				
Ali Murteza	post-doc ANR		1,00	1,00	1,00	1,00				
Х	post-doc CMS-FCC		0,00	0,00	1,00	1,00				
G.Sadowski	PhD Region-QMAT	1,00	1,00	1,00	1,00	1,00	1,00			
H. Darwish	co tutelle CBM	0,00	1,00	1,00	0,00					
Total FTE		5,25	8,30	7,30	6,00	6,00	4,00	3,00	3,00	3,00

J. HCERES report (Haut Conseil de l'évaluation de la recherche et de l'enseignement supérieur)

HCERES

Special mention must be made of the Picsel team (team 11) Thanks to its long-standing expertise in CMOS pixel sensors and a very important support of the C4PI platform, it plays a leading role in the development of monolithic CMOS technologies, where the possible applications go well beyond Higgs factories like ILC, FCCee or Alice ITS3, Belle 2 including future possible upgrades of the detectors and dosimetry.

Team 11: Physics with Integrated Cmos Sensors and Electron machines (Picsel)

Name of the supervisor: Mr. Auguste BESSON

THEMES OF THE TEAM

Picsel team works in the framework of the Standard Model of Particle Physics and semi-conductor physics. It develops innovative technology based on semi-conductor CMOS Pixel Sensor for subatomic physics detectors and other application domains. The scientific goal of the team is to pursue the R&D of the technology based on CMOS Pixel sensors to improve readout speed and capability in severe radiation environment tolerance to permit the use of the inner tracking system of detectors in the future $e^+ - e^-$ colliders. It is mostly supported by microelectronic C4PI platform.

Picsel is developing CMOS technologies, where the possible applications go well beyond Higgs factories (ILC, FCCee): Alice ITS3, Alice 3, Belle 2 (future possible upgrades of the detectors) and dosimetry.

CONSIDERATION OF THE RECOMMENDATIONS OF THE PREVIOUS REPORT

The previous evaluation made five main recommendations linked to the implication on data analyses and exploitation of identified subatomic experiences, the use of the local, national and international networks to invite physicists and co-supervise theses and submit high-level applications, the diversification of communication activities, the strengthen of the team by the internal or external contribution of new researchers and finally to do not count on the realisation of the MISTRAL and LC project but on the Belle 2 plan in the next five years. Picsel team follows the recommendations since the last five years, two researchers and two professors are involved in the scientific production of the team and they sign all the scientific publications. Picsel team is now strongly involved in a network involving Detector projects (ILD & IDT at ILC, Alice ITS3, Strong, M. V. D. at CBM-MVD...) and international R&D programmes (Aïda Innova, Cremlin+) and bilateral networks (FCPPL, FJPPL, IRL-DMLAB). Picsel obtained more than 1M€ of external funding thanks to international projects or national agency calls for bids. Five PhDs are in progress. No new HDR has been obtained. Picsel team has been fully involved in the scientific and local organisation committees of several international

conferences which also included industrial sessions. The team has also provided general public conferences or lectures.

Picsel team, supported by the C4PI platform, contributes actively to the technical design of Alice ITS3 and Belle 2 upgrades.

EVALUATION

Overall assessment of the team

Picsel team has an international visibility in the field of CMOS pixel sensors totally compliant with the priorities beyond LHC established by the European Strategy Update and ECFA. Highly supported by C4PI platform team, the team is very dynamic with several high-level publications and attractive with nine non-permanents (5 PhD, 2 Post-doctorates and 2 IT). The critical size of permanent researchers (3) could be considered as a weakness to conduct in parallel large contributions to emblematic experiences like upgrades of Belle 2, Alice and future ILC detectors.

Strengths and Possibilities Linked to the Context

Picsel team played a pioneer role in establishing the innovative technology of CMOS pixel sensors giving a high reputation at the international level. Today, with close interactions with microelectronics platform C4PI, it gives to the Laboratory a top-level position for this technology. The five past years were highlighted with contributions based on CMOS pixel technology for an ultralight a detection module double-sided detection PLUME for Belle 2.

The expertise developed in Picsel is also solicited for the design phase like the update of Alice-ITS3 and of Belle 2.

Picsel team contributes in different areas and their members are regularly invited to present their results in the conference and welcome PhD and post-doctorates who all sign of all the scientific publications.

During the evaluation period, the team was composed of three tenure researchers, five PhD, two postdoctorates and two fixed terms engineers. The leader of Picsel team changed during the last five years even if the number of permanent staff does not change. The close link with the high-level microelectronics technology C4PI platform is a key of the success of Picsel team for the ambitious programme of projects contributions. No tenure engineer are (is?) member of Picsel team.

During the evaluation period, Picsel appeared as an attractive team with six PhD defences passed and five new PhD are preparing their thesis. Moreover two post-doctorates and two fix term engineers are completing the team.

During the period, the team has produced nine publications (e.g. NIM-A), three proceedings and around fifteen presentations in recognised international conferences of the domain (LCWS, Vertex, TWEPP).

The nowadays context displays opportunities of contributions for several high-level international experiments and a nice positioning to IPHC well beyond Higgs factories ((ILC, FCCee): Alice ITS3, Alice 3, Belle 2 (future possible upgrades of the detectors) and dosimetry.

Weaknesses and risks linked to the context

The success of the CMOS Pixels Sensors technology developed at IPHC by Picsel team is offering a large panel of opportunities in the subatomic domain (Alice, Bell, future Higgs Factory, ILC...) and dosimetry.

This induces the following risk: even if the team is very attractive and dynamic, at the top technological level, three tenure researchers are certainly not adapted to several engagements in parallel and the follow-up of five PhD and two post-doctorates.

The link with the microelectronics platform C4PI has to be mandatory kept to continue to keep a leader role in the CMOS Pixel Sensors domain and their engagement guaranteed.

RECOMMENDATIONS TO THE TEAM

Thanks to the great opportunities of next years, even if the decision is not in the hand of the IPHC, the committee recommends establishing an anticipated roadmap according to the decisions of international experiments on the choice of CMOS Pixel sensors.

SWOT

Scientific activities inline with European particle physics roadmap Recognized expertise in vertex detectors and trackers Recognized expertise in MAPS R&D through connection with C4Pi

Uncertainty on the timescale for future ee colliders Somewhat low attractivity for PhD students and grants

Strong and vivid partnerships worldwide Structuration of the Higgs factory community DRD3/DRD7 collaboration Synergy with mid-term projects of other IPHC groups

Limited person power, highly dependent on temporary staff Uncertainties at the technological level: Si costs & competitors

K. History

Some dates

- 1998: CMOS-MAPS R&D started @Strasbourg (IReS and LEPSI)
- MIMOSA-1
- 2002: 1st large scale prototype (MIMOSA-5)
- MIMOSA-6: binary output encoding
- MIMOSA-26 (large scale & column // read-out)
- 2009: EUDET telescopes
- 2010-2016: ULTIMATE (M-28) running in STAR-HFT
- MISTRAL/ASTRAL concepts. ALPIDE for ITS-2
- 2019: C4PI platform creation
- 2020: MIMOSIS-1 protototype

CMOS pixel sensors in particle physics

STAR-HFT half barrel

