

HELMHOLTZ **RESEARCH FOR GRAND CHALLENGES**

EXOTIC SEARCHES IN CMS

Jeremi Niedziela (DESY) for CMS Collaboration

) JTI INF

Searches for BSM particles decaying to Higgs, top and Gauge bosons (B2G)

- <u>B2G-21-055</u> <u>B2G-20-010</u>

Exotica (EXO)

- a pair of muons EXO-21-005

• Search for W' bosons decaying to a top and a bottom quark in leptonic final states <u>B2G-20-012</u>

• Search for a heavy resonance decaying into a top quark and a W boson in the lepton+jets final state

• Search for prompt production of a GeV scale resonance decaying to

 Search for dark matter particles produced in W+W- events with transverse momentum imbalance EXO-21-012

Why search for new physics at LHC?

- dark Matter,
- dark Energy,
- baryon asymmetry in the Universe,
- origin of neutrino masses,
- gravity and quantum mechanics,
- fine-tuning of the Higgs mass,
- hierarchy of fermion masses,

INTRODUCTION

Why search for new physics at LHC?

- dark Matter,
- dark Energy,
- baryon asymmetry in the Universe,
- origin of neutrino masses,
- gravity and quantum mechanics,
- fine-tuning of the Higgs mass,
- hierarchy of fermion masses,

And what could explain it? lepton jets unparticles hidden valley leptoquarks black holes extra dimensions massive gravitons stopped particles W'/Z' bosons dark photons excited quarks extra scalars dark Higgs emerging jets excited leptons supersymmetry sterile neutrinos contact interactions 4th generation quarks trackless jets technicolor

INTRODUCTION

Why search for new physics at LHC?

- dark Matter,
- dark Energy,
- baryon asymmetry in the Universe,
- origin of neutrino masses,
- gravity and quantum mechanics,
- fine-tuning of the Higgs mass,
- hierarchy of fermion masses,

lepton jets unparticles hidden valley leptoquarks black holes extra dimensions massive gravitons stopped particles W'/Z' bosons dark photons excited quarks extra scalars dark Higgs emerging jets excited leptons supersymmetry sterile neutrinos contact interactions 4th generation quarks trackless jets technicolor

And what could explain it?

This talk

Presented results (unless stated otherwise):

- proton-proton collisions at $\sqrt{s} = 13$ TeV,
- full LHC Run 2 data,
- luminosity: **138 fb**⁻¹.

W'SEARCH

- target: multi-TeV mass range (2-6 TeV considered)
 → completing previous searches (< 3 TeV)
- top quark \rightarrow distinct signature
- different width (1, 10, 20, 30%) and chirality assumptions
 - → interpretations for wide range of models

Analysis details

- backgrounds: W+jets, QCD, tt, single top
- signal/control regions: number of b-tagged top/W' jets

W' search

find b-jet originating from top

W' search

W' search

W' search

B2G-20-012

W' search

B2G-20-012

Results

- ABCD-like method with m_{jetW}, vs. m_{top},
- good agreement in the Control Region,

W' search

Results

- ABCD-like method with m_{jetW}, vs. m_{top},
- good agreement in the Control Region,
- small excess at 3.4-4.4 TeV (local: 2.6 σ , global: 2.0 σ) in one of the μ SR
 - best described by right-handed, narrow width signal hypothesis,

Analysis details & Results

- backgrounds: tt, QCD, W+jets, single top, VV,
- signal/control regions:
 - number of b-tagged jets,
 - high/low p_T^{miss} and p_T^W ,

HEAVY TW RESONANCE

HEAVY TW RESONANCE

Analysis details & Results

- backgrounds: tt, QCD, W+jets, single top, VV,
- signal/control regions:
 - number of b-tagged jets,
 - high/low p_T^{miss} and p_T^W ,
- **ABCD-like method** with p_T^{miss} vs. p_T^W,

HEAVY TW RESONANCE

Analysis details & Results

- backgrounds: tt, QCD, W+jets, single top, VV,
- signal/control regions:
 - number of b-tagged jets,
 - ▶ high/low p^{Tmiss} and p^W,
- ABCD-like method with p_T^{miss} vs. p_T^W,
- good agreement in Control Regions,

HEAVY TW RESONANCE

Analysis details & Results

- backgrounds: $t\overline{t}$, QCD, W+jets, single top, VV,
- signal/control regions:
 - number of b-tagged jets,
 - high/low p_T^{miss} and p_T^W ,
- ABCD-like method with pT^{miss} vs. pT^W,
- good agreement in Control Regions,
- no significant excess observed,

8

Analysis details & Results

- backgrounds: tt, QCD, W+jets, single top, VV,
- signal/control regions:
 - number of b-tagged jets,
 - high/low p_T^{miss} and p_T^W ,
- ABCD-like method with pT^{miss} vs. pT^W,
- good agreement in Control Regions,
- no significant excess observed,
- depending on the signal hypothesis and final states, excited b-quarks excluded up to 3.0-3.2 TeV.

HEAVY TVV RESONANCE

B2G-20-010

2

LOW-MASS DIMUONS

- final state: 2 opposite sign muons
- extension of high-mass searches
 - mass range: 1.1-2.6 GeV and 4.2-7.9 GeV
- example theoretical scenarios
 - dark photons Z_D , with kinetic mixing ε
 - two Higgs doublet models with extra scalar a (2HDM+S)

LOW-MASS DIMUONS

- final state: 2 opposite sign muons
- extension of high-mass searches
 - mass range: 1.1-2.6 GeV and 4.2-7.9 GeV
- example theoretical scenarios
 - dark photons Z_D , with kinetic mixing ε

Analysis details

- dedicated scouting trigger stream
 - muon pT as low as 3 GeV
 - storing reduced event information

Scouting trigger

- at HLT: $\geq 2 \text{ muons } p_T > 3 \text{ GeV}$,
- \approx 4-8 kB/event (standard event size \approx 1 MB),
- 2 kHz event rate (standard dimuon triggers: 0.45 kHz),
- integrated luminosity: **96.6 fb**⁻¹,

Scouting trigger

- at HLT: ≥ 2 muons $p_T > 3$ GeV,
- \approx 4-8 kB/event (standard event size \approx 1 MB),
- 2 kHz event rate (standard dimuon triggers: 0.45 kHz),
- integrated luminosity: 96.6 fb⁻¹,
- efficiency drops with decreasing $m_{\mu\mu}$ and $\Delta R_{\mu\mu}$ (more boost, more aligned \rightarrow larger uncertainty on vertex position).

Scouting trigger

- at HLT: ≥ 2 muons $p_T > 3$ GeV,
- \approx 4-8 kB/event (standard event size \approx 1 MB),
- 2 kHz event rate (standard dimuon triggers: 0.45 kHz),
- integrated luminosity: 96.6 fb⁻¹,
- efficiency drops with decreasing $m_{\mu\mu}$ and $\Delta R_{\mu\mu}$ (more boost, more aligned \rightarrow larger uncertainty on vertex position).

Offline analysis

- $p_T > 4$ GeV, $|\eta| < 1.9$ (assure optimal dimuon mass resolution),
- **muons identified** with a MVA technique, based on:
 - tracks quality,
 - isolation,
 - vertex information.

Signal extraction & background estimation

Fit to dimuon m_{inv} distribution:

- signal: double Crystal Ball + Gaussian, parameters from known resonances,
- background: empirical functions (e.g. polynomial times exponential).

Signal extraction & background estimation

Fit to dimuon m_{inv} distribution:

- signal: double Crystal Ball + Gaussian, parameters from known resonances,
- background: empirical functions (e.g. polynomial times exponential).

Results

• visible peak from $D_0 \rightarrow KK/K\pi$, where both hadrons misidentified as muons,

Signal extraction & background estimation

Fit to dimuon m_{inv} distribution:

- signal: double Crystal Ball + Gaussian, parameters from known resonances,
- background: empirical functions (e.g. polynomial times exponential).

Results

- visible peak from $D_0 \rightarrow KK/K\pi$, where both hadrons misidentified as muons,
- the largest excess at 2.41 GeV (local: 3.24σ , global: 1.27σ),
 - \rightarrow side note: 3.1 σ LHCb excess at 2.42 GeV,

Signal extraction & background estimation

Fit to dimuon m_{inv} distribution:

- signal: double Crystal Ball + Gaussian, parameters from known resonances,
- background: empirical functions (e.g. polynomial times exponential).

Results

- visible peak from $D_0 \rightarrow KK/K\pi$, where both hadrons misidentified as muons,
- the largest excess at 2.41 GeV (local: 3.24σ , global: 1.27σ), \rightarrow side note: 3.1 σ LHCb excess at 2.42 GeV,
- limits derived for dark photons and 2HDM+S.

W-

 \mathbb{W}^+

- models with dark Higgs s, Z' boson and DM candidates χ
- $m_s > 160 \text{ GeV} \rightarrow \text{decays to WW dominant}$
- di-leptonic & semi-leptonic channels

Analysis details

- luminosity: 137 fb⁻¹ (2016-2018)
- backgrounds: WW, Z→µµ, W+jets, tW, tt
- signal/control regions: e.g. same sign vs. opposite sign leptons

Analysis details

- di-leptonic channel:
 - main variable: m_T of trailing lepton $\oplus p_T^{miss}$ system,
 - ▶ 2D fit to m_{II} vs. m_TImin,pTmiss,
- semi-leptonic channel: \bullet
 - BDT based on 13 most discriminative variables (e.g. p_T^{ij} , $\Delta \eta_{I,ij}$, p_T^{miss}).

EXO-21-012

Analysis details

- di-leptonic channel:
 - main variable: m_T of trailing lepton $\oplus p_T^{miss}$ system,
 - ▶ 2D fit to m_{II} vs. m_TImin,pTmiss.
- semi-leptonic channel: \bullet
 - BDT based on 13 most discriminative variables (e.g. $p_{T^{jj}}$, $\Delta \eta_{I,jj}$, $p_{T^{miss}}$).

Results

- simultaneous fit to both channels,
- no significant excess,
- limits derived on m_s vs. $m_{Z'}$ for different m_x assumptions,
- for $m_x = 200$ GeV, these are the most stringent limits.

INMARY

W' search

- small excess (< 3σ) at 3.4-4.4 TeV,
- best described by RH narrow width W'.

Heavy tW resonance

- consistent with SM,
- excited **b-quarks excluded** up to 3.0 3.2 TeV.

Low-mass dimuon scouting

- small excess at 2.41 GeV (local 3σ), consistent with the LHCb excess at 2.42 GeV, limits on dark photons and 2HDM+S.

Dark Higgs boson

- consistent with SM,
- dark Higgs exclusion up to 350 GeV, Z' up to 2.2 TeV.

IN/IN/ARY

W' search

- small excess (< 3σ) at 3.4-4.4 TeV,
- best described by RH narrow width W'.

Heavy tW resonance

- consistent with SM,
- excited **b-quarks excluded** up to 3.0 3.2 TeV.

Low-mass dimuon scouting

Dark Higgs boson

• small excess at 2.41 GeV (local 3σ), consistent with the LHCb excess at 2.42 GeV, limits on dark photons and 2HDM+S.

• consistent with SM,

• dark Higgs exclusion up to 350 GeV, Z' up to 2.2 TeV.

lepton jets unparticles hidden valley leptoquarks black holes extra dimensions massive gravitons stopped particles W'/Z' bosons dark photons excited quarks extra scalars dark Higgs emerging jets excited leptons supersymmetry sterile neutrinos contact interactions 4th generation quarks trackless jets technicolor

INANARY

W' search

- small excess (< 3σ) at 3.4-4.4 TeV,
- best described by RH narrow width W'.

Heavy tW resonance

- consistent with SM,
- excited **b-quarks excluded** up to 3.0 3.2 TeV.

Low-mass dimuon scouting

Dark Higgs boson

• small excess at 2.41 GeV (local 3σ), consistent with the LHCb excess at 2.42 GeV, limits on dark photons and 2HDM+S.

• consistent with SM,

• dark Higgs exclusion up to 350 GeV, Z' up to 2.2 TeV.

lepton jets unparticles hidden valley leptoquarks black holes extra dimensions massive gravitons stopped particles W'/Z' bosons dark photons excited quarks extra scalars dark Higgs emerging jets excited leptons supersymmetry sterile neutrinos contact interactions 4th generation quarks trackless jets technicolor

W' search

- small excess (< 3σ) at 3.4-4.4 TeV,
- best described by RH narrow width W'.

Heavy tW resonance

- consistent with SM,
- excited **b-quarks excluded** up to 3.0 3.2 TeV.

Low-mass dimuon scouting

- consistent with SM,
- dark Higgs exclusion up to 350 GeV, Z' up to 2.2 TeV.

• small excess at 2.41 GeV (local 3σ), consistent with the LHCb excess at 2.42 GeV, limits on dark photons and 2HDM+S.

Dark Higgs boson

lepton jets unparticles hidden valley leptoquarks black holes extra dimensions massive gravitons stopped particles W'/Z' bosons dark photons excited quarks extra scalars dark Higgs emerging jets excited leptons supersymmetry sterile neutrinos contact interactions 4th generation quarks trackless jets technicolor

String resonance	CMS preliminary		March 2
	N		0.5_7.0 TeV 1911 030/7 (2i)
Zy resonance	M		0.35-4 TeV 1712.03143 (2µ + 1y; 2e + 1y; 2j + 1y)
y resonance	M		15-8 TeV 2106.10509 (1i + 1v)
ggs y resonance	M .		072-325 TeV 1808.01257 (1i + 1v)
or Octect Scalar, $k^2 = 1/2$			0.5 - 3.7 TeV 1911 03947 (2i)
ar Diguark			0.5-7.5 TeV 1911 03947 (2i)
ϕ , pseudoscalar (scalar), $q_{l}^2 \times BR(\phi \rightarrow 2l) > = 0.03(0.004)$		0.015 - 0.075 TeV 1911 04968 (31. > 41)	And and the second of the literature of the lite
, pseudoscalar (scalar), $a_1^2 \times BR(\phi \rightarrow 2l) > = 0.03(0.04)$		0.108_0.34 TeV/ 1011.04.068 (3/. > 4/)	
Z/v + X	M .	0.100-0.34 (EV 1911.04 900 (St, 2 4t)	1.6 TeV CMS-PAS-EXO-19-009 (pp + 11, pp + v)
		0.0-	the second
k compositeness (<i>l.l</i>), η _{LLRR} = 1	tim 1		<24 TeV 2103.02708 (21)
k compositeness (ll), $\eta_{LL,RR} = -1$	ũn l		<36 TeV 2103.02 708
ted Lepton Contact Interaction	м		0.2-5.6 TeV 2001.04521 (2e + 2j)
ited Lepton Contact Interaction	м		0.2-5.7 TeV 2001.04521 (2µ + 2 j)
$a_{\rm respective} = 0.25 a_{\rm res} = 1 m_{\rm res} = 1 GeV$			- 21
or mediator (qq), $g_q = 0.25$, $g_{DM} = 1$, $m_\chi = 1$ GeV	M	0.35-0.7 TeV 1911.03 /01 (2	≥ 3j)
so mediator $(\alpha), g_q = 0.1, g_{DN} = 1, g_l = 0.01, m_\chi > 1 \text{ TeV}$	M		0.2-1.92 (ev 2105.02706) (2e, 2µ)
al-)vector mediator (qq), $g_q = 0.25$, $g_{DM} = 1$, $m_\chi = 1$ GeV	M .		$(3-2.8 \ [ev] \ 1911.03947 \ (2))$
all vector mediator $(\chi_{\chi}), g_q = 0.25, g_{QM} = 1, m_{\chi} = 1.000$	M		<1.55 lev 210/.15021 (21) + PT /
g_{I} vector mediator $(t_{I}, g_{q} = 0.1, g_{DN} = 1, g_{I} = 0.1, m_{\chi} > m_{med}/2$	M	<0.20 TeV/ 1001 01552 /0.1/ + > 2i + p ^{mbay}	0.2-4.04 TeV 2103.02700 (28, 2µ)
ar mediator $(f_1, a_1), g_q = 1, g_{DM} = 1, m_g = 1$ GeV	M	(0.25 (eV 130101335) (eV 14 (eV 13010335) (e	111
ar mediator (ter, $g_q = 1, g_{DM} = 1, m_x = 1$ GeV ar mediator (fermion portal), $\lambda_v = 1, m_z = 1$ GeV		0.03-0.4 (64 210) 10032 (0) 21 + 223 + 97	5 TeV 2107 13021 (>1i+ n ^{mi=})
udoscalar mediator (+ <i>i</i> /V), $q_n = 1$, $q_{DM} = 1$, $m_r = 1$ GeV		<0.47 TeV 2107 13021 (>1i+ p ^{min}	
udoscalar mediator $(+t/tt)$, $a_{-} = 1$, $a_{rat} = 1$, $m_{-} = 1$ GeV	M	$<0.3 \text{ TeV} (1901.01553 (0.1) + \ge 2i + p_{\text{m}}^{\text{min}})$	
eudoscalar mediator ($t\bar{t}$), $q_n = 1$, $q_{nM} = 1$, $m_r = 1$ GeV	M	$0.05 - 0.42 \text{ TeV} 2107.10892 (0, 1l + \ge 2j + r)$	rrinn)
mplex sc. med. (dark QCD), $m_{n_{RH}} = 5 \text{ GeV}$, $c\tau_{X_{RH}} = 25 \text{ mm}$	м	<1	54 TeV 1810.10069 (4j)
ryonic Z', $g_q = 0.25$, $g_{CM} = 1$, $m_\chi = 1$ GeV	М		<1.6 TeV 1908.01713 (h + p _T ^{miss})
mediator (dark QCD), $m_{dark} = 20$ GeV, $r_{inv} = 0.3$, $\alpha_{dark} = \alpha_{dark}^{peak}$	М		1.5-5.1 TeV 2112.11125 (2j + p _T ^{min})
- 2HDM, g _Z = 0.8, g _{DM} = 1, tanβ = 1, m _g = 100 GeV	м		0.5-3.1 TeV 1908.01713 (h + p _T ^{miss})
sptoquark mediator, $\beta = 1$, $B = 0.1$, $\Delta_{x, DM} = 0.1$, 800 < M_{LQ} < 1500 GeV	м	0.3-0.6 TeV 1811.10151 (1µ+	$1j + p_T^{rrism}$)
xion-like particle, f ⁻¹ = 1.2 TeV ⁻¹	м		0.5-2 TeV CMS-PAS-EXO-21-007 (pp + yy)
elastic dark matter model, $y = 10^{-6}$, $a_0 = 0.1$	M	0.003-0.08 TeV CMS-PAS-EXO-20-010 (2 displaced µ + p _T ^{mba})	
elastic dark matter model, $y = 10^{-7}$, $\alpha_0 = 0.1$	м	0.02-0.08 TeV CMS-PAS-EXO-20-010 (2 displaced μ + p _T ^{mina})	
rk Higgs model, $g_q = 0.25$, $g_{DM} = 1$, $\theta = 0.01$, $m_\chi = 200$ GeV, $m_{Z'} = 700$ GeV	м	0.16-0.352 TeV CMS-PAS-EXO-21-012 (1/ + 2j + p	T_{τ}^{mha} , $2\ell + p_{\tau}^{mha}$
PV stop to 4 quarks	M	0.08-0.52 TeV 1808.03124 (2j; 4j)	
V squark to 4 quarks	M	0.1-0.72 TeV 1806.01058 (7	2j)
V gluino to 4 quarks	M	0.1-141	TeV 1806.01 058 (Zj)
v giulnos to 3 quarks	M	<1	
D (ii) HIZ n = 3			<12 TeV 1902 09 020 (21)
$DD (vv, ll) HLZ, n_{m} = 3$			<9.1 TeV 1812 10.443 (2v. 2/)
DD G_{KK} emission, $n_{ED} = 2$	M		<10.8 TeV 2107.13021 (≥ 1i + p ^{+(m)})
DD QBH (jj), $n_{ED} = 6$	M		<8.2 TeV 1803,08030 (2j)
DD QBH ($e\mu$), $n_{ED} = 4$	М		<5.6 TeV 2205.06709 (eµ)
DD QBH (et), $n_{ED} = 4$	M		<5.2 TeV 2205.06709 (et)
DD QBH ($\mu \tau$), $n_{eo} = 4$	М		<5 TeV 2205.06709 (µt)
DD QBH (γj), $n_{eD} = 6$	М		2-7.5 TeV CMS-PAS-EXO-20-012 (γ + j)
$S G_{KK}(U), k/\overline{M_{P}} = 0.1$	M		<4.78 TeV 2103.02708 (21)
$S G_{KK}(\gamma\gamma), k/\overline{M}_{PI} = 0.1$	M		<4.1 TeV 1809.00327 (2γ)
IS $G_{KK}(q\bar{q}, gg), k \overline{M}_{Pl} = 0.1$	м		0.5-2.6 TeV 1911.03947 (2j)
$5 \text{ QBH (jj)}, n_{\text{ED}} = 1$	м		<5.9 TeV 1803.08030 (2j)
$5 \text{ QBH } (\gamma j), n_{eD} = 1$	M		2-5.2 TeV CMS-PAS-EXO-20-012 (y + j)
on-rotating BH, $M_D = 4$ TeV, $n_{eD} = 6$	м		<9.7 TeV 1805.06013 (≥7j(<i>l</i> , γ))
-brane WED $g_{\kappa\kappa}(\phi + g \rightarrow ggg)$, $g_{\sigma m} = 0$, $g_{\sigma w} = 3$, $\varepsilon = 0.5$, $m(\phi)/m(g_{\kappa\kappa}) = 0.1$	g _{loc})		2-4.3 TeV 2201.02140 (2j)
pirt-UED, μ≥2 TeV	1/R		$0.4 - 2.8 \text{ TeV} 2202.06075 (l + p_T^{max})$
wheel links much family A and			0.5 5.7 T-V 1011 02047 (2i)
\mathcal{X} (red light duark (n) $n = m$	IT		0.0-0.3 TeV 1911.03947 (2)/
voited light quark (qg), $\Lambda = m_q$ voited light quark (qy), $f_r = f = f' = 1$, $\Lambda = m^*$	171		1-0 16V CHO-FAG-EAC/2V-V12 (V + J)
crited light quark (qg), $h = m_q$ crited light quark (qq), $f_s = f = f' = 1$, $h = m_q^*$ crited b quark, $f_s = f = f' = 1$, $h = m_s^*$	N		1_2.2.7 TeV (MS-PAS-EXO-20-012 (v + i)
cited light quark (qg), $\Lambda = m_q$ cited light quark (qq), $f_s = f = f' = 1$, $\Lambda = m_q^*$ cited b quark, $f_s = f = f' = 1$, $\Lambda = m_q^*$ cited electron, $f_s = f = f' = 1$, $\Lambda = m^*$	M		1-2.2 TeV CMS-PAS-EXO-20-012 (γ + j) 0.25-3.9 TeV [1811.03052 (ν + 2e)
cited light quark (qg), $\Lambda = m_q$ cited light quark (qq), $f_s = f = f' = 1$, $\Lambda = m_q^*$ cited b quark, $f_s = f = f' = 1$, $\Lambda = m_q^*$ cited electron, $f_s = f = f' = 1$, $\Lambda = m_q^*$ cited muon, $f_s = f = f' = 1$, $\Lambda = m_u^*$	M M		1-2.2 TeV CMS-PAS-EXO-20-012 (γ + j) 0.25-3.9 TeV 1811.03052 (γ + 2e) 0.25-3.8 TeV 1811.03052 (γ + 2μ)
cited light quark (qg), $\Lambda = m_q$ cited light quark (qg), $f_s = f = f' = 1$, $\Lambda = m_q^*$ cited b quark, $f_s = f = f' = 1$, $\Lambda = m_q^*$ cited electron, $f_s = f = f' = 1$, $\Lambda = m_a^*$ cited muon, $f_s = f = f' = 1$, $\Lambda = m_\mu^*$	M M M		1-2.2 TeV CMS-PAS-EXO-20-012 (γ + j) 0.25-3.9 TeV 1811.03052 (γ + 2e) 0.25-3.8 TeV 1811.03052 (γ + 2μ)
cited light quark (qg), $\Lambda = m_q$ cited light quark (qq), $f_s = f = f' = 1$, $\Lambda = m_q^*$ cited b quark, $f_s = f = f' = 1$, $\Lambda = m_q^*$ cited electron, $f_s = f = f' = 1$, $\Lambda = m_{\mu}^*$ cited muon, $f_s = f = f' = 1$, $\Lambda = m_{\mu}^*$ ISM, $ V_{ell} ^2 = 1.0$, $ V_{\mu ll} ^2 = 1.0$	M M M	0.001–1.24 TeV	1-2.2 TeV CMS-PAS-EXO-20-012 (γ + j) 0.25-3.9 TeV 1811.03 052 (γ + 2e) 0.25-3.8 TeV 1811.03 052 (γ + 2μ) γ 1802.02965; 1806.10905 (3μ; ≥ 1j + 2μ)
cited light quark (qg), $N = m_q$ cited light quark (qq), $f_s = f = f' = 1$, $\Lambda = m_q^*$ cited b quark, $f_s = f = f' = 1$, $\Lambda = m_q^*$ cited electron, $f_s = f = f' = 1$, $\Lambda = m_\mu^*$ cited muon, $f_s = f = f' = 1$, $\Lambda = m_\mu^*$ ISM, $ V_{eV} ^2 = 1.0$, $ V_{\mu V} ^2 = 1.0$ ISM, $ V_{eV} ^2 = 1.0$, $ V_{\mu V} ^2 = 1.0$	M M M M	0.001-1.24 TeV 0.001-1.43	1-2.2 TeV CMS-PAS-EXO-20-012 (γ + j) 0.25-3.9 TeV 1811.03052 (γ + 2e) 0.25-3.8 TeV 1811.03052 (γ + 2μ) V 1802.02965; 1806.10905 (3μ; ≥ 1j + 2μ) 8 TeV 1802.02965; 1806.10905 (3e; ≥ 1j + 2e)
The sector of t	M M M M M	0.001-1.24 Te 0.001-1.43 0.02-	$\frac{1-2.2 \text{ TeV} \text{ CMS-PAS-EXO-20-012 } (\mathbf{y} + \mathbf{j})}{0.25-3.9 \text{ TeV} 1811.03052 } (\mathbf{y} + 2\mathbf{e})}$ $\frac{0.25-3.8 \text{ TeV} 1811.03052 } (\mathbf{y} + 2\mathbf{\mu})}{1811.03052 } (\mathbf{y} + 2\mathbf{\mu})}$ $\frac{1802.02965; 1806.10905 } (3\boldsymbol{\mu}; \ge 1\mathbf{j} + 2\boldsymbol{\mu})}{3 \text{ TeV} 1802.02965; 1806.10905 } (3\mathbf{e}; \ge 1\mathbf{j} + 2\mathbf{e})}$ $\frac{1.6 \text{ TeV} 1806.10905 } (\ge 1\mathbf{j} + \boldsymbol{\mu} + \mathbf{e})}{1805.00905 } (\ge 1\mathbf{j} + \mathbf{\mu} + \mathbf{e})}$
The dilight quark (qg), $h = m_q$ Sited light quark (qq), $f_s = f = f' = 1$, $h = m_q^*$ Sited electron, $f_s = f = f' = 1$, $h = m_q^*$ Sited electron, $f_s = f = f' = 1$, $h = m_q^*$ Sited muon, $f_s = f = f' = 1$, $h = m_{\mu}^*$ SM, $ V_{all} ^2 = 1.0$, $ V_{\mu ll} ^2 = 1.0$ SM, $ V_{all} ^2 = 1.0$, $ V_{\mu ll} ^2 = 1.0$ SM, $ V_{all} ^2 = 1.0$, $ V_{\mu ll} ^2 = 1.0$ SM, $ V_{all} ^2 = 1.0$, $ V_{\mu ll} ^2 = 1.0$ SM, $ V_{all} ^2 = 1.0$, $ V_{\mu ll} ^2 = 1.0$ SM, $ V_{all} ^2 = 1.0$, $ V_{\mu ll} ^2 = 1.0$	M M M M M M M	0.001-1.24 Te 0.001-1.24 Te 0.001-1.43 0.02- 0.1-0.98 TeV 2202	$\begin{array}{c} 1-2.2 \ \text{TeV} \ \text{CMS-PAS-EXO-20-012} \ (\textbf{y}+\textbf{j}) \\ 0.25-3.9 \ \text{TeV} \ 1811.03052 \ (\textbf{y}+2\textbf{e}) \\ 0.25-3.8 \ \text{TeV} \ 1811.03052 \ (\textbf{y}+2\textbf{\mu}) \end{array}$
cred light quark (qg), $N = m_q$ cited light quark (qq), $f_s = f = f' = 1$, $\Lambda = m_q^*$ cited b quark, $f_s = f = f' = 1$, $\Lambda = m_q^*$ cited electron, $f_s = f = f' = 1$, $\Lambda = m_q^*$ cited muon, $f_s = f = f' = 1$, $\Lambda = m_\mu^*$ (SM, $ V_{ell} ^2 = 1.0$, $ V_{\mu ll} ^2 = 1.0$ (SM, $ V_{ell} ^2 = 1.0$, $ V_{\mu ll} ^2 = 1.0$ (SM, $ V_{ell}V_{\mu ll}^* ^2/(V_{ell} ^2 + V_{\mu ll} ^2) = 1.0$ (SM, $ V_{ell}V_{\mu ll}^* ^2/(V_{ell} ^2 + V_{\mu ll} ^2) = 1.0$ (SM, $ V_{ell}V_{\mu ll}^* ^2/(V_{ell} ^2 + V_{\mu ll} ^2) = 1.0$ (SM, $ V_{ell}V_{\mu ll}^* ^2/(V_{ell} ^2 + V_{\mu ll} ^2) = 1.0$	M M M M M M M	0.001-1.24 Te 0.001-1.43 0.02- 0.1-0.98 TeV 2202 0.1-1.045 TeV 2202	$\begin{array}{c} 1-2.2 \ \text{TeV} \ \text{CMS-PAS-EXO-20-012} \ (\mathbf{\gamma}+\mathbf{j}) \\ 0.25-3.9 \ \text{TeV} \ 1811.03052 \ (\mathbf{\gamma}+2\mathbf{e}) \\ 0.25-3.8 \ \text{TeV} \ 1811.03052 \ (\mathbf{\gamma}+2\mathbf{\mu}) \end{array}$ $\begin{array}{c} \mathbf{\gamma} \ 1802.02965; \ 1806.10905 \ (\mathbf{3\mu}; \ \geq 1\mathbf{j}+2\mathbf{\mu}) \\ 3 \ \text{TeV} \ 1802.02965; \ 1806.10905 \ (\mathbf{3e}; \ \geq 1\mathbf{j}+2\mathbf{e}) \\ \mathbf{1.6 \ \text{TeV}} \ 1806.10905 \ (\geq 1\mathbf{j}+\mathbf{\mu}+\mathbf{e}) \\ 0.86676 \ (\mathbf{3l}, \ \geq 4l, 1\tau+3l, 2\tau+2l, 3\tau+1l, 1\tau+2l, 2\tau+1l) \\ 02.08676 \ (\mathbf{3l}, \ \geq 4l, 1\tau+3l, 2\tau+2l, 3\tau+1l, 1\tau+2l, 2\tau+1l) \end{array}$
The origin (quark (qg), $N = m_q$ cited light quark (qq), $f_s = f = f' = 1$, $\Lambda = m_q^*$ cited b quark, $f_s = f = f' = 1$, $\Lambda = m_q^*$ cited electron, $f_s = f = f' = 1$, $\Lambda = m_q^*$ cited muon, $f_s = f = f' = 1$, $\Lambda = m_\mu^*$ SM, $ V_{ell} ^2 = 1.0$, $ V_{\mu ll} ^2 = 1.0$ SM, $ V_{ell}V_{\mu ll} ^2 = 1.0$, $ V_{\mu ll} ^2 = 1.0$ SM, $ V_{ell}V_{\mu ll} ^2/(V_{ell} ^2 + V_{\mu ll} ^2) = 1.0$ SM, $ V_{ell}V_{\mu ll}^* ^2/(V_{ell} ^2 + V_{\mu ll} ^2) = 1.0$ Se-III seesaw heavy fermions, Flavor-democratic ctor like taus, Doublet ctor like taus, Singlet	M M M M M M M M M M	0.001-1.24 Te 0.001-1.43 0.02- 0.1-0.98 TeV 2202 0.1-1.045 TeV 2202 0.125-0.15 TeV 2202.08676 (3 <i>t</i> , ≥ 4 <i>t</i> , 1 τ + 3 <i>t</i> , 2 τ + 2 <i>t</i> , 3 τ + 1 <i>t</i> , 1 τ + 2 <i>t</i> , 3	$\begin{array}{c} 1-2.2 \ \text{TeV} \ \text{CMS-PAS-EXO-20-012} \ (\mathbf{\gamma}+\mathbf{j}) \\ 0.25-3.9 \ \text{TeV} \ 1811.03052 \ (\mathbf{\gamma}+2\mathbf{e}) \\ 0.25-3.8 \ \text{TeV} \ 1811.03052 \ (\mathbf{\gamma}+2\mathbf{\mu}) \end{array}$
inted light quark (qg), $N = M_q$ inted light quark (qq), $f_s = f = f' = 1$, $\Lambda = m_q^*$ inted light quark, $f_s = f = f' = 1$, $\Lambda = m_q^*$ inted electron, $f_s = f = f' = 1$, $\Lambda = m_q^*$ inted muon, $f_s = f = f' = 1$, $\Lambda = m_\mu^*$ SM, $ V_{eV} ^2 = 1.0$, $ V_{\mu V} ^2 = 1.0$ SM, $ V_{eV} _{\mu N}^2 = 1.0$, $ V_{\mu N} ^2 = 1.0$ SM, $ V_{eV} _{\mu N}^{*} ^2 / (V_{eV} ^2 + V_{\mu N} ^2) = 1.0$ e-III seesaw heavy fermions, Flavor-democratic thor like taus, Doublet thor like taus, Singlet	M M M M M M M M M M	0.001-1.24 Te 0.001-1.45 0.02- 0.1-0.98 TeV 2202 0.1-1.045 TeV 2202 0.1-1.045 TeV 2202 0.125-0.15 TeV 2202.08676 (31, ≥41, 1T + 31, 2T + 21, 3T + 11, 1T + 21, 3T 0.0115 0.075 TeV 1012.04 375 (2m)	$\frac{1-2.2 \text{ TeV} (\text{CMS-PAS-EXO-20-012 } (\mathbf{y} + \mathbf{j})}{0.25-3.9 \text{ TeV} 1811.03052 } (\mathbf{y} + 2\mathbf{e})}{0.25-3.8 \text{ TeV} 1811.03052 } (\mathbf{y} + 2\mathbf{e})}$ $\frac{1}{0.25-3.8 \text{ TeV} 1811.03052 } (\mathbf{y} + 2\mathbf{\mu})}{0.25-3.8 \text{ TeV} 1802.02965; 1806.10905 } (3\mathbf{\mu}; \ge 1\mathbf{j} + 2\mathbf{\mu})}$ $\frac{1}{0.25-3.8 \text{ TeV} 1802.02965; 1806.10905 } (3\mathbf{\mu}; \ge 1\mathbf{j} + 2\mathbf{\mu})}{0.25-3.8 \text{ TeV} 1802.02965; 1806.10905 } (3\mathbf{e}; \ge 1\mathbf{j} + 2\mathbf{e})}$ $\frac{1}{0.16 \text{ TeV} 1806.10905 } (\ge 1\mathbf{j} + \mathbf{\mu} + \mathbf{e})}{0.08676 } (3t, \ge 4t, 1\mathbf{\tau} + 3t, 2\mathbf{\tau} + 2t, 3\mathbf{\tau} + 1t, 1\mathbf{\tau} + 2t, 2\mathbf{\tau} + 1t)}$ $\frac{1}{0.208676 } (3t, \ge 4t, 1\mathbf{\tau} + 3t, 2\mathbf{\tau} + 2t, 3\mathbf{\tau} + 1t, 1\mathbf{\tau} + 2t, 2\mathbf{\tau} + 1t)}{2\mathbf{\tau} + 1t}$
inted light quark (qg), $N = M_q$ iited light quark (qg), $R = f = f' = 1$, $\Lambda = m_q^*$ iited b quark, $f_s = f = f' = 1$, $\Lambda = m_q^*$ iited electron, $f_s = f = f' = 1$, $\Lambda = m_q^*$ iited muon, $f_s = f = f' = 1$, $\Lambda = m_{\mu}^*$ SM , $ V_{eV} ^2 = 1.0$, $ V_{\mu V} ^2 = 1.0$ SM , $ V_{eV} ^2 = 1.0$, $ V_{\mu V} ^2 = 1.0$ SM , $ V_{eV} _{\mu V_{\mu V}}^{\nu} ^2/(V_{eV} ^2 + V_{\mu V} ^2) = 1.0$ e-III seesaw heavy fermions, Flavor-democratic tor like taus, Doublet tor like taus, Singlet narrow resonance, $\varepsilon^2 = 8 \times 10^{-6}$ (90% C.L.) narrow resonance, $\varepsilon^2 = 4 \times 10^{-2}$ (90% C.L.)	M M M M M M M M M M M M	0.001-124 Te 0.001-1.4 0.02- 0.1-0.98 TeV 2202 0.1-1.045 TeV 2202 0.1-1.045 TeV 2202 0.125-0.15 TeV 2202.08676 (3ℓ, ≥ 4ℓ, 1τ + 3ℓ, 2τ + 2ℓ, 3τ + 1ℓ, 1τ + 2ℓ, 3 0.0115-0.075 TeV 1912.04776 (2μ) 0.0115-0.075 TeV 1912.04776 (2μ)	$\frac{1-2.2 \text{ TeV} (\text{CMS-PAS-EXO-20-012 } (\mathbf{y} + \mathbf{j})}{0.25-3.9 \text{ TeV} 1811.03052 } (\mathbf{y} + 2\mathbf{e})} \\ 0.25-3.8 \text{ TeV} 1811.03052 } (\mathbf{y} + 2\mathbf{\mu})}$ $\frac{1811.03052 } (\mathbf{y} + 2\mathbf{\mu})}{1811.03052 } (\mathbf{y} + 2\mathbf{\mu})}$ $\frac{1802.02965; 1806.10905 } (3\mathbf{\mu}; \ge 1\mathbf{j} + 2\mathbf{\mu})}{3 \text{ TeV} 1802.02965; 1806.10905 } (3\mathbf{e}; \ge 1\mathbf{j} + 2\mathbf{e})} \\ \frac{1.6 \text{ TeV} 1806.10905 } (\ge 1\mathbf{j} + \mathbf{\mu} + \mathbf{e})}{.08676 } (3t, \ge 4t, 1\tau + 3t, 2\tau + 2t, 3\tau + 1t, 1\tau + 2t, 2\tau + 1t)} \\ \frac{1.02.08676 } (3t, \ge 4t, 1\tau + 3t, 2\tau + 2t, 3\tau + 1t, 1\tau + 2t, 2\tau + 1t)}{2\tau + 1t}$
International quark (qg), $\Lambda = m_q$ inter light quark (qg), $f_s = f = f' = 1$, $\Lambda = m_q^*$ inter light quark, $f_s = f = f' = 1$, $\Lambda = m_q^*$ inter light quark, $f_s = f = f' = 1$, $\Lambda = m_q^*$ inter light quark, $f_s = f = f' = 1$, $\Lambda = m_q^*$ inter light quark (qg), $ V_{\mu\nu} ^2 = 1.0$ inter light quark (qg), $ V_{\mu\nu} ^2$	M M M M M M M M M M M M M M M M M M M	0.001-1.24 Te 0.001-1.4 0.02- 0.1-0.98 TeV 2202 0.1-1.045 TeV 2202 0.1-1.045 TeV 2202 0.125-0.15 TeV 2202.08676 (3 <i>t</i> , ≥ 4 <i>t</i> , 1 τ + 3 <i>t</i> , 2 τ + 2 <i>t</i> , 3 τ + 1 <i>t</i> , 1 τ + 2 <i>t</i> , 3 0.0115-0.075 TeV 1912.04 776 (2μ) 0.11-0.2 TeV 1912.04776 (2μ)	$\frac{1-2.2 \text{ TeV} (CMS-PAS-EXO-20-012 (y + j))}{0.25-3.9 \text{ TeV} [1811.03052 (y + 2e)]}$ $\frac{0.25-3.8 \text{ TeV} [1811.03052 (y + 2\mu)]}{1.03052 (y + 2\mu)}$ $\frac{1802.02965; 1806.10905 (3\mu; \ge 1j + 2\mu)}{3 \text{ TeV} [1802.02965; 1806.10905 (3e; \ge 1j + 2e)]}$ $\frac{1.6 \text{ TeV} [1806.10905 (\ge 1j + \mu + e)]}{0.08676 (3t, \ge 4t, 1\tau + 3t, 2\tau + 2t, 3\tau + 1t, 1\tau + 2t, 2\tau + 1t)]}$ $\frac{20.08676 (3t, \ge 4t, 1\tau + 3t, 2\tau + 2t, 3\tau + 1t, 1\tau + 2t, 2\tau + 1t)}{2\tau + 1t}$
The light quark (qg), $N = m_q$ ited light quark (qq), $f_s = f = f' = 1$, $\Lambda = m_q^*$ ited light quark ($f_s = f = f' = 1$, $\Lambda = m_q^*$ ited electron, $f_s = f = f' = 1$, $\Lambda = m_q^*$ ited muon, $f_s = f = f' = 1$, $\Lambda = m_{\mu}^*$ iM, $ V_{ell} ^2 = 1.0$, $ V_{\mu ll} ^2 = 1.0$ iM, $ V_{ell} _{l}^2 = 1.0$, $ V_{\mu ll} ^2 = 1.0$ iM, $ V_{ell} _{l}^2 = 1.0$, $ V_{\mu ll} ^2 = 1.0$ iM, $ V_{ell} _{l}^2 V_{ell} _{l}^2 + V_{\mu ll} ^2) = 1.0$ at ll seesaw heavy fermions, Flavor-democratic ior like taus, Doublet ior like taus, Singlet narrow resonance, $\varepsilon^2 = 8 \times 10^{-6}$ (90% C.L.) narrow resonance, $\varepsilon^2 = 7 \times 10^{-7}$ (90% C.L.) narrow resonance, $\varepsilon^2 = 3 \times 10^{-6}$ (90% C.L.)	M M M M M M M M M M M M M M M M M M M	0.001-1.24 Te 0.001-1.43 0.02- 0.1-0.98 TeV 2202 0.1-0.98 TeV 2202 0.1-1.045 TeV 2202 0.125-0.15 TeV 2202.08676 (3t, ≥ 4t, 1τ + 3t, 2τ + 2t, 3τ + 1t, 1τ + 2t, 3τ 0.0115-0.075 TeV 1912.04 776 (2μ) 0.11-0.2 TeV 1912.04 776 (2μ) VS-EXO-21-005 (2μ)	$\frac{1-2.2 \text{ TeV} \text{ CMS-PAS-EXO-20-012 } (\mathbf{y} + \mathbf{j})}{0.25-3.9 \text{ TeV} 1811.03052 } (\mathbf{y} + 2\mathbf{e})}{0.25-3.8 \text{ TeV} 1811.03052 } (\mathbf{y} + 2\mathbf{e})}$ $\frac{1802.02965; 1806.10905 (3\boldsymbol{\mu}; \ge 1\mathbf{j} + 2\boldsymbol{\mu})}{3 \text{ TeV} 1802.02965; 1806.10905 } (3\boldsymbol{e}; \ge 1\mathbf{j} + 2\mathbf{e})}{1.6 \text{ TeV} 1806.10905 } (\ge 1\mathbf{j} + \boldsymbol{\mu} + \mathbf{e})}$ $\frac{1.6 \text{ TeV} 1806.10905 }{0.8676 } (3t, \ge 4t, 1\tau + 3t, 2\tau + 2t, 3\tau + 1t, 1\tau + 2t, 2\tau + 1t)}{22.08676 } (3t, \ge 4t, 1\tau + 3t, 2\tau + 2t, 3\tau + 1t, 1\tau + 2t, 2\tau + 1t)}$
The light quark (qg), $N = m_q$ ited light quark (qq), $f_s = f = f' = 1$, $N = m_q^*$ ited light quark ($f_s = f = f' = 1$, $N = m_q^*$ ited electron, $f_s = f = f' = 1$, $N = m_q^*$ ited muon, $f_s = f = f' = 1$, $N = m_{\mu}^*$ SM, $ V_{eN} ^2 = 1.0$, $ V_{\mu N} ^2 = 1.0$ SM, $ V_{eN} ^2 = 1.0$, $ V_{\mu N} ^2 = 1.0$ SM, $ V_{eN} _{\mu N}^{P} ^2/(V_{eN} ^2 + V_{\mu N} ^2) = 1.0$ e-III seesaw heavy fermions, Flavor-democratic tor like taus, Doublet tor like taus, Singlet narrow resonance, $\varepsilon^2 = 8 \times 10^{-6}$ (90% C.L.) narrow resonance, $\varepsilon^2 = 7 \times 10^{-7}$ (90% C.L.) narrow resonance, $\varepsilon^2 = 3 \times 10^{-6}$ (90% C.L.) narrow resonance, $\varepsilon^2 = 3 \times 10^{-6}$ (90% C.L.)	M M M M M M M M M M M M M M M M M M M	0.001-124 Te 0.001-124 Te 0.001-1.4: 0.02- 0.1-0.98 TeV 2202 0.1-0.98 TeV 2202 0.1-1.045 TeV 2202 0.125-0.15 TeV 2202.08676 (3 <i>t</i> , ≥ 4 <i>t</i> , 1τ + 3 <i>t</i> , 2τ + 2 <i>t</i> , 3τ + 1 <i>t</i> , 1τ + 2 <i>t</i> , 3 0.0115-0.075 TeV 1912.04 776 (2 μ) 0.11-0.2 TeV 1912.04776 (2 μ) AS-EXO-21-005 (2 μ)	$\frac{1-2.2 \text{ TeV} (CMS-PAS-EXO-20-012 (y + j))}{0.25-3.9 \text{ TeV} [1811.03052 (y + 2e))}$ $\frac{0.25-3.8 \text{ TeV} [1811.03052 (y + 2\mu)]}{0.25-3.8 \text{ TeV} [1811.03052 (y + 2\mu)]}$ $1000000000000000000000000000000000000$
Ited light quark (qg), $h = m_q$ ited light quark (qq), $f_s = f = f' = 1$, $h = m_q^*$ ited light quark, $f_s = f = f' = 1$, $h = m_q^*$ ited electron, $f_s = f = f' = 1$, $h = m_q^*$ ited muon, $f_s = f = f' = 1$, $h = m_{\mu}^*$ δM , $ V_{ell} ^2 = 1.0$, $ V_{\mu ll} ^2 = 1.0$ δM , $ V_{ell} ^2 = 1.0$, $ V_{\mu ll} ^2 = 1.0$ δM , $ V_{ell} ^2 = 1.0$, $ V_{\mu ll} ^2 = 1.0$ δM , $ V_{ell} ^2 = 1.0$, $ V_{\mu ll} ^2 = 1.0$ δM , $ V_{ell} ^2 = 1.0$, $ V_{\mu ll} ^2 = 1.0$ δM , $ V_{ell} ^2 = 1.0$, $ V_{\mu ll} ^2 = 1.0$ δM , $ V_{ell} ^2 = 1.0$, $ V_{\mu ll} ^2 = 1.0$ δM , $ V_{ell} ^2 = 1.0$, $ V_{\mu ll} ^2 = 1.0$ δM , $ V_{ell} ^2 = 1.0$, $ V_{\mu ll} ^2 = 1.0$ δM , $ V_{ell} ^2 = 1.0$, $ V_{ell} ^2 = 1.0$ narrow resonance, $\varepsilon^2 = 8 \times 10^{-6}$ (90% C.L.) narrow resonance, $\varepsilon^2 = 3 \times 10^{-6}$ (90% C.L.) narrow resonance, $\varepsilon^2 = 3 \times 10^{-6}$ (90% C.L.) $\Lambda Z'(Ul)$ $\Lambda Z'(q\bar{q})$	M M M M M M M M M M M M M M M M M M M	0.001–1.24 Te 0.001–1.4: 0.02– 0.1–0.98 TeV 2202 0.1–0.98 TeV 2202 0.1–1.045 TeV 2202 0.125–0.15 TeV 2202.08676 (3 <i>t</i> , ≥ 4 <i>t</i> , 1 τ + 3 <i>t</i> , 2 τ + 2 <i>t</i> , 3 τ + 1 <i>t</i> , 1 τ + 2 <i>t</i> , 5 0.0115–0.075 TeV 1912.04 776 (2μ) 0.11–0.2 TeV 1912.04776 (2μ) AS-EXO-21-005 (2 μ)	$\frac{1-2.2 \text{ TeV} (\text{CMS-PAS-EXO-20-012 } (\mathbf{y} + \mathbf{j})}{0.25-3.9 \text{ TeV} 1811.03052 } (\mathbf{y} + 2\mathbf{e})}{0.25-3.8 \text{ TeV} 1811.03052 } (\mathbf{y} + 2\mathbf{e})}$ $\frac{1}{0.25-3.8 \text{ TeV} 1811.03052 } (\mathbf{y} + 2\mathbf{\mu})}{(\mathbf{y} + 2\mathbf{\mu})^{3}}$ $\frac{1}{2} \text{ TeV} 1802.02965; 1806.10905 } (3\boldsymbol{\mu}; \geq 1\mathbf{j} + 2\boldsymbol{\mu})}{3 \text{ TeV} 1802.02965; 1806.10905 } (3\boldsymbol{e}; \geq 1\mathbf{j} + 2\mathbf{e})}$ $\frac{1.6 \text{ TeV} 1806.10905 } (\geq 1\mathbf{j} + \boldsymbol{\mu} + \mathbf{e})}{1.08676 } (3t, \geq 4t, 1\tau + 3t, 2\tau + 2t, 3\tau + 1t, 1\tau + 2t, 2\tau + 1t)}$ $\frac{1.22 \text{ TeV} 1802.02965; 1806.10905 } (3t, \geq 4t, 1\tau + 3t, 2\tau + 2t, 3\tau + 1t, 1\tau + 2t, 2\tau + 1t)}{22 \text{ TeV} 1802.02965 } (3t, \geq 4t, 1\tau + 3t, 2\tau + 2t, 3\tau + 1t, 1\tau + 2t, 2\tau + 1t)}$ $\frac{1.22 \text{ TeV} (2103.02708 } (2\mathbf{e}, 2\mathbf{\mu})}{0.5-2.9 \text{ TeV} 1911.03947 } (2\mathbf{j})}$
inted light quark (qg), $N = m_q$ iited light quark (qq), $f_s = f = f' = 1$, $\Lambda = m_q^*$ iited lo quark, $f_s = f = f' = 1$, $\Lambda = m_q^*$ iited electron, $f_s = f = f' = 1$, $\Lambda = m_q^*$ iited muon, $f_s = f = f' = 1$, $\Lambda = m_{\mu}^*$ SM, $ V_{eN} ^2 = 1.0$, $ V_{\mu N} ^2 = 1.0$ SM, $ V_{eN}V_{\mu N}^* ^2/(V_{eN} ^2 + V_{\mu N} ^2) = 1.0$ e-III seesaw heavy fermions, Flavor-democratic tor like taus, Doublet tor like taus, Singlet narrow resonance, $\varepsilon^2 = 8 \times 10^{-6}$ (90% C.L.) narrow resonance, $\varepsilon^2 = 7 \times 10^{-7}$ (90% C.L.) narrow resonance, $\varepsilon^2 = 3 \times 10^{-6}$ (90% C.L.) narrow resonance, $\varepsilon^2 = 3 \times 10^{-6}$ (90% C.L.) N Z'(U) M Z'(U)	M M M M M M M M M M M M M M M M M M M	0.001-124 Te 0.001-1.4 0.02- 0.1-0.98 TeV 2202 0.1-1.045 TeV 2202.08676 (3 <i>t</i> , ≥ 4 <i>t</i> , 1 τ + 3 <i>t</i> , 2 τ + 2 <i>t</i> , 3 τ + 1 <i>t</i> , 1 τ + 2 <i>t</i> , 3 0.0115-0.075 TeV 1912.04 776 (2μ) 0.11-0.2 TeV 1912.04776 (2μ) 4S-EXO-21-005 (2μ) 0.01-0.125 TeV 1905.10331 (1j, 1γ)	$\frac{1-2.2 \text{ TeV} (\text{CMS-PAS-EXO-20-012 } (\mathbf{y} + \mathbf{j})}{0.25-3.9 \text{ TeV} 1811.03052 } (\mathbf{y} + 2\mathbf{e})}{0.25-3.8 \text{ TeV} 1811.03052 } (\mathbf{y} + 2\mathbf{\mu})}$ V 1802.02965; 1806.10905 (3 µ ; ≥ 1 j + 2 µ) 3 TeV 1802.02965; 1806.10905 (3 e ; ≥ 1 j + 2 e) -1.6 TeV 1806.10905 (≥ 1 j + µ + e) -0.86676 (3 <i>t</i> , ≥ 4 <i>t</i> , 1 τ + 3 <i>t</i> , 2 τ + 2 <i>t</i> , 3 τ + 1 <i>t</i> , 1 τ + 2 <i>t</i> , 2 τ + 1 <i>t</i>) -0.208676 (3 <i>t</i> , ≥ 4 <i>t</i> , 1 τ + 3 <i>t</i> , 2 τ + 2 <i>t</i> , 3 τ + 1 <i>t</i> , 1 τ + 2 <i>t</i> , 2 τ + 1 <i>t</i>) -2.08676 (3 <i>t</i> , ≥ 4 <i>t</i> , 1 τ + 3 <i>t</i> , 2 τ + 2 <i>t</i> , 3 τ + 1 <i>t</i> , 1 τ + 2 <i>t</i> , 2 τ + 1 <i>t</i>) -0.2-5.15 TeV 2103.02708 (2 e , 2 µ) 0.5-2.9 TeV 1911.03947 (2 j)
ited light quark (qg), $h = m_q$ ited light quark (qq), $f_s = f = f' = 1, h = m_q^*$ ited b quark, $f_s = f = f' = 1, h = m_q^*$ ited electron, $f_s = f = f' = 1, h = m_q^*$ ited muon, $f_s = f = f' = 1, h = m_\mu^*$ $SM, V_{ell} ^2 = 1.0, V_{\mu ell} ^2 = 1.0$ $SM, V_{ell} ^2 = 1.0, V_{\mu ell} ^2 = 1.0$ $SM, V_{ell} ^2 / (V_{ell} ^2 + V_{\mu ell} ^2) = 1.0$ e-III seesaw heavy fermions, Flavor-democratic tor like taus, Doublet tor like taus, Singlet narrow resonance, $\varepsilon^2 = 8 \times 10^{-6}$ (90% C.L.) narrow resonance, $\varepsilon^2 = 7 \times 10^{-7}$ (90% C.L.) narrow resonance, $\varepsilon^2 = 3 \times 10^{-6}$ (90% C.L.) narrow resonance, $\varepsilon^2 = 3 \times 10^{-6}$ (90% C.L.) Z'(U) Z'(U)	M M M M M M M M M M M M M M M M M M M	0.001-1.24 Te 0.001-1.4 0.002- 0.1-0.98 TeV 2202 0.1-1.045 TeV 2202 0.125-0.15 TeV 2202.08676 (3 <i>t</i> , ≥ 4 <i>t</i> , 1τ + 3 <i>t</i> , 2τ + 2 <i>t</i> , 3τ + 1 <i>t</i> , 1τ + 2 <i>t</i> , 3 0.0115-0.075 TeV 1912.04776 (2μ) 0.11-0.2 TeV 1912.04776 (2μ) 0.11-0.2 TeV 1912.04776 (2μ)	$\frac{1-2.2 \text{ TeV} (\text{CMS-PAS-EXO-20-012 } (\mathbf{y} + \mathbf{j})}{0.25-3.9 \text{ TeV} 1811.03 052 } (\mathbf{y} + 2\mathbf{e})}$ $0.25-3.8 \text{ TeV} 1811.03 052 } (\mathbf{y} + 2\mathbf{\mu})$ $\frac{1}{9} 1802.02965; 1806.10905 } (3\mathbf{\mu}; \ge 1\mathbf{j} + 2\mathbf{\mu})$ $\frac{1}{9} 1802.02965; 1806.10905 } (3\mathbf{e}; \ge 1\mathbf{j} + 2\mathbf{e})$ $\frac{1}{1.6 \text{ TeV} 1806.10905 } (\ge 1\mathbf{j} + \mathbf{\mu} + \mathbf{e})}{0.08676 } (3t, \ge 4t, 1\mathbf{r} + 3t, 2\mathbf{r} + 2t, 3\mathbf{r} + 1t, 1\mathbf{r} + 2t, 2\mathbf{r} + 1t)}$ $\frac{0.2-5.15 \text{ TeV}}{27 + 1t} 2103.02708 } (2\mathbf{e}, 2\mathbf{\mu})$ $\frac{0.2-4.6 \text{ TeV}}{2103.02708 } (2\mathbf{e}, 2\mathbf{\mu})$
ited right quark (qg), $N = m_q$ ited light quark (qg), $f_s = f = f' = 1$, $\Lambda = m_q^*$ ited b quark, $f_s = f = f' = 1$, $\Lambda = m_q^*$ ited electron, $f_s = f = f' = 1$, $\Lambda = m_q^*$ ited muon, $f_s = f = f' = 1$, $\Lambda = m_q^*$ $5M$, $ V_{ell} ^2 = 1.0$, $ V_{\mu ell} ^2 = 1.0$ $5M$, $ V_{ell} ^2 = 1.0$, $ V_{\mu ell} ^2 = 1.0$ $5M$, $ V_{ell} ^2/(V_{ell} ^2 + V_{\mu ell} ^2) = 1.0$ e-III seesaw heavy fermions, Flavor-democratic tor like taus, Doublet tor like taus, Singlet narrow resonance, $\varepsilon^2 = 8 \times 10^{-6}$ (90% C.L.) narrow resonance, $\varepsilon^2 = 7 \times 10^{-7}$ (90% C.L.) narrow resonance, $\varepsilon^2 = 3 \times 10^{-6}$ (90% C.L.) narrow resonance, $\varepsilon^2 = 3 \times 10^{-6}$ (90% C.L.) N Z'(H) A Z'(H) $A Z'(q\bar{q})$ $q\bar{q}$) perstring Z'_{q} , $'Z'$, BR(e μ) = 10%	M M M M M M M M M M M M M M M M M M M	0.001-1.24 Te 0.001-1.4 0.001-1.4 0.02- 0.1-0.98 TeV 2202 0.1-1.045 TeV 2202 0.125-0.15 TeV 2202.08676 (3 <i>t</i> , ≥ 4 <i>t</i> , 1τ + 3 <i>t</i> , 2τ + 2 <i>t</i> , 3τ + 1 <i>t</i> , 1τ + 2 <i>t</i> , 0.0115-0.075 TeV 1912.04776 (2μ) 0.11-0.2 TeV 1912.04776 (2μ) AS-EXO-21-005 (2μ) 0.01-0.125 TeV 1905.10331 (1j, 1γ)	$1-2.2 \text{ TeV} (MS-PAS-EXO-20-012 (y + j))$ $0.25-3.9 \text{ TeV} [1811.03 052 (y + 2e))$ $0.25-3.8 \text{ TeV} [1811.03 052 (y + 2\mu))$ $1802.02965; 1806.10905 (3\mu; \ge 1j + 2\mu)$ $3 \text{ TeV} [1802.02965; 1806.10905 (3e; \ge 1j + 2e))$ $1.6 \text{ TeV} [1806.10905 (\ge 1j + \mu + e)]$ $0.8676 (3t, \ge 4t, 1\tau + 3t, 2\tau + 2t, 3\tau + 1t, 1\tau + 2t, 2\tau + 1t)$ $20.08676 (3t, \ge 4t, 1\tau + 3t, 2\tau + 2t, 3\tau + 1t, 1\tau + 2t, 2\tau + 1t)$ $2\tau + 1t)$ $0.2-5.15 \text{ TeV} [2103.02708 (2e, 2\mu)]$ $0.2-4.6 \text{ TeV} [2103.02708 (2e, 2\mu)]$ $0.2-5 \text{ TeV} [2103.02708 (2e, 2\mu)]$
ted light quark (qg), $N = m_q$ ited light quark (qq), $f_s = f = f' = 1$, $\Lambda = m_q^*$ ited light quark, $f_s = f = f' = 1$, $\Lambda = m_q^*$ ited electron, $f_s = f = f' = 1$, $\Lambda = m_q^*$ ited muon, $f_s = f = f' = 1$, $\Lambda = m_{\mu}^*$ M , $ V_{ell} ^2 = 1.0$, $ V_{\mu ll} ^2 = 1.0$ M , $ V_{ell} ^2 = 1.0$, $ V_{\mu ll} ^2 = 1.0$ M , $ V_{ell}V_{\mu ll}^* ^2/(V_{ell} ^2 + V_{\mu ll} ^2) = 1.0$ e-III seesaw heavy fermions, Flavor-democratic for like taus, Doublet tor like taus, Singlet narrow resonance, $\varepsilon^2 = 8 \times 10^{-6}$ (90% C.L.) narrow resonance, $\varepsilon^2 = 7 \times 10^{-7}$ (90% C.L.) narrow resonance, $\varepsilon^2 = 3 \times 10^{-6}$ (90% C.L.) Z'(H) $ Z'(q\bar{q}) $ $\bar{q} $ erstring Z'_{ip} Z' , BR($e\mu$) = 10% Z' , BR($e\mu$) = 10%	M M M M M M M M M M M M M M M M M M M	0.001-1.24 Te 0.001-1.4 0.02- 0.1-0.98 TeV 2202 0.1-0.98 TeV 2202 0.1-1.045 TeV 2202 0.125-0.15 TeV 2202.08676 (3 <i>t</i> , ≥ 4 <i>t</i> , 1τ + 3 <i>t</i> , 2τ + 2 <i>t</i> , 3τ + 1 <i>t</i> , 1τ + 2 <i>t</i> , 0.0115-0.075 TeV 1912.04776 (2μ) 0.11-0.2 TeV 1912.04776 (2μ) AS-EXO-21-005 (2μ) 0.01-0.125 TeV 1905.10331 (1j, 1γ)	$1-2.2 \text{ TeV} (\text{CMS-PAS-EXO-20-012 } (\mathbf{y} + \mathbf{j}) \\ 0.25-3.9 \text{ TeV} 1811.03.052 } (\mathbf{y} + 2\mathbf{e}) \\ 0.25-3.8 \text{ TeV} 1811.03.052 } (\mathbf{y} + 2\mathbf{\mu}) \\ 1802.02965; 1806.10905 } (3\mathbf{\mu}; \ge 1\mathbf{j} + 2\mathbf{\mu}) \\ 3 \text{ TeV} 1802.02965; 1806.10905 } (3\mathbf{e}; \ge 1\mathbf{j} + 2\mathbf{e}) \\ -1.6 \text{ TeV} 1806.10905 } (\ge 1\mathbf{j} + \mathbf{\mu} + \mathbf{e}) \\ .08676 (3t, \ge 4t, 1\mathbf{r} + 3t, 2\mathbf{r} + 2t, 3\mathbf{r} + 1t, 1\mathbf{r} + 2t, 2\mathbf{r} + 1t) \\ .02.08676 (3t, \ge 4t, 1\mathbf{r} + 3t, 2\mathbf{r} + 2t, 3\mathbf{r} + 1t, 1\mathbf{r} + 2t, 2\mathbf{r} + 1t) \\ 2\mathbf{r} + 1t) \\ 0.5-2.9 \text{ TeV} 1911.03.947 (2\mathbf{j}) \\ 0.2-4.6 \text{ TeV} 2103.02.708 (2\mathbf{e}, 2\mathbf{\mu}) \\ 0.2-5 \text{ TeV} 2205.06.709 (\mathbf{e}\mathbf{\mu}) \\ 0.2-4.3 \text{ TeV} 2.2.4.3 \text{ TeV} 2.4.3 \text{ TeV} 2.4.3 \text{ TeV} 2.4.3 \text{ TeV}$
The dright quark (qg), $N = m_q$ ited light quark (qg), $f_s = f = f' = 1$, $N = m_q^*$ ited loguark, $f_s = f = f' = 1$, $N = m_q^*$ ited electron, $f_s = f = f' = 1$, $N = m_q^*$ ited muon, $f_s = f = f' = 1$, $N = m_q^*$ SM, $ V_{ell} ^2 = 1.0$, $ V_{\mu ll} ^2 = 1.0$ SM, $ V_{ell} V_{ell} ^2 = 1.0$, $ V_{\mu ll} ^2 = 1.0$ SM, $ V_{ell}V_{\mu ll}^{\prime \prime} ^2/(V_{ell} ^2 + V_{\mu ll} ^2) = 1.0$ e-III seesaw heavy fermions, Flavor-democratic tor like taus, Doublet tor like taus, Singlet narrow resonance, $\varepsilon^2 = 8 \times 10^{-6}$ (90% C.L.) narrow resonance, $\varepsilon^2 = 7 \times 10^{-7}$ (90% C.L.) narrow resonance, $\varepsilon^2 = 3 \times 10^{-6}$ (90% C.L.) narrow resonance, $\varepsilon^2 = 3 \times 10^{-6}$ (90% C.L.) AZ'(U) $AZ'(Q\bar{q})$ $N\bar{q}$) perstring Z'_{ψ} $(Z', BR(e\mu) = 10\%$ $(Z', BR(\mu\tau) = 10\%)$	M M M M M M M M M M M M M M M M M M M	0.001-1.24 Te 0.001-1.24 Te 0.001-1.43 0.02- 0.1-0.98 TeV 2202 0.1-0.98 TeV 2202 0.1-0.45 TeV 2202 0.125-0.15 TeV 2202.08676 (3 <i>t</i> , ≥ 4 <i>t</i> , 1 τ + 3 <i>t</i> , 2 τ + 2 <i>t</i> , 3 τ + 1 <i>t</i> , 1 τ + 2 <i>t</i> , 0.0115-0.075 TeV 1912.04776 (2μ) 0.11-0.2 TeV 1912.04776 (2μ) AS-EXO-21-005 (2μ) 0.01-0.125 TeV 1905.10331 (1j, 1γ)	$1-2.2 \text{ TeV} (CMS-PAS-EXO-20-012 (y + j))$ $0.25-3.9 \text{ TeV} [1811.03 052 (y + 2e))$ $0.25-3.8 \text{ TeV} [1811.03 052 (y + 2\mu)]$ $y [1802.02965; 1806.10905 (3\mu; \ge 1j + 2\mu)]$ $8 \text{ TeV} [1802.02965; 1806.10905 (3e; \ge 1j + 2e)]$ $1.6 \text{ TeV} [1806.10905 (\ge 1j + \mu + e)]$ $0.8676 (3t, \ge 4t, 1\tau + 3t, 2\tau + 2t, 3\tau + 1t, 1\tau + 2t, 2\tau + 1t)]$ $20.8676 (3t, \ge 4t, 1\tau + 3t, 2\tau + 2t, 3\tau + 1t, 1\tau + 2t, 2\tau + 1t)]$ $2\tau + 1t)$ $0.2-5.15 \text{ TeV} [2103.02708 (2e, 2\mu)]$ $0.5-2.9 \text{ TeV} [1911.03947 (2j)]$ $0.2-4.6 \text{ TeV} [2103.02708 (2e, 2\mu)]$ $0.2-5. \text{ TeV} [2205.06709 (e\mu)]$ $0.2-4.1 \text{ TeV} [2205.06709 (\mu\tau)]$
The dright quark (qg), $h = m_q$ Sited light quark (qq), $f_s = f = f' = 1, h = m_q^*$ Sited electron, $f_s = f = f' = 1, h = m_q^*$ Sited electron, $f_s = f = f' = 1, h = m_q^*$ Sited muon, $f_s = f = f' = 1, h = m_q^*$ SM, $ V_{av} ^2 = 1.0, V_{\mu v} ^2 = 1.0$ SM, $ V_{av} V_{\mu v}^* ^2/(V_{av} ^2 + V_{\mu v} ^2) = 1.0$ e-III seesaw heavy fermions, Flavor-democratic thor like taus, Doublet thor like taus, Singlet narrow resonance, $\varepsilon^2 = 8 \times 10^{-6}$ (90% C.L.) narrow resonance, $\varepsilon^2 = 4 \times 10^{-5}$ (90% C.L.) narrow resonance, $\varepsilon^2 = 3 \times 10^{-6}$ (90% C.L.) narrow resonance, $\varepsilon^2 = 3 \times 10^{-6}$ (90% C.L.) narrow resonance, $\varepsilon^2 = 3 \times 10^{-6}$ (90% C.L.) (M Z'(ll) M Z'(pl) = 10% (Z', BR(e_T) = 10% M V'(tv)	M M M M M M M M M M M M M M M M M M M	0.001–1.24 Te 0.001–1.4 0.02- 0.1–0.98 TeV 202- 0.1–0.98 TeV 202- 0.125–0.15 TeV 2020.8676 (3 <i>t</i> , ≥ 4 <i>t</i> , 1τ + 3 <i>t</i> , 2τ + 2 <i>t</i> , 3τ + 1 <i>t</i> , 1τ + 2 <i>t</i> , 0.0115–0.075 TeV 1912.04776 (2μ) 0.11–0.2 TeV 1912.04776 (2μ) AS-EXO-21-005 (2μ) 0.01–0.125 TeV 1905.10331 (1j, 1γ)	$1-22 \text{ TeV} (MS-PAS-EXO-20-012 (y + j))$ $0.25-3.9 \text{ TeV} [1811.03052 (y + 2e))$ $0.25-3.8 \text{ TeV} [1811.03052 (y + 2\mu)]$ $y [1802.02965; 1806.10905 (3\mu; \ge 1j + 2\mu)]$ $8 \text{ TeV} [1802.02965; 1806.10905 (3e; \ge 1j + 2e)]$ $1.6 \text{ TeV} [1806.10905 (\ge 1j + \mu + e)]$ $0.8676 (3l, \ge 4l, 1\tau + 3l, 2\tau + 2l, 3\tau + 1l, 1\tau + 2l, 2\tau + 1l)$ $20.8676 (3l, \ge 4l, 1\tau + 3l, 2\tau + 2l, 3\tau + 1l, 1\tau + 2l, 2\tau + 1l)$ $2\tau + 1l)$ $0.2-5.15 \text{ TeV} [2103.02708 (2e, 2\mu)]$ $0.2-4.6 \text{ TeV} [2103.02708 (2e, 2\mu)]$ $0.2-4.6 \text{ TeV} [2103.02708 (2e, 2\mu)]$ $0.2-4.3 \text{ TeV} [2205.06709 (e\mu)]$ $0.2-4.1 \text{ TeV} [2205.06709 (e\tau)]$ $0.4-5.7 \text{ TeV} [2202.06075 (l + p_{\tau}^{rtm})]$
The dright quark (qg), $N = m_q$ ited light quark (qg), $f_s = f = f' = 1, \Lambda = m_q^*$ ited light quark $f_s = f = f' = 1, \Lambda = m_q^*$ ited electron, $f_s = f = f' = 1, \Lambda = m_q^*$ ited muon, $f_s = f = f' = 1, \Lambda = m_{\mu}^*$ SM, $ V_{en} ^2 = 1.0, V_{\mu n} ^2 = 1.0$ SM, $ V_{en} ^2 = 1.0, V_{\mu n} ^2 = 1.0$ SM, $ V_{en} V_{\mu n}^* ^2/(V_{en} ^2 + V_{\mu n} ^2) = 1.0$ e-III seesaw heavy fermions, Flavor-democratic tor like taus, Doublet tor like taus, Singlet narrow resonance, $\varepsilon^2 = 8 \times 10^{-6}$ (90% C.L.) narrow resonance, $\varepsilon^2 = 7 \times 10^{-7}$ (90% C.L.) narrow resonance, $\varepsilon^2 = 3 \times 10^{-6}$ (90% C.L.) narrow resonance, $\varepsilon^2 = 3 \times 10^{-6}$ (90% C.L.) (2', Ul) $AZ'(Q\bar{q})$ $AZ'(Q\bar{q})$ $AZ'(Q\bar{q})$ AZ'(D) AZ'(LV) AZ	M M M M M M M M M M M M M M M M M M M	0.001-1.24 Te 0.001-1.24 Te 0.001-1.45 0.02- 0.1-0.98 TeV 2202 0.1-1.045 TeV 2202 0.1-1.045 TeV 2202 0.125-0.15 TeV 2202.08676 (3 <i>t</i> , ≥ 4 <i>t</i> , 1τ + 3 <i>t</i> , 2τ + 2 <i>t</i> , 3τ + 1 <i>t</i> , 1τ + 2 <i>t</i> , 0.0115-0.075 TeV 1912.04776 (2μ) 0.11-0.2 TeV 1912.04776 (2μ) AS-EXO-21-005 (2μ) 0.01-0.125 TeV 1905.10331 (1j, 1γ) 0.05-0.45 TeV 1909.04114 (2j)	$1-22 \text{ TeV} (MS-PAS-EXO-20-012 (y + j))$ $0.25-3.9 \text{ TeV} [1811.03052 (y + 2e))$ $0.25-3.8 \text{ TeV} [1811.03052 (y + 2\mu))$ $1.61 \text{ TeV} [1802.02965; 1806.10905 (3\mu; \ge 1j + 2e))$ $1.6 \text{ TeV} [1802.02965; 1806.10905 (3e; \ge 1j + 2e))$ $1.6 \text{ TeV} [1806.10905 (\ge 1j + \mu + e)]$ $0.8676 (3l, \ge 4l, 1\tau + 3l, 2\tau + 2l, 3\tau + 1l, 1\tau + 2l, 2\tau + 1l)$ $2.08676 (3l, \ge 4l, 1\tau + 3l, 2\tau + 2l, 3\tau + 1l, 1\tau + 2l, 2\tau + 1l)$ $2\tau + 1l)$ $0.2-5.15 \text{ TeV} [2103.02708 (2e, 2\mu)]$ $0.5-2.9 \text{ TeV} [1911.03947 (2j)]$ $0.2-4.6 \text{ TeV} [2103.02708 (2e, 2\mu)]$ $0.2-4.3 \text{ TeV} [2205.06709 (e\mu)]$ $0.2-4.1 \text{ TeV} [2205.06709 (\mu\tau)]$ $0.4-5.7 \text{ TeV} [2202.06075 (l + p_{\tau}^{\text{rten}})]$
The light quark (qg), $N = m_q$ ited light quark (qq), $f_s = f = f' = 1$, $\Lambda = m_q^*$ ited b quark, $f_s = f = f' = 1$, $\Lambda = m_q^*$ ited electron, $f_s = f = f' = 1$, $\Lambda = m_q^*$ ited muon, $f_s = f = f' = 1$, $\Lambda = f' = 1$	M M M M M M M M M M M M M M M M M M M	0.001-1.24 Te 0.001-1.4 0.001-1.4 0.02- 0.1-0.98 TeV 2202 0.1-0.98 TeV 2202 0.1-0.98 TeV 2202 0.1-0.075 TeV 1912.04 776 (2μ) 0.11-0.2 TeV 1912.04776 (2μ) AS-EXO-21-005 (2μ) 0.01-0.125 TeV 1905.10331 (1j, 1γ) 0.01-0.125 TeV 1905.10331 (1j, 1γ) 0.05-0.45 TeV 1909.04114 (2j)	$\frac{1-22 \text{ TeV} (\text{CMS-PAS-EXO-20-012 } (\mathbf{y} + \mathbf{j})}{0.25-3.9 \text{ TeV}} 1811.03052 (\mathbf{y} + 2\mathbf{e})} \\ 0.25-3.8 \text{ TeV}} 1811.03052 (\mathbf{y} + 2\mathbf{\mu})}$ $\frac{1802.02965; 1806.10905 (3\mathbf{\mu}; \ge 1\mathbf{j} + 2\mathbf{\mu})}{8\text{ TeV}} 1802.02965; 1806.10905 (3\mathbf{e}; \ge 1\mathbf{j} + 2\mathbf{e})} \\ 1.6 \text{ TeV}} 1806.10905 (3\mathbf{e}; \ge 1\mathbf{j} + 2\mathbf{e}) \\ 1.6 \text{ TeV}} 1806.10905 (3\mathbf{i}; \ge 1\mathbf{j} + 2\mathbf{i}, 3\mathbf{r} + 1\mathbf{i}, 1\mathbf{r} + 2\mathbf{i}, 2\mathbf{r} + 1\mathbf{i})} \\ 208676 (3\mathbf{i}, \ge 4\mathbf{i}, 1\mathbf{r} + 3\mathbf{i}, 2\mathbf{r} + 2\mathbf{i}, 3\mathbf{r} + 1\mathbf{i}, 1\mathbf{r} + 2\mathbf{i}, 2\mathbf{r} + 1\mathbf{i})} \\ 2\mathbf{r} + 1\mathbf{i}) \\ \frac{0.2-5.15 \text{ TeV}}{0.5-2.9 \text{ TeV}} 1911.03947 (2\mathbf{j})} \\ 0.2-4.6 \text{ TeV}} 2103.02708 (2\mathbf{e}, 2\mathbf{\mu}) \\ 0.2-5.5 \text{ TeV}} 2205.06709 (\mathbf{e}\mathbf{r}) \\ 0.2-4.1 \text{ TeV}} 2205.06709 (\mathbf{e}\mathbf{r}) \\ 0.2-4.1 \text{ TeV}} 2205.06709 (\mathbf{e}\mathbf{r}) \\ 0.2-5.7 \text{ TeV}} 1911.03947 (2\mathbf{j}) \\ \end{array}$
creating interval (<i>qg</i>), $h = m_q$ cited light quark (<i>qg</i>), $h = f = f' = 1, h = m_q^*$ cited b quark, $f_S = f = f' = 1, h = m_q^*$ cited electron, $f_S = f = f' = 1, h = m_{\mu}^*$ SM, $ V_{ell} ^2 = 1.0, V_{ell} ^2 = 1.0$ SM, $ V_{ell} ^2 = 1.0, V_{ell} ^2 = 1.0$ SM, $ V_{ell} ^2 = 1.0, V_{ell} ^2 + V_{\mu n} ^2$ = 1.0 SM, $ V_{ell}V_{\mu n}^* ^2/(V_{ell} ^2 + V_{\mu n} ^2) = 1.0$ ve-III seesaw heavy fermions, Flavor-democratic ttor like taus, Doublet ttor like taus, Singlet , narrow resonance, $\varepsilon^2 = 8 \times 10^{-6}$ (90% C.L.) , narrow resonance, $\varepsilon^2 = 7 \times 10^{-7}$ (90% C.L.) , narrow resonance, $\varepsilon^2 = 7 \times 10^{-7}$ (90% C.L.) , narrow resonance, $\varepsilon^2 = 3 \times 10^{-6}$ (90% C.L.) M Z'(<i>U</i>) M Z'(<i>U</i>) M Z'(<i>q</i> \ddot{q}) $q\ddot{q}$) perstring Z'_{ψ} / Z', BR(e μ) = 10% / Z', BR(e μ) = 10% / Z', BR(μ) = 10% / W'(<i>t</i> ν) hophobic Z' M W ₁ (μ M _R), $M_{H_R} = 0.5M_{W_R}$	M M M M M M M M M M M M M M M M M M M	0.001-124 Te 0.001-124 Te 0.001-124 Te 0.02- 0.1-0.98 TeV 2202 0.1-0.98 TeV 2202 0.1-0.98 TeV 2202 0.1-1.045 TeV 2202 0.125-0.15 TeV 2202.08676 (3 <i>I</i> , ≥ 4 <i>I</i> , 1 x + 3 <i>I</i> , 2 x + 2 <i>I</i> , 3 x + 1 <i>I</i> , 1 x + 2 <i>I</i> , 0.0115-0.075 TeV 1912.04776 (2µ) 0.011-0.2 TeV 1912.04776 (2µ) 0.01-0.125 TeV 1912.04776 (2µ) 0.01-0.125 TeV 1905.10331 (1j, 1γ) 0.05-0.45 TeV 1909.04114 (2j)	$\frac{1-22 \text{ TeV} (\text{MS-PAS-EXO-20-012 } (\mathbf{y} + \mathbf{j})}{0.25-3.9 \text{ TeV}} 1811.03052 (\mathbf{y} + 2\mathbf{e})} \\ 0.25-3.8 \text{ TeV}} 1811.03052 (\mathbf{y} + 2\mathbf{\mu})}$ $\frac{1}{9} 1802.02965; 1806.10905 (3\boldsymbol{\mu}; \ge 1\mathbf{j} + 2\boldsymbol{\mu})}{11.6 \text{ TeV}} 1806.10905 (3\boldsymbol{\mu}; \ge 1\mathbf{j} + 2\mathbf{e})} \\ \frac{1}{1.6 \text{ TeV}} 1806.0905 (3\boldsymbol{\mu}; \ge 1\mathbf{j} + 2\mathbf{e})}{11.6 \text{ TeV}} 1806.0905 (3\boldsymbol{\mu}; \ge 1\mathbf{j} + 2\mathbf{e})} \\ \frac{1}{1.6 \text{ TeV}} 1806.0905 (\ge 1\mathbf{j} + \boldsymbol{\mu} + \mathbf{e})}{10.8 676 (3\boldsymbol{\ell}, \ge 4\boldsymbol{\ell}, 1\mathbf{T} + 3\boldsymbol{\ell}, 2\mathbf{T} + 2\boldsymbol{\ell}, 3\mathbf{T} + 1\boldsymbol{\ell}, 1\mathbf{T} + 2\boldsymbol{\ell}, 2\mathbf{T} + 1\boldsymbol{\ell})} \\ 20.8 676 (3\boldsymbol{\ell}, \ge 4\boldsymbol{\ell}, 1\mathbf{T} + 3\boldsymbol{\ell}, 2\mathbf{T} + 2\boldsymbol{\ell}, 3\mathbf{T} + 1\boldsymbol{\ell}, 1\mathbf{T} + 2\boldsymbol{\ell}, 2\mathbf{T} + 1\boldsymbol{\ell})} \\ 20.8 676 (3\boldsymbol{\ell}, \ge 4\boldsymbol{\ell}, 1\mathbf{T} + 3\boldsymbol{\ell}, 2\mathbf{T} + 2\boldsymbol{\ell}, 3\mathbf{T} + 1\boldsymbol{\ell}, 1\mathbf{T} + 2\boldsymbol{\ell}, 2\mathbf{T} + 1\boldsymbol{\ell}) \\ 22.7 + 1\boldsymbol{\ell}) \\ \frac{0.2-5 \text{ TeV}}{0.5-2.9 \text{ TeV}} 1911.03947 (2\mathbf{j})} \\ 0.2-4.3 \text{ TeV}} 2205.06709 (\mathbf{e}\mathbf{T}) \\ 0.2-4.3 \text{ TeV}} 2205.06709 (\mathbf{e}\mathbf{T}) \\ 0.2-4.1 \text{ TeV}} 2205.06709 (\mathbf{e}\mathbf{T}) \\ 0.4-5.7 \text{ TeV}} 2202.06075 (\boldsymbol{\ell} + \mathbf{p}_{\mathbf{T}}^{\text{true}}) \\ \frac{0.5-3.6 \text{ TeV}}{0.2112.03947 (2\mathbf{j})} \\ \frac{0.5-3.6 \text{ TeV}}{0.2112.03947 (2\mathbf{j})} \\ \frac{0.5-3.6 \text{ TeV}}{0.2112.03947 (2\mathbf{j})} \\ \frac{0.5-3.6 \text{ TeV}}{0.2112.03949 (2\mathbf{\mu} + 2\mathbf{j})} \\ \end{array}$
cred right quark (qg), $h = m_q$ cited light quark (qy), $f_s = f = f' = 1, A = m_q^*$ cited b quark, $f_s = f = f' = 1, A = m_q^*$ cited electron, $f_s = f = f' = 1, A = m_\mu^*$ SM, $ V_{ev} ^2 = 1.0, V_{ev} ^2 = 1.0$ SM, $ V_{ev} V_{\mu n} ^2 = 1.0, V_{ev} ^2 = 1.0$ SM, $ V_{ev} V_{\mu n} ^2 / (V_{ev} ^2 + V_{\mu n} ^2) = 1.0$ ve-III seesaw heavy fermions, Flavor-democratic ctor like taus, Doublet tor like taus, Singlet , narrow resonance, $\varepsilon^2 = 8 \times 10^{-6}$ (90% C.L.) , narrow resonance, $\varepsilon^2 = 4 \times 10^{-3}$ (90% C.L.) , narrow resonance, $\varepsilon^2 = 7 \times 10^{-7}$ (90% C.L.) , narrow resonance, $\varepsilon^2 = 3 \times 10^{-6}$ (90% C.L.) M Z'(U) M Z'(U) M Z'($q\dot{q}$) q \dot{q}) perstring Z' ₀ / Z', BR(e μ) = 10% / Z', BR(e μ) = 10% / Z', BR(μ) = 10% / Z', BR(μ) = 10% / W'($t\nu$) xophobic Z' M W'($t\nu$) M W ₁ (μ M _R), $M_{N_R} = 0.5M_{W_R}$ M W'($t\nu$)	M M M M M M M M M M M M M M M M M M M	0.001-124 Te 0.001-124 Te 0.001-1.4 0.02- 0.1-0.98 TeV 2202 0.1-1.045 TeV 2202 0.125-0.15 TeV 2202.08676 (3 <i>I</i> , ≥ 4 <i>I</i> , 1T + 3 <i>I</i> , 2T + 2 <i>I</i> , 3T + 1 <i>I</i> , 1T + 2 <i>I</i> , 0.0115-0.075 TeV 1912.04 776 (2µ) 0.011-0.2 TeV 1912.04776 (2µ) 0.01-0.125 TeV 1912.04776 (2µ) 0.01-0.125 TeV 1905.10331 (1j, 1γ) 0.05-0.45 TeV 1909.04114 (2j)	$\frac{1-2.2 \text{ TeV} (CMS-PAS-EXO-20-012 (y + j)}{0.25-3.9 \text{ TeV} 1811.03052 (y + 2e)}{0.25-3.8 \text{ TeV} 1811.03052 (y + 2e)}$ $\frac{1}{0.25-3.8 \text{ TeV} 1811.03052 (y + 2e)}{1.6 \text{ TeV} 1802.02965; 1806.10905 (3e; \geq 1j + 2e)}{1.6 \text{ TeV} 1802.02965; 1806.10905 (3e; \geq 1j + 2e)}{1.6 \text{ TeV} 1806.10905 (\geq 1j + \mu + e)}{0.86676 (3t, \geq 4t, 1\tau + 3t, 2\tau + 2t, 3\tau + 1t, 1\tau + 2t, 2\tau + 1t)}{22.08676 (3t, \geq 4t, 1\tau + 3t, 2\tau + 2t, 3\tau + 1t, 1\tau + 2t, 2\tau + 1t)}{22.7 + 1t})\frac{0.2-5.15 \text{ TeV} 2103.02708 (2e, 2\mu)}{0.5-2.9 \text{ TeV} 1911.03947 (2j)}\frac{0.2-4.6 \text{ TeV} 2103.02708 (2e, 2\mu)}{0.2-4.3 \text{ TeV} 2205.06709 (e\mu)}0.2-4.1 \text{ TeV} 2205.06709 (e\tau)0.4-5.7 \text{ TeV} 2202.06075 (t + p_{T}^{\text{sten}})\frac{0.5-3.6 \text{ TeV} 1911.03947 (2j)}{2122.03949 (2\mu + 2j)}0.5-4.8 \text{ TeV} 2122.12604 (\tau + p_{T}^{\text{sten}})$
In the origin quark (qg), $\Lambda = m_q^{-1}$ is cited light quark (qq), $f_s = f = f' = 1$, $\Lambda = m_q^{+1}$ is cited b quark, $f_s = f = f' = 1$, $\Lambda = m_q^{+1}$ is cited electron, $f_s = f = f' = 1$, $\Lambda = m_q^{+1}$ (SM, $ V_{ell} ^2 = 1.0$, $ V_{ell} ^2 = 1.0$ (SM, $ V_{ell} ^2 = 1.0$, $ V_{ell} ^2 = 1.0$ (SM, $ V_{ell}V_{ell} ^2 / (V_{ell} ^2 + V_{ell} ^2) = 1.0$ pe-III seesaw heavy fermions, Flavor-democratic ctor like taus, Doublet ctor like taus, Singlet i, narrow resonance, $\varepsilon^2 = 8 \times 10^{-6}$ (90% C.L.) i, narrow resonance, $\varepsilon^2 = 4 \times 10^{-3}$ (90% C.L.) i, narrow resonance, $\varepsilon^2 = 3 \times 10^{-6}$ (90% C.L.) i, narrow resonance, $\varepsilon^2 = 3 \times 10^{-6}$ (90% C.L.) i, narrow resonance, $\varepsilon^2 = 3 \times 10^{-6}$ (90% C.L.) i, narrow resonance, $\varepsilon^2 = 3 \times 10^{-6}$ (90% C.L.) i, narrow resonance, $\varepsilon^2 = 3 \times 10^{-6}$ (90% C.L.) i, narrow resonance, $\varepsilon^2 = 3 \times 10^{-6}$ (90% C.L.) i, narrow resonance, $\varepsilon^2 = 3 \times 10^{-6}$ (90% C.L.) i, narrow resonance, $\varepsilon^2 = 3 \times 10^{-6}$ (90% C.L.) i, resonance, $\varepsilon^2 = 3 \times 10^{-6}$ (90% C.L.) i, resonance, $\varepsilon^2 = 3 \times 10^{-6}$ (90% C.L.) i, narrow resonance, $\varepsilon^2 = 3 \times 10^{-6}$ (90% C.L.) i, narrow resonance, $\varepsilon^2 = 3 \times 10^{-6}$ (90% C.L.) i, narrow resonance, $\varepsilon^2 = 3 \times 10^{-6}$ (90% C.L.) i, narrow resonance, $\varepsilon^2 = 3 \times 10^{-6}$ (90% C.L.) i, narrow resonance, $\varepsilon^2 = 3 \times 10^{-6}$ (90% C.L.) i, narrow resonance, $\varepsilon^2 = 3 \times 10^{-6}$ (90% C.L.) i, narrow resonance, $\varepsilon^2 = 3 \times 10^{-6}$ (90% C.L.) i, narrow resonance, $\varepsilon^2 = 3 \times 10^{-6}$ (90% C.L.) i, narrow resonance, $\varepsilon^2 = 3 \times 10^{-6}$ (90% C.L.) i, narrow resonance, $\varepsilon^2 = 3 \times 10^{-6}$ (90% C.L.) i, narrow resonance, $\varepsilon^2 = 3 \times 10^{-6}$ (90% C.L.) i,	M M M M M M M M M M M M M M M M M M M	AS-EXO-21-005 (2μ) 0.01-0.125 TeV 1905.10331 (1j, 1γ) 0.01-0.125 TeV 1905.10331 (1j, 1γ) 0.01-0.125 TeV 1905.10331 (1j, 1γ) 0.01-0.125 TeV 1905.10331 (1j, 1γ) 0.01-0.125 TeV 1905.10331 (1j, 1γ) 0.05-0.45 TeV 1909.04114 (2j)	$\frac{1-22 \text{ TeV} (CMS-PAS-EXO-20-012 (y + j)}{0.25-3.9 \text{ TeV} 1811.03052 (y + 2e)}{0.25-3.8 \text{ TeV} 1811.03052 (y + 2e)}$ $\frac{1}{0.25-3.8 \text{ TeV} 1811.03052 (y + 2\mu)}$ $\frac{1}{0.25-3.8 \text{ TeV} 1806.10905 (3\mu; \ge 1j + 2\mu)}{1.6 \text{ TeV} 1802.02965; 1806.10905 (3e; \ge 1j + 2e)}{1.6 \text{ TeV} 1802.02965; 1806.10905 (3e; \ge 1j + 2e)}{1.6 \text{ TeV} 1806.05065 (2e; ≥1j + 4e)}$ $\frac{0.8676 (3t, \ge 4t, 1\tau + 3t, 2\tau + 2t, 3\tau + 1t, 1\tau + 2t, 2\tau + 1t)}{22.08676 (3t, \ge 4t, 1\tau + 3t, 2\tau + 2t, 3\tau + 1t, 1\tau + 2t, 2\tau + 1t)}$ $\frac{0.2-5.15 \text{ TeV} 2103.02708 (2e, 2\mu)}{0.5-2.9 \text{ TeV} 1911.03947 (2j)}$ $\frac{0.2-4.6 \text{ TeV} 2103.02708 (2e, 2\mu)}{0.2-4.1 \text{ TeV} 2205.06709 (e\tau)}$ $\frac{0.2-4.1 \text{ TeV} 2205.06709 (e\tau)}{0.4-5.7 \text{ TeV} 2202.06075 (t + p_{T}^{min})}$ $\frac{0.5-3.6 \text{ TeV} 1911.03947 (2j)}{(5 \text{ TeV} 2112.03949 (2\mu + 2j))}$ $\frac{0.6-4.8 \text{ TeV} 2212.12604 (\tau + p_{T}^{min})}{(4.7 \text{ TeV} 2112.03949 (2e + 2j)}$
Creating the quark (qg), $N = m_q$ cited light quark (qy), $f_s = f = f' = 1, \Lambda = m_q^*$ cited b quark, $f_s = f = f' = 1, \Lambda = m_q^*$ cited electron, $f_s = f = f' = 1, \Lambda = m_q^*$ cited muon, $f_s = f = f' = 1, \Lambda = m_q^*$ ISM, $ V_{ev} ^2 = 1.0, V_{ev} ^2 = 1.0$ ISM, $ V_{ev} V_{ev}^{\dagger} ^2 (V_{ev} ^2 + V_{ev} ^2) = 1.0$ se-III seesaw heavy fermions, Flavor-democratic thor like taus, Doublet thor like taus, Singlet , narrow resonance, $\varepsilon^2 = 8 \times 10^{-6}$ (90% C.L.) , narrow resonance, $\varepsilon^2 = 7 \times 10^{-7}$ (90% C.L.) , narrow resonance, $\varepsilon^2 = 3 \times 10^{-6}$ (90% C.L.) , narrow resonance, $\varepsilon^2 = 3 \times 10^{-6}$ (90% C.L.) M Z'(t) M W(t) thore is the taus of tau	M M M M M M M M M M M M M M M M M M M	0.001-124 Te 0.001-124 Te 0.001-124 Te 0.001-124 Te 0.001-0.98 Te¥ 2002 0.1-0.098 Te¥ 2002 0.1-0.098 Te¥ 2002.08676 (3 <i>t</i> , ≥ 4 <i>t</i> , 1 T + 3 <i>t</i> , 2 T + 2 <i>t</i> , 3 T + 1 <i>t</i> , 1 T + 2 <i>t</i> , 0.0115-0.075 Te¥ 1912.04 776 (2µ) 0.11-0.2 Te¥ 1912.04 776 (2µ) 0.01-0.125 Te¥ 1912.04 776 (2µ) 0.01-0.125 Te¥ 1905.10331 (1j, 1γ) 0.05-0.45 Te¥ 1909.04114 (2j)	$\frac{1-2.2 \text{ TeV} (\text{CMS-PAS-EXO-20-012 } (\mathbf{y} + \mathbf{j})}{0.25-3.9 \text{ TeV} 1811.03052 } (\mathbf{y} + 2\mathbf{e})}{0.25-3.8 \text{ TeV} 1811.03052 } (\mathbf{y} + 2\mathbf{\mu})}$ $\frac{1802.02965; 1806.10905 (3\mathbf{\mu}; \ge 1\mathbf{j} + 2\mathbf{\mu})}{1802.02965; 1806.10905 (3\mathbf{e}; \ge 1\mathbf{j} + 2\mathbf{e})}$ $\frac{1.6 \text{ TeV} 1802.02965; 1806.10905 (3\mathbf{e}; \ge 1\mathbf{j} + 2\mathbf{e})}{1.6 \text{ TeV} 1802.02965; 1806.10905 (3\mathbf{e}; \ge 1\mathbf{j} + 2\mathbf{e})}$ $\frac{1.6 \text{ TeV} 1806.10905 (\ge 1\mathbf{j} + \mathbf{\mu} + \mathbf{e})}{0.8676 } (3t, \ge 4t, 1\mathbf{r} + 3t, 2\mathbf{r} + 2t, 3\mathbf{r} + 1t, 1\mathbf{r} + 2t, 2\mathbf{r} + 1t)}{22.08676 } (3t, \ge 4t, 1\mathbf{r} + 3t, 2\mathbf{r} + 2t, 3\mathbf{r} + 1t, 1\mathbf{r} + 2t, 2\mathbf{r} + 1t)}$ $\frac{0.2-5.15 \text{ TeV} 2103.02708 } (2\mathbf{e}, 2\mathbf{\mu})}{0.5-2.9 \text{ TeV} 1911.03947 } (2\mathbf{j})}$ $\frac{0.2-4.3 \text{ TeV} 2205.06709 } (\mathbf{e}\mathbf{r})}{0.2-4.1 \text{ TeV} 2205.06709 } (\mathbf{e}\mathbf{r})}$ $0.2-4.3 \text{ TeV} 2205.06709 } (\mathbf{e}\mathbf{r})$ $0.5-3.6 \text{ TeV} 1911.03947 } (2\mathbf{j})$ $\frac{0.5-3.6 \text{ TeV} 1911.03947 } (2\mathbf{j})}{(5-3.6 \text{ TeV} 2112.03949 } (2\mathbf{\mu} + 2\mathbf{j})}$ $0.6-4.8 \text{ TeV} 2212.12604 } (\mathbf{r} + \mathbf{p}_{\mathbf{r}}^{\text{rtw}})$ $\frac{4.7 \text{ TeV} 2112.03949 } (2\mathbf{r} + 2\mathbf{j})}{(3.5 \text{ TeV} 1811.00806 } (2\mathbf{r} + 2\mathbf{j})}$

Mass Scale [TeV]

EXO Results

Trigger

- muons,
- electrons,
- photons \rightarrow helps for very high energy electrons
- jets $\rightarrow +8\%$ efficiency,

Selections

- isolation requirements $(I_{mini}) \rightarrow$ reduce number of leptons from hadronic decays,
- events with additional e/μ discarded \rightarrow reduce the background,
- $p_T^{miss} > 120 \text{ GeV} \rightarrow \text{suppress QCD background}$,
- AK4 jets: \geq 2 required (>300 GeV and >150 GeV):
 - for top quark and W' candidates,
 - jet ID with DeepJet to reduce light quark an gluon jets,
- AK8 jets: \geq 2 required:
 - for loose selection,
 - veto hadronic tops from SM backgrounds.

number of b-jets	jet _{top} b-tagged	jetw [,] b-tagged	la			
0	X	X	F			
Signal-enriched regions						
1	\checkmark	Х				
1	Х	\checkmark	F			
≥2	\checkmark	\checkmark	F			

$$I_{\text{mini}} = \frac{\Sigma_I(R)}{p_T^{lep}}, \text{ with } R = \frac{10 \text{ GeV}}{\min(\max(p_T^{lep}, 50 \text{ GeV}), 200 \text{ GeV})}$$

Regions definition

- regions: depending on which selected W' and t jets are b-tagged,
- subregions based on:
 - $m_{SD,AK8}$ of the AK8 jet with smallest $\Delta R(jet_{W'}, jet_{AK8})$. Soft-drop declustering removes soft wide-angle radiation from a jet,
 - the mass of the reconstructed top quark m_{top}.

Background estimation

- distribution of background extracted from data,
- overall shape and normalization found from control regions,
- simulation used to determine transfer functions to signal regions,
- function fitted: $a \cdot \exp(b \cdot m_{W'}) + c \cdot m_{W'} + d$,
- statistical uncertainty of the fit propagated to the prediction,
- some regions used to estimate systematic effects (differences in m_W spectra due to selections, or different background composition).

B2G-20-012

B2G-20-012

B2G-20-012

21

Trigger

- ≥1 muon,
- \geq 2 electron,
- photons

Heavy tW search

B2G-20-010

23

Heavy tW search

B2G-20-010

W

Data/Bkg

Data/Bkg

Data/Bkg.

Heavy tW search

B2G-21-005

26

Signal/control regions

- dominant backgrounds: QCD & tt,
- QCD from data: ABCD method, several CRs, simultaneous maximum-likelihood fit with the SRs,
- tt determined from simulation:

 - W tagging requirement \rightarrow t tagging requirement on AK8 jets,
 - QCD background in tt CR small \rightarrow taken from simulation,
- minor backgrounds from W+jets, diboson, top + W \rightarrow shape from simulation, yields through nuisance paramaters in the fit.

• tt-enriched CR used to constrain the uncertainties in the tt normalization and shape of the tt background in the m_{tw} distribution,

OW-MASS DIMUON ٧G

C	V
	ί

Effect	$m_{\mu\mu}$ < 2.6 GeV	$m_{\mu\mu} > 4.2 \text{ GeV}$
Integrated luminosity	2.3–2.5%	
Mass resolution	20%	
Trigger efficiency	1–20%	
Muon ID efficiency	4–9%	12–20%
Vertex selection	—	3%
Efficiency application	8%	4%
D meson normalization TFs	20–25%	—

29

INELASTIC DIV

Trigger

• triggering on MET (muons too soft)

Backgrounds

- QCD (suppressed with Njets \leq 2 requirement)
- top (suppressed by b-jets veto)
- W+jets

EXO-20-010

EXO-21-012

32

Signal/control regions

- normalization of background from observed CRs.
- main backgrounds:
 - WW & DY (di-leptonic channel),
 - W+jets (semi-leptonic channel),
 - tW & tt (both),
- one independent CR for each process:
 - tW and tt enriched region \rightarrow reversing requirement on the number of b-tagged jets,
 - W+W- \rightarrow reversing the ΔR_{\parallel} : $\Delta R_{\parallel} > 2.5$,
 - Drell-Yan \rightarrow inverting the m_T^{mll,pTmiss}: m_T^{mll,pTmiss} <50GeV,
 - W + jets \rightarrow inverting the m_{ii}: m_{ii} < 65 GeV or mjj > 105 GeV,
- yields in CRs fitted simultaneously with SRs, background normalizations float freely.

INELASTIC DM

- first search for inelastic DM at a hadron collider
 - ≥ 2 DM states $\chi_1 \& \chi_2 + \text{dark photon A' with } \epsilon$ mixing
- small $\Delta = m_2 m_1 \in [10, 40\%] m_1$:
 - long lived (easier to distinguish from backgrounds)
 - Iow selection efficiency (even 10-4 for low mass/large displacement)
 - large predicted **cross sections** (≈a few fb)
 - low p_T , low ΔR muons
- pT^{miss} collimated with displaced muons

Analysis details

- backgrounds: QCD, single top, W+jets
- signal regions: depending on di-muon displacement
- control region: >2 jets
- cosmic muons rejected by $\Delta R < 0.9$

Search for inelastic dark matter in events with two displaced muons and missing transverse momentum

- muon system only,
- cosmic muons algorithm for track seeding,
- efficient for large displacement, up to a few meters,
- small displacement muons replaced by standard PF algorithm,
- signal regions defined by number of dSA muons replaced by PF muons.

Results

- ABCD method: min-d_{xy} vs. relative isolation I_{PF} or $\Delta \phi_{\mu\mu}^{MET}$,
- data consistent with the SM prediction,
- limits in interaction strength y vs. m₁,
- sensitivity at $m_1 = 30 \text{ GeV} \rightarrow m_{A'} = 90 \text{ GeV}$ increased due to kinetic mixing between A' and Z boson.

EXO-20-010

Specialized displaced standalone (dSA) muon reconstruction

