Electroweak Experimental Summary and Highlights

56 splendid EXP talks, several hundreds of experimental results presented, very dense Moriond - Many apologies to those whose result(s) are not presented.

57th Rencontres de Moriond 2023

Disclaimer

- LHC has a clean and well calibrated dataset of ~140 fb^{-1} , still numerous results from Run-2... Run 3 with ~40 fb^{-1} in 2022 is ramping up, results shown here for the first time!
- ⁻ Super KEK-B and Belle II world's highest instantaneous luminosity (4.7x10³⁴ cm⁻²s⁻¹) 360 fb⁻¹ at the Y(4s) in 2019-22, corresponding to 387M BB pairs - BES also taking data
- Neutrino experiments are not waiting for the next generation (Hyper K, Dune, JUNO, Legend, CUPID, nEXO, etc...) with a thriving flurry of experiments covering a broad Neutrino program!
- New generation Xenon DM searches delivering new results (Xenon nT, Lux Zeppelin, PandaX). Next generation in preparation Darkside 20k,
- Precision from low energy observables: nEDM, pEDM, eEDM, g-2 of muon, etc...

Experimental 'EW' Landscape

The Neutrino Physics (and Astrophysics)

- Mass ordering
- Absolute neutrino mass
- Is the 3 flavour paradigm failing? Are there sterile neutrinos?
- Is there CP violation in the neutrino sector
- Is the neutrino a Majorana particle?
- Do we understand neutrino mass effects?
- Ultra high energy neutrino physics!

... and Anomalies (reactor - including 6 MeV bump, Short baseline, Gallium)!

Absolute Neutrino Mass

KATRIN Experiment

Data analysed with first two data taking campaigns in 2019 (one order of magnitude more data already taken)!

Absolute upper bound on neutrino mass!

Combined result: $m_{\nu} < 0.8 \text{ eV}$ (90% CL)

Limit dominated by statistics

Absolute Neutrino Mass

Thierry Lasserre

KATRIN Experiment

Use KATRIN as short baseline and search for sterile oscillations through spectrum deformations!

100 g tritium yields 10 v captures per year

Absolute Mass, Majorana Nature - Lepton Number Conservation Tobi Dixon

Hideyoshi Ozaki

KamLandZen

The largest amount of $\beta\beta$ nuclei. Low BG by distillation and filtration of both Liquid Scintillator and Xenon.

Limiting factor is the muon spallation of Xenon background.

 $\langle m\beta\beta\rangle < 36 - 156 \text{ meV}$

KamLAND-ZEN-1T: $\langle m\beta\beta \rangle < \sim 20 \text{ meV}$

Xenon mass = 750 kg

Cupid-Mo

Mini-balloon Radius = 1.90 m Data taking started in 2019

Cupid 100Mo Scintillating and cryogenic bolometric technology (evolution from CUORE 130Te with PID and light to reduce backgrounds)

Rached CUPID specs! Lowest background 0vββ decay experiment!!

 $\langle m\beta\beta\rangle < 280 - 490 \text{ meV}$

CUPID sensitivity: $\langle m\beta\beta \rangle < 12 - 20 \text{ meV}$

Absolute Mass and Majorana Nature

Majorana Demonstrator

76Ge in High Purity Ge detectors (important for the desing of LEGEND) at the Sanford Underground Research Facility

Reached an exposure of ~65 kg-yr

MAJORANA result

 $\langle m\beta\beta\rangle < 113 - 219 \text{ meV}$

Also probe of Wave Function Collapse models

Spontaneuous wave function collapse models through a non-linear term in the Schrodinger equation (through a 'noise field' e.g. gravity through Diosi and Penrose models)

Wave function Collapse would induce an observable EM radiation from charged particles (of X-rays in this case).

Germanium already sued in GS experiment, MAJORANA further constrains possible models of WFC (S. Donadi et al., Nature Physics)) !

LEGEND expected $\langle m\beta\beta \rangle < 9 - 21 \text{ meV}$

Short Baseline, Reactor and Gallium Anomalies

10³

Vedrana Brdar

Short baseline anomaly

- Backgrounds re-evaluation (e.g. $\Delta \rightarrow N\gamma$)

- No excess seen so far in Microboone (other short baseline experiments ongoing) - Sterile neutrino interpretation excluded by muon-v disappearance (MINOS, SK, IceCube, etc...)

Reactor anomaly

Giunti et al. PLB 2022 10^{2} 10 2 Rates+Evolution 2σ 10⁻¹ HM EF 2σ — HKSS — KI Gallium — HKSS-KI — Solar 10⁻² 10⁻² 10⁻¹ $sin^2 2 \vartheta_{ee}$

Recent analysis of the reactor deficit anomaly in the light of several flux models shows that:

- Anomaly not very significant
- In tension with the Gallium anomaly

1eX

Baksan Experiment on Sterile Transitions (BEST)

The Gallium Anomaly was originally from the GALLEX and SAGE experiments (aimed at solar neutrinos)

 $R = \frac{\text{measured}}{\text{predicted}} = 0.803 \pm 0.035 \implies \gtrsim 5\sigma$ effect

But absence of a clear oscillatory with distance - no smoking-gun evidence of oscillations in the Gallium data.

Short Baseline Neutrinos and the Gallium Anomaly

Precision Spectrum and Oscillation (PROSPECT)

On the High flux Isotope reactor (HFIR), Oakridge,

Sterile interpretation of Gallium anomaly excluded at 98% CL

Precise measurements of spectrum to further check the 'honourable mention' anomaly - bump at 4-6 MeV

Accelerator Neutrinos

Arthur Sztuc

NOvA

Off Axis NOvA Ash River Internationa Falls Dulut ΜN WI Minneapolis Fermilab IL Ash River Fermilab 10 km 810 km

810 km/GeV - E 2 GeV - 0.8° off-axis

Improved sensitivity to mass ordering!

The current two main players v_{μ} -beam experiments!

Slightly off axis

490 km/GeV - E 0.6 GeV - 2.5° off-axis

Accelerator Neutrinos

Thomas Nosec

T2K

- New analysis on the ~ 36×10^{20} POT collected up to 2020
- New analysis (with the addition of multi-ring events from additional pions/decay products)
- Overall fit uses θ_{13} from reactor data (bayesian and frequentist analyses yielding consistent results), **slight** preference for upper octant and normal ordering!

	$\sin^2\theta_{23} < 0.5$	$\sin^2\theta_{23} > 0.5$	Line total
Normal ordering	0.236	0.540	0.776
Inverted ordering	0.049	0.174	0.224
Column total	0.285	0.715	1.000

 δ_{CP} best fit at -2.18 (-0.694 π), CP conserving values 0 and π are outside of 90% CL intervals

Accelerator Neutrinos

Arthur Sztuc

 $> 4 \sigma$ evidence of electron antineutrino appearance Impressive precision on θ_{13} nice to have frequentist cross check!

- New analysis on the ~ 26×10^{20} POT collected up to 2020 (Bayesian analysis) New for Moriond -37×10^{20} POT neutrino data available now EW 2023 - Slight preference for upper octant and normal ordering **NOvA Preliminary NOvA Preliminary Both Orderings Both Orderings** Density 0.012 Posterior Probability Density 📕 1σ C.I. 🔤 2σ C.I. 🔄 3σ C.I **1**σ C.I. **2**σ C.I. **3**σ C.I. Probability 0.01 Posterior 2.2 2.3 2.4 2.5 2.6 -2.7 -2.6 -2.5 -2.4 -2.3 0.7 0.4 0.5 0.3 0.6 $sin^2\theta_2$ Δm_{32}^2 (10⁻³ eV) **Both Orderings NOvA Preliminary** NOvA PDGLive Daya 2016A Probability Density **RENO 2018** First NOvA 100 measurement of $\sin^2 \theta_{13}$ 50 Posterio $\sin^2(2\theta_{13}) = 0.085^{+0.020}_{-0.016}$ 0.15 0.05 0.1 $sin^2(2\theta_{13})$

Ice Cube w/ Deep Core

Ice Cube... an amazingly broad program!

Deep Core with Deep CNNs!

- Results competitive with SK and Long **Baseline results!**
- Much more to come!!

The First Decade of High Energy Neutrino Astronomy

Francis Halzen

Superb review of the birth of multi-messenger and high energy neutrino astronomy!

The First Decade of High Energy Neutrino Astronomy

Francis Halzen

Superb review of the birth of multi-messenger and high energy neutrino astronomy!

... but not only! PeV neutrinos traveling over cosmic distances can probe the Standard Model!

The First Decade of High Energy Neutrino Astronomy

Francis Halzen

Accelerator neutrinos, up to O(100 GeV)

Cosmic neutrinos

The birth of Collider Neutrinos (at the LHC)

Ettore Zaffaroni

SND

Brian Petersen

Faser-v

The birth of Collider Neutrinos (at the LHC)

Ettore Zaffaroni

Brian Petersen

Looking forward to the emulsion results!

Coherent Neutrino Scattering

 \times

 10^{4}

 10^{-1}

 10^{2}

Cristian Buck

CONUS Experiment

Coherent Elastic neutrino Scattering can occur for any neutrino species below 50 MeV (at low energy neutrino interacts with the nucleus - effective sum of amplitudes) the rate $\propto N^2$

- MeV-neutrino relevant for modelling of supernovae
- Background for Direct Dark Matter detection
- New technique for neutrino experiments
- Searches for BSM phenomena

Coherent elastic scattering of neutrinos off nuclei observed at 6.7σ with neutrinos from the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (COHERENT experiment).

Investigating the lower energy regime (<10 MeV) with a Ge detector at Brodkorf Nuclear Power Plant

90% C.L.

 10^{8}

 10^6 Vector mass $m_{Z'}$ [eV]

Neutrino Overview

- Indirect evidence of Cosmic Neutrino Background - In fact strong limit on $\Sigma m_{\nu} < 0.11$ eV (while inverted ordering $\Sigma m_{\nu} > 0.11 \text{ eV}$)

- Excellent agreement between long baseline (NOVA and T2K) with reactor PMNS data
- Anomalies don't seem to be interpretable as sterile neutrinos (backgrounds and nuclear models)
- Strong limits from double beta and **KATRIN** experiments

Three flavour picture seems to be standing tall!

Quark Sector Flavour Physics

Visualizing the proton MIT news

- Lepton Flavour Universality
- Stringent probes of the CKM matrix
- Direct CP violation in K
- Searches for new physics in FCNCs
- Neutron and proton EDMs

... and anomalies (LFU, Vub-Vcb Puzzle, Cabibbo anomaly)!

Lepton Flavour Universality in $b \rightarrow s\ell\ell$ Transitions*

Christoph Langenbruch

LHCb a step back

Branching fractions affected by form-factors and $c\bar{c}$ -loop

Angular observables affected by $c\bar{c}$ -loop

Lepton Universality measurements inspired in trying to find TH clean observables!

As EXP clean as possible...

*Penguin diagrams

Lepton Flavour Universality

Christoph Langenbruch

With a new tighter electron identification and taking into account all backgrounds, measurements are in perfect agreement with the SM!

Lepton Flavour Universality in $b \rightarrow c \ell \nu^*$

LHCb measurement of RD*

$$\mathcal{R}(D^{(*)}) = \frac{\mathcal{B}\left(B^0 \to D^{(*)-}\tau^+\nu_{\tau}\right)}{\mathcal{B}\left(B^0 \to D^{(*)-}\mu^+\nu_{\mu}\right)} \quad \text{Both TH and EX}$$

*Tree level decay

Fully inclusive $B \rightarrow X_{SY}$ with hadronic tagging

Sensitive to non-SM effects and photon-energy spectrum offers access the mass of the b quark and the function describing its motion inside the B meson!

More Studies of $b \rightarrow s$ Transitions in Belle II

branching fraction for the decay $B \to K^* \ell^+ \ell^-$

Many more radiative FCNC B decay results to come!

CPV Measurements - Latest News (LHCb)

Federico Betti

$$\phi_s^{s\bar{s}s} = (-0.074 \pm 0.069)$$
 rad
 $|\lambda| = 1.009 \pm 0.030$

CP violating phase (small in SM) Direct CP violating parameter (1 in the SM)

Also polarisation dependent results for the first time!

CPV Measurements - Latest News (Belle II)

Michele Veronesi and Sagar Hazra

3 new results on time-dependent CP observables with penguins for Moriond Precision on par with world's best determinations in spite of much less luminosity

Results are already on-par or comparable with world's best and illustrate how with much less luminosity, the improved performance of Belle-II.

HFLAV: $S = 0.74^{+0.11} - 0.13$, $A = -0.01 \pm 0.14$

Pixel detector radius ≈ 1.4 cm

Signal-side vertex

 $B \rightarrow \phi K_s$

 $A_{CP} = 0.31 \pm 0.20^{+0.05}_{-0.06}$ $S_{CP} = 0.54 \pm 0.26^{+0.06}_{-0.08}$

(Very) rare charm decays in LHCb

 $\mathcal{B}(D^{*0} \to \mu^+ \mu^-) < 2.6 \,(3.4) \times 10^{-8} \text{ at } 90 \,(95)\% \text{ CL}$

Rare Decays and Modes News

Sanjay Kumar Swain 30

B-Physics at ATLAS and CMS

Observation of $\eta \rightarrow 4\mu$ narrow resonance Mass of 548 MeV (using high rate **low threshold triggers**)

 $\mathcal{B}(\eta \to 4\mu) = (5.0 \pm 0.8 \, (\text{stat}) \pm 0.7 \, (\text{syst}) \pm 0.7 \, (\mathcal{B})) \times 10^{-9}$ In agreement with SM: $(3.98 \pm 0.15) \times 10^{-9}$

Di-Charmonium State Observation

The Vub and Vcb Puzzle (Belle II)

New exclusive and untagged measurements at Belle II !

 $|V_{ch}|$ and $|V_{uh}|$ discrepancy~3 σ between exclusive and inclusive (have different TH uncertainties)!

Limiting factor in precision flavour physics!

New results from Belle II (only two examples here)...

$$B \to \pi \ell \nu$$

The golden mode for $|V_{ub}|$ exclusive

 $\mathcal{B}(B^0 \to \pi^- \ell^+ \nu_\ell) = (1.426 \pm 0.056 (\text{stat}) \pm 0.125 (\text{syst})) \times 10^{-4}$ $|V_{ub}|_{B^0 \to \pi^- \ell^+ \nu_\ell} = (3.55 \pm 0.12 (\text{stat}) \pm 0.13 (\text{syst}) \pm 0.17 (\text{theo})) \times 10^{-3}$

> New for Moriond EW 2023

 $B \rightarrow D^* \ell_{\nu}$ Very new **untagged measurement** for this conference!

> Reconstructing: $D^{*+} \rightarrow D^0 (\rightarrow K^- \pi^+) \pi^+$ $|V_{cb}| = (40.9 \pm 3.0_{\text{stat}} \pm 1.0_{\text{syst}} \pm 0.6_{\text{th}})$

Direct CP Violation in K decays

Two very rare golden channels to probe CKM and New Physics!

 $K^{\pm} \rightarrow \pi^{\pm} \nu \overline{\nu}$ by the NA62 experiment at CERN

 $K_L \rightarrow \pi^o \nu \overline{\nu}$ by the KOTO experiment at J-PARC

 $BR(K_L \to \pi^0 \nu \bar{\nu})_{SM} = 3 \times 10^{-11} [Buras et al, JHEP 1511]$ 2% uncertainties

Two new backgrounds have been identified and studied:

Beam halo $K_L BG(K_L \rightarrow \gamma \gamma)$

$$\mathrm{K}^{\pm}\mathrm{BG}\,(K^{\pm}\to\pi^{0}e^{\pm}\nu)$$

2015 data [PRL.122.021802]

- $BR(K_L \to \pi^0 \nu \bar{\nu}) < 3.0 \times 10^{-9} at 90\% C.L.$
- The current best limit on $BR(K_L \to \pi^0 \nu \bar{\nu})$

2016-2018 data [PRL.126.121801]

•
$$BR(K_L \to \pi^0 \nu \bar{\nu}) < 4.9 \times 10^{-9} at 90\% C.L.$$

New background sources were found.

2019-2021 data a new detector and analysis tools are available!

Looking forward to see the new data

KOTO expects to improve the S.E.S. below $O(10^{-10})$ by 2027.

Superb experiment! Powerful probe for New Physics! BEst recent limit from nEDM at PSI (2020)

Extreme Precision in nEDM

The electron EDM constraint is weaker for taus $\tilde{\kappa}_{\tau} < 0.3$

Cedric Delaunay

Charged Lepton Sector

- Magnetic moments (anomalous muon magnetic moment)
- eEDM
- Muon EDM
- Charged Lepton Flavour Violations (MEG II running, and many planned experiments)

... and anomalies $(g-2)_{\mu}$

Possible measurement with Hyperfine Splitting in Muonium atoms ($e^- - \mu^+$)

Cedric Delaunay

Charged Lepton Sector

- Magnetic moments (anomalous muon magnetic moment)
- eEDM
- Muon EDM
- Charged Lepton Flavour Violations (MEG II running, and many planned experiments)
- ... and anomalies $(g-2)_{\mu}$

Possible measurement with Hyperfine Splitting in Muonium atoms ($e^- - \mu^+$)

$a_{\mu}^{\exp} - a_{\mu}^{SM} = (25.1 \pm 5.9) \cdot 10^{-10}$

Difference as large as EW corrections!

Charged Lepton Sector

- Magnetic moments (anomalous muon magnetic moment)
- eEDM
- Muon EDM
- Charged Lepton Flavour Violations (MEG II running, and many planned experiments)
- ... and anomalies $(g-2)_{\mu}$

Belle II - Tau Lepton Mass

• Large $e^+e^- \rightarrow \tau \tau$ cross-section and clean environment allow high precision τ measurements

- Benchmark for precision capabilities of Belle II
- Control of **systematic uncertainties** is key:

$$M_{\min} = \sqrt{M_{3\pi}^2 + 2(\sqrt{s/2} - E_{3\pi}^*)(E_{3\pi}^* - P_{3\pi}^*)} \le m_{\tau}$$

Reconstruct $\tau_{tag}^{\pm} \to \pi^{\pm}(\pi^{0})\nu, \ell\nu\nu$ and $\tau_{sig} \to 3\pi\nu$ (ν missing)

World's most precise measurement of the tau mass (6.10^{-5})!

Dark Matter and a Possible Dark Sector

Joachim Kopp

Neutron Stars can teach us a lot on particle physics and Dark Matter!

Illustration of a neutron star (wikipedia)

- What astrophysical observations do or can teach us (of neutron stars and primordial black holes)
- Direct Dark Matter searches news!
- Dark photon searches
- Axions (and gravitational waves!)
- ALPs: motivated by Cosmology (Axion Inflation), EW Hierarchy (Relaxion), Flavour Symmetry (Flaxion or Axiflavon)
- ... and anomalies (^{8}Be excess)!

Xenon nT Hot Off the Press for Moriond!

Science Run-0 Nuclear Recoil Search Data 95.1 days exposure (4.18 ± 0.13) ton Fiducial Volume Exposure: 1.1 tonne-year

New for Moriond EW 2023

Direct Dark Matter Searches

LZ Results

Science Run-0 Nuclear Recoil Search Data 60 days exposure (5.3 ± 0.2) ton Fiducial Volume Exposure: 0.9 tonne-year

Both are dual phase Xenon TPCs

Xenon nT Hot Off the Press for Moriond!

Science Run-0 Nuclear Recoil Search Data 95.1 days exposure (4.18 ± 0.13) ton Fiducial Volume Exposure: 1.1 tonne-year

Direct Dark Matter Searches

LZ Results

Science Run-0 Nuclear Recoil Search Data 60 days exposure (5.3 ± 0.2) ton Fiducial Volume Exposure: 0.9 tonne-year

Xenon nT Background reduction: Careful screening, material selection and Continuous Radon Removal through distillation

Xenon nT Hot Off the Press for Moriond!

Science Run-0 Nuclear Recoil Search Data 95.1 days exposure (4.18 ± 0.13) ton Fiducial Volume Exposure: 1.1 tonne-year

Direct Dark Matter Searches

LZ Results

Science Run-0 Nuclear Recoil Search Data 60 days exposure (5.3 ± 0.2) ton Fiducial Volume Exposure: 0.9 tonne-year

Xenon nT First results!

LZ Achieved leading sensitivity

Xenon/DARWIN and Lux Zeppelin join forces for future project, however meanwhile...

Xenon nT Hot Off the Press for Moriond! Science Run-0 Nuclear Recoil Search Data 95.1 days exposure (4.18 ± 0.13) ton Fiducial Volume Exposure: 1.1 tonne-year

Direct Dark Matter Searches

LZ Results

Science Run-0 Nuclear Recoil Search Data 60 days exposure (5.3 ± 0.2) ton Fiducial Volume Exposure: 1.1 tonne-year

Xenon nT First results!

LZ Achieved leading sensitivity

Xenon/DARWIN and Lux Zeppelin join forces for future project, however meanwhile...

Still a lots of data to come!

DarkSide 50

Dual phase Argon TPC @ LNGS 50 kg of active mass Exposure: 12 tonne-day

WIMP Nuclear recoil search at low mass!

Light Dark Matter Searches

DAMIC-M

Low Background chamber at Modanne Two 24 Pixel DAMIC prototype CCDs Exposure: 85 g-day

Electron recoil searches for very low mass hidden sector DM!

Axions : an Ambitious Program... In Hamburg **Andreas Ringwald**

Light shining through a wall (LSW) [Anselm 85; van Bibber 87]

Helioscope: Sun shining through a wall [Sikivie 83]

Haloscope: DM shining through a wall [Sikivie 83]

Outstanding 'Examples' Dark Photon and ALPs Searches

Brian Petersen

Sophie Middleton

Elizabeth Long

The ATOMKI institute observes the long standing ${}^{8}Be$ anomaly, observed also in ${}^{4}He$ and ${}^{12}C$, i.e. a significant excess compatible with new particle of 17 MeV mass.

DA Φ NE Beam Test Facility is the only facility in the world with a positron beam at 282 MeV (yielding 17 MeV centre-of-mass collisions with fixed target electron!)

PADME experiment (Positron Annihilation into Dark Matter Experiment)

Run has finished and data analysis is ongoing, hoping to shine light on 8Be

Direct Searches for new Physics at the LHC

- Searches for high energy phenomena responsible for Flavour **Aurelio Juste** Anomalies (Leptoquarks)
- Searches for high energy phenomena responsible for Neutrino masses (searches for HNL, VL-leptons)
- Searches for low mass BSM Higgs bosons
- Searches for BSM Higgs bosons
- **Aaron Paul O'Neill** - Searches for SUSY (Strong, EW, compressed, stealth, etc...) Jaana Heikkilä
- Searches for Exotics scenarios of new physics
- Searches for Long Lived particles

- **Susanne Gascon-**
 - **Katharine Leney**

Steven Lowette

- 1.- Low energy anomalies can be immediately checked at the energy frontier at the LHC
- 2.- The search program of the LHC aims at leaving no stone unturned
- 3.- The strength of having several experiments!

What to Take Home?

- 1.- Low energy anomalies can be immediately checked at the energy frontier at the LHC
- 2.- The search program of the LHC aims at leaving no stone unturned
- 3.- The strength of having several experiments!

What to Take Home?

Susanne Gascon-Shotkin Katharine Leney

2σ

30

- 1.- Low energy anomalies can be immediately checked at the energy frontier at the LHC
- 2.- The search program of the LHC aims at leaving no stone unturned
- 3.- The strength of having several experiments!

What to Take Home?

Jeremy Niedziela

 \rightarrow side note: 3.1 σ LHCb excess at 2.42 GeV,

At HL-LHC still a **factor of 20** in luminosity:

- Still room for discoveries! (~1 σ can become 5 σ)
- Performance can be improved! -
 - With new ideas and developments at all levels.
 - Improving precision will be key!
- Discoveries will however take longer: **doubling time of the luminosity of several years**

Very Large Number of SUSY Searches (in large variety of topologies and models)

ATLAS SUSY Searches* - 95% CL Lower Limits March 2022				ATLAS Preliminary $\sqrt{s} = 13$ TeV	minary = 13 TeV HL/HE-LHC SUSY Searches			scovery (95% CLexclusion) Simulati				
	Model	Signature ∫£ dt [fb [−]	⁻¹] Mass limit		Reference	Model	e,μ, τ, γ	Jets	Mass limit	(as a c c axistant)		Sectio
Inclusive Searches	$\tilde{q}\tilde{q},\tilde{q}{ ightarrow}q\tilde{\chi}_1^0$	0 e, μ 2-6 jets $E_{T m miss}^{ m miss}$ 139 mono-jet 1-3 jets $E_{T}^{ m miss}$ 139		$\mathfrak{m}(\tilde{\chi}_1^0) {<} 400 \ \mathrm{GeV}$ $\mathfrak{m}(\tilde{q}) {-} \mathfrak{m}(\tilde{\chi}_1^0) {=} 5 \ \mathrm{GeV}$	2010.14293 2102.10874	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q \bar{q} \tilde{\chi}_{1}^{0}$	0	4 jets	Ĩ	2.9 (3.2) TeV	$m(\tilde{\chi}_{1}^{0})=0$	2.1.1
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q \bar{q} \tilde{\chi}_1^0$	0 <i>e</i> , μ 2-6 jets E_T^{miss} 139	ğ Forbidden 1.15-1.95	2.3 $m(\tilde{\chi}_1^0)=0 \text{ GeV}$ $m(\tilde{\chi}_1^0)=1000 \text{ GeV}$	2010.14293 2010.14293	$\bar{g}\bar{g}, \bar{g} \rightarrow q\bar{q}\tilde{\chi}_{1}^{0}$	0	4 jets	ž	5.2 (5.7) TeV	$m(\tilde{\chi}_1^0)=0$	2.1.1
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}W\tilde{\chi}_1^0$	1 e,μ 2-6 jets 139	ğ z	1.2 $m(\tilde{\chi}_1^0) < 600 \text{ GeV}$	2101.01629	$\widetilde{g}\widetilde{g}, \widetilde{g} \rightarrow t\widetilde{\mathcal{X}}_{1}^{0}$	0	Multiple	Ĩ.	2.3 (2.5) TeV	$m(\tilde{\chi}_1^0)=0$	2.1.3
	$gg, g \to qq(\ell\ell)\chi_1$ $\tilde{g}\tilde{g}, \tilde{g} \to qqWZ\tilde{\chi}_1^0$	$0 e, \mu$ 7-11 jets E_T 139 $0 s e, \mu$ 6 jets 139	8	$m(\tilde{x}_1) < 700 \text{ GeV}$ $m(\tilde{x}_1) < 600 \text{ GeV}$ $m(\tilde{x}_1) < 600 \text{ GeV}$	2008.06032	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow t \tilde{c} \tilde{\chi}_{1}^{0}$	0	Multiple	ξ.	2.4 (2.6) TeV	m(X ⁰ ₁)=500 GeV	2.1.3
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow t \bar{t} \tilde{\chi}_1^0$	$0.1 \ e, \mu$ $3 \ b$ E_T^{miss} 79.8	ř i i i j	2_25 $m(\tilde{\chi}_1^0) < 200 \text{ GeV}$	ATLAS-CONF-2018-041	NUHM2, $\tilde{g} \rightarrow t\tilde{t}$	0	Multiple/2b	ξ.	5.5 (5.9) TeV		2.4.2
	ĩĩ	$0.e.\mu$ 6 jets 139	2 1.25	$m(\tilde{g}) - m(\chi_1^{\circ}) = 300 \text{ GeV}$	1909.08457	$\tilde{I}_1 \tilde{I}_1, \tilde{I}_1 \rightarrow t \tilde{\chi}_1^0$	0	Multiple/2b	Ĩ.	1.4 (1.7) TeV	$m(\tilde{\chi}_1^0)=0$	2.1.2, 2.
3 rd gen. squarks direct production	$b_1 b_1$	$0 e, \mu$ $2 b$ E_T 139		$ \begin{array}{c} m(\mathcal{X}_{1}) < 400 \text{ GeV} \\ 10 \text{ GeV} < \Delta m(\tilde{b}_{1}, \tilde{\mathcal{X}}_{1}^{0}) < 20 \text{ GeV} \\ \end{array} $	2101.12527 2101.12527	\vec{v}_{1} $\vec{i}_{1}, \vec{i}_{1} \rightarrow t \tilde{\chi}_{1}^{0}$	0	Multiple/2b	τ̃ ₁	0.6 (0.85) TeV	$\Delta m(\tilde{t}_1, \tilde{\chi}_1^0) \sim m(f)$	2.1.2
	$b_1b_1, b_1 \rightarrow b\tilde{\chi}_2^0 \rightarrow bh\tilde{\chi}_1^0$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	b1 Forbidden 0.23-1.35 \tilde{b}_1 0.13-0.85	$\Delta m(\tilde{\chi}_{2}^{0}, \tilde{\chi}_{1}^{0}) = 130 \text{ GeV}, m(\tilde{\chi}_{1}^{0}) = 100 \text{ GeV}$ $\Delta m(\tilde{\chi}_{2}^{0}, \tilde{\chi}_{1}^{0}) = 130 \text{ GeV}, m(\tilde{\chi}_{1}^{0}) = 0 \text{ GeV}$	1908.03122 2103.08189	$\tilde{I}_1 \tilde{I}_1, \tilde{I}_1 \rightarrow b \tilde{\chi}^* / t \tilde{\chi}_1^0, \tilde{\chi}_2^0$	0	Multiple/2b	ĩ	3.16 (3.65) TeV		2.4.2
	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow t \tilde{\chi}_1^0$ $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow W b \tilde{\chi}_1^0$	0-1 $e, \mu \geq 1$ jet E_T^{miss} 139 1 e, μ 3 jets/1 b E_T^{miss} 139		$m(\tilde{\chi}_{1}^{0})=1 \text{ GeV}$ $m(\tilde{\chi}_{1}^{0})=500 \text{ GeV}$	2004.14060,2012.03799 2012.03799	$\tilde{\chi}_1^+ \tilde{\chi}_1^-, \tilde{\chi}_1^+ \rightarrow W^* \tilde{\chi}_1^0$	2 e,µ	0-1 jets	\hat{X}_{1}^{\pm}	0.66 (0.84) TeV	$m(\tilde{\chi}_1^0)=0$	2.2.1
	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow \tilde{\tau}_1 b v, \tilde{\tau}_1 \rightarrow \tau \tilde{G}$ $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow c \tilde{\chi}_1^0 / \tilde{c} \tilde{c}, \tilde{c} \rightarrow c \tilde{\chi}_1^0$	1-2 τ 2 jets/1 b E_T^{miss} 139 0 e, μ 2 c E_T^{miss} 36.1	ĩı Forbidden 1.4 č 0.85	$m(\tilde{\tau}_1)=800 \text{ GeV}$ $m(\tilde{\chi}_1^0)=0 \text{ GeV}$	2108.07665 1805.01649	$\tilde{\chi}_1^* \tilde{\chi}_2^0$ via WZ	3 e, µ	0-1 jets	$\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0$	0.92 (1.15) TeV	m(x10)=0	2.2.2
	$\tilde{\tau}$, $\tilde{\tau}$, $\tilde{\tau}$, $\tilde{\tau}^0$, $\tilde{\tau}^0$, $\tau/h\tilde{\tau}^0$	$0 e, \mu$ mono-jet E_T^{miss} 139	<i>ĩ</i> ₁ 0.55 <i>ĩ</i> ₋ 0.067-1 18	$\mathbf{m}(\tilde{t}_1,\tilde{c})-\mathbf{m}(\tilde{\chi}_1^0)=5\mathrm{GeV}$ $\mathbf{m}(\tilde{\chi}_1^0)=500\mathrm{GeV}$	2102.10874	$\bar{X}_{1}^{*}\bar{X}_{2}^{0}$ via Wh, Wh \rightarrow tvbb	1 e, µ	2-3 jets/2b	$\tilde{X}_1^{\dagger}/\tilde{X}_2^0$	1.08 (1.28) TeV	m($\tilde{\chi}_{1}^{0}$)=0	2.2.3
	$\tilde{t}_1 \tilde{t}_1, t_1 \rightarrow \mathcal{X}_2, \mathcal{X}_2 \rightarrow \mathcal{Z}/\mathcal{I}\mathcal{X}_1$ $\tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + Z$	$3 e, \mu$ 1 b E_T^{miss} 139	i i i i Forbidden 0.86	$m(\tilde{\chi}_{1}^{0})=360 \text{ GeV}, m(\tilde{t}_{1})-m(\tilde{\chi}_{1}^{0})=40 \text{ GeV}$	2006.05880	$\hat{\chi}_{2}^{a}\hat{\chi}_{4}^{0}\rightarrow W^{a}\hat{\chi}_{1}^{0}W^{a}\hat{\chi}_{1}^{a}$	2 e,µ	-	$\tilde{X}_{2}^{n}/\tilde{X}_{4}^{n}$	0.9 TeV	m(X ^u ₁)=150, 250 GeV	2.2.4
EW direct	$ ilde{\chi}_1^{\pm} ilde{\chi}_2^0$ via WZ	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$egin{array}{ccc} { ilde \chi}^{*}_{1}/{ ilde \chi}^{0}_{0} & 0.96 \ { ilde \chi}^{*}_{1}/{ ilde \chi}^{0}_{2} & 0.205 \end{array}$	$m(\tilde{\chi}_1^0)=0$, wino-bino $m(\tilde{\chi}_1^{\pm})-m(\tilde{\chi}_1^0)=5$ GeV, wino-bino	2106.01676, 2108.07586 1911.12606	$\chi_{1}^{*}\tilde{\chi}_{2}^{0} + \tilde{\chi}_{2}^{0}\tilde{\chi}_{1}^{0}, \tilde{\chi}_{2}^{0} \rightarrow Z \tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{*} \rightarrow W \tilde{\chi}_{1}^{0}$	2 e,µ	1 jet	$\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0$	0.25 (0.36) TeV	m($\tilde{\chi}_{1}^{0}$)=15 GeV	2.2.5.
	$\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp}$ via WW $\tilde{\chi}_2^{\pm} \tilde{\chi}_2^0$ via Wh	$2 e, \mu$ E_T^{miss} 139 Multiple ℓ /jets E^{miss} 139	$\tilde{\chi}_{\pm}^{\pm}$ 0.42 $\tilde{\chi}_{\pm}^{\pm}$ 0.42	$m(\tilde{\chi}_1^0)=0$, wino-bino $m(\tilde{\chi}_1^0)=70$ GeV wino-bino	1908.08215 2004.10894, 2108.07586	$\begin{array}{c} \overline{s} \\ X_1^* X_2^* + X_2^* X_1^*, X_2^* \rightarrow Z X_1^*, X_1^* \rightarrow W X_1^* \\ \overline{s} \\ s$	2 e,µ	1 jet	X ₁ [*] /X ₂	0.42 (0.55) TeV	m(X ₁)=15 GeV	2.2.5.1
	$\tilde{\chi}_1 \tilde{\chi}_2$ via w $\tilde{\ell}$ $\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\pm}$ via $\tilde{\ell}_L / \tilde{\nu}$	$2 e, \mu \qquad E_T^{\text{miss}} \qquad 139$	$\tilde{\chi}_{1}^{\pm}$ 1.0	$m(\tilde{\ell},\tilde{\nu})=0.5(m(\tilde{\chi}_{1}^{\pm})+m(\tilde{\chi}_{1}^{0}))$	1908.08215	$\mathbf{I} \tilde{\boldsymbol{X}}_{2}^{*} \tilde{\boldsymbol{X}}_{1}^{*}, \tilde{\boldsymbol{X}}_{1}^{*} \tilde{\boldsymbol{X}}_{1}^{*}, \tilde{\boldsymbol{X}}_{1}^{*} \tilde{\boldsymbol{X}}_{1}^{*}$	2 μ	1 jet	X [*] ₂	0.21 (0.35) TeV	$\Delta m(\tilde{\chi}_2^{\prime\prime}, \tilde{\chi}_1^{\prime\prime})=5 \text{ GeV}$	2.2.5.2
	$\begin{aligned} &\tau\tau, \tau \to \tau \mathcal{X}_1 \\ &\tilde{\ell}_{\mathrm{L,R}} \tilde{\ell}_{\mathrm{L,R}}, \tilde{\ell} \to \ell \tilde{\mathcal{X}}_1^0 \end{aligned}$	2τ E_T 139 $2e,\mu$ 0 jets E_T^{miss} 139 $ee,\mu\mu$ > 1 jet E_T^{miss} 139	č (12, · κ, μ) 0.10-0.3 0.12-0.39	$ \begin{array}{c} m(\mathcal{X}_1) = 0 \\ m(\tilde{\mathcal{X}}_1) = 0 \\ m(\tilde{\mathcal{X}}_1^0) = $	1908.08215	$\tilde{\chi}_{2}^{*}\tilde{\chi}_{4}^{0}$ via same-sign WW	2 e,µ	0	Wino	0.86 (1.08) TeV		2.4.2
	$\tilde{H}\tilde{H},\tilde{H}{ ightarrow}h\tilde{G}/Z\tilde{G}$	$0 e, \mu \geq 3 b E_T^{\text{miss}}$ 36.1 $0 e, \mu \geq 3 b E_T^{\text{miss}}$ 36.1	Ĩ 0.13-0.23 0.29-0.88	$BR(\tilde{\chi}_1^0 \to h\tilde{G}) = 1$	1806.04030	$\tilde{\tau}_{L,R}\tilde{\tau}_{L,R}, \tilde{\tau} \rightarrow \tau \tilde{\chi}_{1}^{0}$	2 7	-	Ŧ	0.53 (0.73) TeV	m(X ⁰ ₁)=0	2.3.1
		$4 \ e, \mu$ 0 jets E_T^{max} 139 0 $e, \mu \ge 2$ large jets E_T^{miss} 139	H 0.55 Ĥ 0.45-0.93	$BR(\tilde{\chi}_1 \to ZG) = 1$ $BR(\tilde{\chi}_1^0 \to Z\tilde{G}) = 1$	2103.11884 2108.07586	Stau	$2\tau, \tau(e, \mu)$	-	Ŧ	0.47 (0.65) TeV	$m(\tilde{\chi}_1^0)=0, m(\tilde{\tau}_L)=m(\tilde{\tau}_R)$	2.3.2
Long-lived particles	Direct $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ prod., long-lived $\tilde{\chi}_1^\pm$	Disapp. trk 1 jet E_T^{miss} 139	$\tilde{\chi}_{1}^{+}$ 0.21 0.66	Pure Wino Pure higasino	2201.02472 2201.02472	11	$2\tau, \tau(e, \mu)$	-	Ť	0.81 (1.15) IeV	$m(\tilde{\chi}'_1)=0, m(\tilde{\tau}_L)=m(\tilde{\tau}_R)$	2.3.4
	Stable \tilde{g} R-hadron	pixel dE/dx E_T^{miss} 139	ğ 2.0	5	CERN-EP-2022-029	$\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp}, \tilde{\chi}_1^{\pm} \tilde{\chi}_1^0$, long-lived $\tilde{\chi}_1^{\pm}$	Disapp. trk.	1 jet	$\hat{\chi}_1^{\pm} = [\tau(\hat{\chi}_1^{\pm}) = 1 \text{ns}]$	0.8 (1.1) TeV	Wino-like $\tilde{\chi}_1^*$	4.1.1
	Metastable \tilde{g} R-hadron, $\tilde{g} \rightarrow qq \tilde{\chi}_1^{\circ}$ $\tilde{\ell}\tilde{\ell}, \tilde{\ell} \rightarrow \ell \tilde{G}$	pixel dE/dx E_T^{miss} 139Displ. lep E_T^{miss} 139	$\tilde{g} = [\tau(\tilde{g}) = 10 \text{ ns}]$ $\tilde{e}, \tilde{\mu}$ 0.7	12 $m(\tilde{\chi}_1^0)=100 \text{ GeV}$ $\tau(\tilde{\ell})=0.1 \text{ ns}$	CERN-EP-2022-029 2011.07812	$\tilde{\mathcal{X}}_1^* \tilde{\mathcal{X}}_1^*, \tilde{\mathcal{X}}_1^* \tilde{\mathcal{X}}_1^0, long-lived \tilde{\mathcal{X}}_1^*$	Disapp. trk.	1 jet	$\tilde{\mathcal{X}}_1^n = [\tau(\tilde{\mathcal{X}}_1^n) = 1 \text{ns}]$	0.6 (0.75) TeV	Higgsino-like $\hat{\chi}_1^*$	4.1.1
		pixel dE/dx E_T^{miss} 139		$ au(\ell) = 0.1 ext{ ns}$ $ au(ilde{\ell}) = 10 ext{ ns}$	2011.07812 CERN-EP-2022-029	MSSM, Electroweak DM	Disapp. trk. Disapp. trk	1 jet 1 jet	DM mass	0.88 (0.9) TeV	Wino-like DM	4.1.3
RPV	$\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp} / \tilde{\chi}_1^0$, $\tilde{\chi}_1^{\pm} \rightarrow Z \ell \rightarrow \ell \ell \ell$	$3 e, \mu$ 139	$\tilde{\chi}_1^+/\tilde{\chi}_1^0$ [BR($Z\tau$)=1, BR(Ze)=1] 0.625 1.05	Pure Wino	2011.10543	MSSM, Electroweak DM	Disapp. trk.	1 jet	DM mass	0.28 (0.3) TeV	Higgsino-like DM	4.1.3
	$\begin{array}{c} \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{+} / \tilde{\chi}_{2}^{0} \rightarrow WW / Z\ell\ell\ell\ell\nu\nu \\ \tilde{g}\tilde{g}, \ \tilde{g} \rightarrow qq\tilde{\chi}_{1}^{0}, \ \tilde{\chi}_{1}^{0} \rightarrow qqq \end{array}$	4 e, μ 0 jets E_T^{miss} 139 4-5 large jets 36.1	$\begin{array}{c c} \chi_1^-/\chi_2^- & [\lambda_{133} \neq 0, \lambda_{12k} \neq 0] & 0.95 & 1.55 \\ \tilde{g} & [m(\tilde{\chi}_1^0) = 200 \text{ GeV}, 1100 \text{ GeV}] & 1.3 & 1.9 \end{array}$	$m(\mathcal{X}_{1}^{0})=200 \text{ GeV}$ Large $\mathcal{X}_{112}^{\prime\prime}$	2103.11684 1804.03568	G G MSSM, Electroweak DM	Disapp. trk.	1 jet	DM mass	0.55 (0.6) TeV	Higgsino-like DM	4.1.3
	$\begin{aligned} & \widetilde{t}\tilde{t}, \ \widetilde{t} \to t \widetilde{\chi}_1^0, \ \widetilde{\chi}_1^0 \to t bs \\ & \widetilde{t}\tilde{t}, \ \widetilde{t} \to b \widetilde{\chi}_1^\pm, \ \widetilde{\chi}_1^\pm \to b bs \end{aligned}$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	<i>t</i> [$\lambda_{323}^{\prime\prime}$ =2e-4, 1e-2] 0.55 1.05 \tilde{r} Forbidden 0.95	$\begin{array}{c} m(\widetilde{\chi}_1^0) \texttt{=} \texttt{200 GeV}, \texttt{bino-like} \\ m(\widetilde{\chi}_1^\pm) \texttt{=} \texttt{500 GeV} \end{array}$	ATLAS-CONF-2018-003 2010.01015	\bar{g} R-hadron, $\bar{g} \rightarrow gq \bar{\chi}_1^0$	0	Multiple	$\tilde{g} = [\tau(\tilde{g}) = 0.1 - 3 \text{ ns}]$	3.4 TeV	m(x10)=100 GeV	4.2.1
	$ \begin{array}{l} \tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow bs \\ \tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow q\ell \end{array} $	2 jets + 2 b 36.7 $2 e, \mu$ 2 b 36.1	$\begin{array}{cccc} \tilde{t}_1 & [qq, bs] & 0.42 & 0.61 \\ \tilde{t}_1 & & 0.4-1.45 \end{array}$	$BR(\tilde{t}_1 \rightarrow be/b\mu) > 20\%$	1710.07171 1710.05544	\bar{g} R-hadron, $\bar{g} \rightarrow qq \tilde{\chi}_1^0$	0	Multiple	$\tilde{g} = [\tau(\tilde{g}) = 0.1 - 10 \text{ ns}]$	2.8 TeV		4.2.1
	$\tilde{\chi}_{1}^{\pm}/\tilde{\chi}_{2}^{0}/\tilde{\chi}_{1}^{0}, \tilde{\chi}_{2}^{0} \rightarrow tbs, \tilde{\chi}_{1}^{+} \rightarrow bbs$	1 μ DV 136 1-2 e, μ ≥6 jets 139	$ \bar{t}_{1} [1e-10 < \lambda'_{23k} < 1e-8, 3e-10 < \lambda'_{23k} < 3e-9] \qquad 1.0 \qquad 1.6 $ $ \bar{x}_{1}^{0} 0.2 - 0.32 $	BR($\tilde{t}_1 \rightarrow q\mu$)=100%, cos θ_t =1 Pure higgsino	2003.11956 2106.09609	GMSB $\bar{\mu} \rightarrow \mu \bar{G}$	displ. μ	-	$\tilde{\mu}$	0.2 TeV	ct =1000 mm	4.2.2
	, <u></u>											
*Only	a selection of the available ma	ass limits on new states or	10^{-1} 1	Mass scale [TeV]					0 ⁻¹ 1	Mass scale [TeV]		arx
phér simp	nomena is shown. Many of the lified models, c.f. refs. for the a	limits are based on assumptions made.										
				2 TeV						3 TeV	н	L-LH

Example from ATLAS (similar for CMS)

HL-LHC YR 1812.07831

Very Large Number of SUSY Searches (in large variety of topologies and models)

Very Large Number of Searches (in large variety of topologies and models)

Overview of CMS EXO results

			CMS
	SSM 7'(II)	M _{¬'}	1803.06292 (2 /)
s	SSM $Z'(a\bar{a})$	M _{7'}	1806.00843 (2i)
sor	LFV Z', BR($e\mu$) = 10%	M _{7'}	1802.01122 (eµ)
Bo	SSM W'(Lv)	M _W	1803.11133 (ℓ + Ε ^{miss})
nge	SSM W'($q\bar{q}$)	 M _W	1806.00843 (2 j)
Gai	SSM W'(τv)	 М _W	1807.11421 (T + E ^{miss})
۲.	LRSM $W_R(\ell N_R)$, $M_{N_R} = 0.5 M_{W_R}$	M _{WP}	1803.11116 (2ℓ + 2j)
Неа	LRSM $W_R(\tau N_R)$, $M_{N_R} = 0.5 M_{W_R}$	M _{WP}	1811.00806 (2τ + 2j)
	Axigluon, Coloron, $cot\theta = 1$	M _C	1806.00843 (2j)
	scalar LQ (pair prod.), coupling to 1^{st} gen. fermions, $\beta = 1$	M_{LQ}	1811.01197 (2e + 2j)
skr	scalar LQ (pair prod.), coupling to 1^{st} gen. fermions, $\beta = 0.5$	M _{LQ}	1811.01197 (2e + 2j; e + 2j + E _T
luai	scalar LQ (pair prod.), coupling to 2^{nd} gen. fermions, $\beta = 1$	M _{LQ}	1808.05082 (2µ + 2j)
toq	scalar LQ (pair prod.), coupling to 2^{nd} gen. fermions, $\beta = 0.5$	M_{LQ}	1808.05082 (2μ + 2j; μ + 2j + Ε ϯ
Lep	scalar LQ (pair prod.), coupling to 3^{rd} gen. fermions, $\beta = 1$	M_{LQ}	1811.00806 (2τ + 2j)
	scalar LQ (single prod.), coup. to 3^{rd} gen. ferm., $\beta = 1, \lambda = 1$	$M_{\rm LQ}$	1806.03472 (2τ + b)
	excited light quark ($q\bar{q}$), $\Lambda = m_q^*$	M _q ∗	1806.00843 (2j)
ed	excited light quark (qy), $f_S = f = f' = 1$, $\Lambda = m_q^*$	M_{q^*}	1711.04652 (γ + j)
mic	excited b quark, $f_S = f = f' = 1$, $\Lambda = m_q^*$	M_{b^*}	1711.04652 (γ + j)
E E	excited electron, $f_s = f = f' = 1$, $\Lambda = m_e^*$	M _e *	1811.03052 (γ + 2e)
	excited muon, $f_S = f = f' = 1$, $\Lambda = m_{\mu}^*$	M_{μ^*}	1811.03052 (γ + 2μ)
t ons	quark compositeness ($q ar q$), $\eta_{ ext{LL/RR}} = 1$	$\Lambda^+_{LL/RR}$	1803.08030 (2j)
itac	quark compositeness ($\ell\ell$), $\eta_{LL/RR} = 1$	$\Lambda^+_{LL/RR}$	1812.10443 (2 ℓ)
Con	quark compositeness ($q\bar{q}$), $\eta_{LL/RR} = -1$	$\Lambda_{LL/RR}^{-}$	1803.08030 (2j)
<u>1</u>	quark compositeness ($\ell\ell$), $\eta_{\rm LL/RR} = -1$	$\Lambda_{LL/RR}^{-}$	1812.10443 (2 <i>l</i>)
	ADD (JJ) HLZ, $n_{ED} = 3$	M _S	1803.08030 (2j)
	ADD $(\gamma \gamma, \ell \ell)$ HLZ, $n_{ED} = 3$	M _S	$1812.10443 (2\gamma, 2\ell)$
	ADD G_{KK} emission, $n = 2$	MD	$1/12.02345 (\ge 1 + E_T^{(133)})$
Suo	ADD QBH (jj), $H_{ED} = 0$	М _{QBH}	1803.08030(2)
isua	ADD QBH ($e\mu$), $h_{ED} = 0$	M _{QBH}	1806,00843,(2i)
ime	RS $G_{KK}(qq, gg), K/M_{Pl} = 0.1$	M _{GKK}	1803.06292 (2)
aD	$RS G_{KK}(ll), K/M_{PI} = 0.1$	M _{GKK}	1809.00292(2t)
xtr	$RS OBH (ii) n_{ro} = 1$	М _{Gкк}	1803.08030 (2i)
ш	$RS OBH (e_{II}), n_{ED} = 1$	M	1802 01122 (eu)
	non-rotating BH, $M_{\rm D} = 4$ TeV, $n_{\rm ED} = 6$	M _{BH}	$1805.06013 (\ge 7i(\ell, v))$
	split-UED, $\mu \ge 4$ TeV	1/R	1803.11133 (ℓ + E ^{miss})
		1/10	
	(axial-)vector mediator ($\chi\chi$), $g_q = 0.25$, $g_{DM} = 1$, $m_{\chi} = 1$ GeV	M _{med}	1712.02345 (≥ 1j + E ^{miss})
er	(axial-)vector mediator $(q\bar{q}), g_q = 0.25, g_{DM} = 1, m_{\chi} = 1 \text{ GeV}$	M _{med}	1806.00843 (2j)
latt	scalar mediator $(+t/t\bar{t})$, $g_{q} = 1$, $g_{DM} = 1$, $m_{\chi} = 1$ GeV	M _{med}	1901.01553 (0 , 1ℓ + \geq 3j + E _T ^{miss})
Σ ×	pseudoscalar mediator $(+t/t\bar{t})$, $g_q = 1$, $g_{DM} = 1$, $m_{\chi} = 1$ GeV	M _{med}	1901.01553 (0, 1 ℓ + \geq 3j + E _T ^{miss})
Dar	scalar mediator (fermion portal), $\lambda_u = 1$, $m_{\chi} = 1$ GeV	Mou	1712.02345 (≥ 1j + E ^{miss})
_	complex sc. med. (dark QCD), $m_{\pi_{DK}} = 5$ GeV, $c\tau_{X_{DK}} = 25$ mm	M _{Xnk}	1810.10069 (4j)
		DK	
ler	Type III Seesaw, $B_e = B_\mu = B_\tau$	M _{Sigma}	1708.07962 (≥ 3 ℓ)
Oth	string resonance	Ms	1806.00843 (2j)
			0.1

CHAC 4.5 3.3 44 3.5 6.1 1.44 1.27 1.53 1.29 1.02 0.74 6 5.5 1.8 12.8 17.5 9.1 8.2 56 5.9 3.6 2.9 1.8 2.6 0.29 0.3 1.4 1.54 0.84 7.7 10.0 1.0 mass scale [TeV] 4 TeV

Selection of observed exclusion limits at 95% C.L. (theory uncertainties are not included).

Example from CMS (similar for ATLAS) - latest plot in the backup!

Very Large Number of Searches (in large variety of topologies and models)

Overview of CMS EXO results

Example from CMS (similar for ATLAS)

Leaving No Stone Unturned !

Image from H. Russel

Steven Lowette

Difficult signatures requiring specific complex reconstruction and trigger!

ATLAS-CONF-2018-003 TLAS-CONF-2016-042

Faithful Uncertainties in Machine Learning

\$

Machine learning has the potential to significantly enhance our understanding of fundamental physics!

Yes, faithful uncertainties in physics can be provided in several ways:

- Bayesian Neural Networks
- Gaussian Process regression
- Monte Carlo drop out

Essential to validate the uncertainty estimates against experimental data and ensure that the model captures the relevant physics accurately.

M Can Machine Learning provide faithful uncertainties in physics?

- Yes, Machine Learning can provide faithful uncertainties in physics. Uncertainty estimation is a critical component of any predictive model, and it is essential to understand the level of confidence or reliability of the predictions made by the model. Machine learning algorithms can be used to provide faithful uncertainty estimates for physics problems in several ways, such as:
- 1. Bayesian Neural Networks: These are neural networks that incorporate Bayesian probability theory to estimate uncertainty. They use prior probability distributions to represent uncertainty in the model parameters and update them as new data is observed. Bayesian neural networks can provide probabilistic predictions, which give an estimate of the uncertainty associated with each prediction.
- 2. Gaussian Process Regression: Gaussian processes are a powerful and flexible tool for regression and classification tasks. They can be used to estimate the uncertainty associated with each prediction by providing a probability distribution over possible functions that could explain the data.
- 3. Monte Carlo Dropout: Dropout is a regularization technique used in neural networks that randomly drops out some neurons during training to prevent overfitting. Monte Carlo Dropout is a variant of this technique that can be used to estimate uncertainty. It involves running multiple forward passes through the network with different dropout masks and then computing the variance of the predictions.

In summary, Machine Learning techniques can provide faithful uncertainty estimates for physics problems, which can be critical in decision-making processes, such as experimental design or model selection. However, it is essential to validate the uncertainty estimates against experimental data and ensure that the model captures the relevant physics accurately.

The Precision Frontier at the LHC

- fundamental parameters
- measurements or searches
- ... and anomaly (W mass)!

- Probe the SM through the measurements of its

- Make ancillary measurements to increase precision in other

Intermezzo: The W and Z bosons turn 40!

Following the success of putting anti-protons 'on' Initial Cooling Experiment (ICE)

The Antiproton Accumulator

(Stochastic cooling) In 1978 the SppS approved!

UA2

Aiming at electron channel, no magnetic field, no muon system, high-granular projective calorimeter (later installed first silicon vertex detector).

CERN <u>Seminar</u> of 1983

... to first collisions in 1981 !?

UA1

Tracking drift chamber, calorimeters, large muon system, and 0.7 T dipole magnet

Intermezzo: The W and Z bosons turn 40!

Altogether O(100) Z events

Discovery of the W and Z bosons announced in January 1983 with 6 W events in UA1 and four in **UA2!**

Altogether O(1000) W events

Discovery of the W and Z bosons

Carlo Rubbia, Simon Van der Meer

Precise direct invisible Z Width by CMS!

Measurement based on missing transverse momentum

 $\Gamma_{\rm inv} = 523 \pm 3 \, ({\rm stat}) \pm 16 \, ({\rm syst}) \, {\rm MeV}$

Measurement already dominated by systematic uncertainties!

Tau Polarisation in Z Decays - CMS

Tairan Xu

In contrast to e+e- collisions the polar emission angle of the τ lepton and its sign is not, or only very poorly, known and can not be used in the analysis.

Measurement relies in measuring the fraction of tau helicity states, using polarisation sensitive variables!

 $\mathcal{P}_{\tau}(Z^0) = -0.144 \pm 0.015 = -0.144 \pm 0.006 \text{ (stat)} \pm 0.014 \text{ (syst)}.$ $\sin^2 \theta_W^{\text{eff}} = 0.2319 \pm 0.0019 = 0.2319 \pm 0.0008 \text{ (stat)} \pm 0.0018 \text{ (syst)}.$

Tau Polarisation in Z Decays - CMS

 $\sin^2 \theta_W^{\text{eff}} = 0.2319 \pm 0.0019 = 0.2319 \pm 0.0008 \text{ (stat)} \pm 0.0018 \text{ (syst)}.$

New CMS measurement with partial Run 2 dataset comparable precision as measurements at e^+e^- colliders, but...

Measurement already dominated by systematic uncertainties already!

ATLAS and CMS measurements in e^+e^- and $\mu^+\mu^-$ final states dominate the precision.

PDF uncertainties are dominant in this measurement!

Precise Determination of α_S - **ATLAS**

Stefano Camarda

New for Moriond EW 2023

<u>a dp</u> [GeV⁻¹] 90'0_T [GeV⁻¹]

0.08

0.04

0.02

1.

atio to data

ſ

0

 $pp \rightarrow Z$

ſ

20

15

10

25

p_{_} [GeV]

0.8

$$= \frac{d^3 \sigma^{U+L}}{dp_T dy dm} \left(1 + \cos^2 \theta + \sum_{i=0}^7 A_i(y, p_T, m) P_i(\cos \theta, w) \right)$$

Also talk by Menglin Xu for LHCb

Comparisons done at N3LO-N4LL with N3LO PDFs

p_T [GeV]

25

15

10

20

Precise Determination of α_S - **ATLAS**

Most precise determination of α_S based on the Sudakof peak, first measurement based on resummation

Precise Determination of α_S - ATLAS

Most precise determination of α_{S} based on the sudakof peak, first measurement based on resummation

W Mass Update - ATLAS

Matthias Schott

Improved ATLAS result weighs in on W boson An improved ATLAS measurement of the W boson mass is in line with the Standard Model of particle physics

Press release | Physics | 23 March, 2023

CERN press release on Thursday!

Systematic uncertainties are considered as nuisance parameters which enter the fit. What does this mean?

1.- All systematic effects are parametrised!

2.- Parameters are fitted along with the Parameters of Interest (e.g. W mass), affect the measurement through their correlation with the POI(s).

3.- The parameters can be constrained (or measured) in the fit! e.g. PDF parameters can be changed through the data, and thus is equivalent to PDFs simultaneously fitted on the data!

Several small improvements, but mostly relying on the huge analysis effort of the first 7 TeV result but relying on profiling paradigm (?!)

> New for Moriond EW 2023

68

W Mass Update - ATLAS

Observed shift 10 MeV and precision improved by 16 MeV!

 $m_W = 80360 \pm 5_{(stat.)} \pm 15_{(syst.)} = 80360 \pm 16 \text{ MeV}$ $m_W = 80370 \pm 19 \text{ MeV}$

- New W mass measurement from ATLAS is agreeing even ore with the SM prediction
- The tension with the CDF W mass is larger between ATLAS (only) and CDF 3.4 σ now 4 σ
- (Tension of CDF measurement with the SM 7 σ)

Where do we go from here?

Significant evidence of measurement systematic bias: need a collective effort to understand this puzzle!

Higgs, Multi-boson and Top Physics at the LHC

The 'Big Picture'

Effective tree level couplings of the Higgs boson

Effective loop couplings

Invisible branching fraction $Br_{inv} < 11\%$ THiggs total width $\Gamma_H \sim 100\%$

And much more...

CP mixing in production and decays of the Higgs boson, LFV Higgs decays, FCNC top decays to Higgs, rare Higgs decays to quarkonia and photon, and searches for new scalar and pseudo scalar states!

Gluon and photon

Taking a closer look at the search for associated production...

Charm Yukawa Coupling at the LHC?

Taking a closer look at the search for Higgs boson decays to charm in the VH

In contrast to e+e- collisions the polar emission angle of the τ lepton and its sign is not, or only very poorly, known and can not be used in the analysis.

A leap in sensitivity comes from improved tagging of Higgs and charm!

Charm Yukawa Coupling at the LHC?

First observation of $VZ(Z \rightarrow c\overline{c}) @ 5.7\sigma$

Direct evidence of di-Higgs production by both ATLAS and CMS should be achievable at the HL-LHC!

Di-Higgs and Higgs Self Coupling

Tagging the Higgs boson and b quarks also has an important impact on the di-Higgs production !

Two new ATLAS Tri-Boson Observations!

Tairan Xu

New for Moriond EW 2023

$WZ\gamma$ observation

Simultaneous fit with $\mu_{ZZ\gamma}$, μ_{ZZ} ; *WZ* γ observed with 6.3 σ

$\sigma_{WZ\gamma} = 2.01 \pm 0.30 \text{ (stat.)} \pm 0.16 \text{ (syst.) fb}$

-			
Process	SR	$ZZ\gamma CR$	$ZZ(e \rightarrow \gamma) \operatorname{CR}$
$WZ\gamma$	92 ± 15	0.21 ± 0.07	0.56 ± 0.14
$ZZ\gamma$	10.7 ± 2.3	23 ± 5	1.8 ± 0.4
$ZZ(e \rightarrow \gamma)$	3.0 ± 0.6	0.028 ± 0.020	30 ± 6
$Z\gamma\gamma$	1.05 ± 0.32	0.15 ± 0.06	0.29 ± 0.10
Fake background	30 ± 6	-	-
Pile-up γ	1.9 ± 0.7	-	-
Total predicted	139 ± 12	23 ± 5	33 ± 6
Data	139	23	33

$W\gamma\gamma$ observation

data-driven Fake estimated in control regions

WZ γ observed with 5.6 σ

$$\sigma_{fid} = 12.1^{+2.5}_{-2.2} \text{ fb}^{-1}$$

 $\sim T$

	SR	TopCR
$W\gamma\gamma$	410 ± 60	28 ± 5
Non-prompt $j \to \gamma$	420 ± 50	42 ± 20
Misidentified $e \to \gamma$	155 ± 11	120 ± 9
Multiboson $(WH(\gamma\gamma), WW\gamma, Z\gamma\gamma)$	76 ± 13	5.2 ± 1.7
Non-prompt $j \to \ell$	35 ± 10	_
Top $(tt\gamma, tW\gamma, tq\gamma)$	30 ± 7	136 ± 32
Pileup	10 ± 5	_
Total	1136 ± 34	332 ± 18
Data	1136	333
TopCR TopVR	SR	
$\int_{10^3} \frac{ATLAS}{V_s} = 13 \text{ TeV}, 140 \text{ fb}^{-1}$ $W(\rightarrow v)\gamma\gamma$ $W(\rightarrow v)\gamma\gamma$ $W(\rightarrow v)\gamma\gamma$	•	
		Multiboson

ATLAS Measurement of the ttW inclusive and differential cross sections (in 2 same sign leptons channel and 3 leptons)

> Long standing discrepancies

consistent at 1.5σ with theory calculation $\sigma_{t\bar{t}W} = 722^{+70}_{-78}$ (scale) ± 7 (PDF) fb

Top Physics Highlight I

<u>JHEP 11 (2021) 029</u>

 $\sigma_{t\bar{t}W} = 890 \pm 50$ (stat) ± 70 (syst) fb 9% relative uncertainty

Top Physics Highlight II

Soureek Mitra Elizavetta Shabalina

New for Moriond EW 2023

For Moriond EW 2023 !! (Independent) Observation by ATLAS and CMS of 4 top production!

6.1 (4.3) σ observed (expected)

5.5 (4.9) σ observed (expected)

Outlook: New Results from LHC Run-3

Outlook: New Results from LHC Run-3

New for Moriond EW 2023

CMS top cross sections at 13.6 TeV

Many thanks to the organisers for the outstanding 57th Rencontres de Moriond!!

- Very intense Moriond 2023 with a landslide of new results!
- The number of new results for this conference was overwhelming
- Moriond has proved again to be a landmark for the community
- Many thanks to all our colleagues for their heroic effort in preparing for this conference!

